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Inelastic Electron Scattering from Nuclei and Single-Particle Excitations~
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Arguments are presented that the single-particle excitations in nuclei induced by inelastically scattered
electrons dominate the inelastic cross section in large domains of the momentum transfer (q) and the energy
loss (&o). The sum rules for 6xed q and s& are derived which include the transverse electron-nucleus interac-
tions to order q'/M' (far being the nucleon mass). The results of the calculations of the inelastic cross section
for C' at 8=13S' are discussed and compared with experimental data.

I. INTRODUCTION

HE inelastic electron scattering from nuclei has
long been recognized as one of the most direct

means to investigate the correlations in nuclear matter.
Although the experimental data are still very scarce,
there are quite a few theoretical papers on the subject."
The present paper deals with the region of the inelastic
cross sections where the scattering from quasifree
nucleons presumably dominates as has been suggested
by several authors. " ' This part of the cross section
(which looks like a big bump on the experimental
curves) almost exhausts the sum rule for Js"dto o (q,8,&o),

q, t)j, co being the momentum transfer, the scattering
angle, and the energy loss, respectively. For that reason
it should be understood first, since any other eGects
(e.g. , the high-energy-loss tail due to the short-range
dynamical correlations') are small additions to this
dominant effect.

There is also another aspect of this problem. If one
investigates any production process in the Geld of a
heavy nucleus Lsee Fig. 1(a)$, for instance, production
of p, pairs, ' the Z vertex is the same as in the inelastic
electron scattering process LFig. 1(b)j. As long as one
does not measure all the angles and momenta of the
particles produced at the left-hand vertex, one can use
the energy sum rule for the Z vertex (compare Refs.
6, 1). In any complete measurement, however, where
all momenta and angles of produced particles are
measured, one has to use a sum rule for Z vertex for
fixed q and ~. In principle, one could replace the Z
vertex in Fig. 1(a) by the experimentally measured
vertex in Fig. 1(b), but this is not an easy task in
practice and even an approximate formula which takes
into account the dominant process at Z vertex may
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II. THE SUM RULES

Recently, a sum rule has been investigated which

gives the inelastic electron-nucleus cross section a (q, &o,8)
as a product of the Mott cross section and the ground-
state expectation value of the density-density correla-
tion function for the nucleus, provided one includes

only the longitudinal electron-nucleon interaction. (See
Ref. 2, henceforth called A.)

First, we want to generalize the above sum rule. In
order to simplify the arguments, let us consider the
electron-nucleus interaction in the 6rst Born approxi-
mationr correct through order q'/M'. As is shown in

FIG. 1. (a) Production proc-
ess on Coulomb 6eld of a
nucleus with Z protons. One
sums over all nuclear excita- Z

tions compatible with the mo-
mentum transfer q and energy
loss co. (b) The corresponding (a)
inelastic electron scattering.

7 We accept here the point of view expressed in A that the
breakdown of the Born approximation in scattering from large Z
nuclei is not a serious obstacle which can be dealt with by the
methods developed by Schiff (see A for detailed references).

(b)

prove to be useful in analyzing processes of the 1(a)
type.

The formulation of the problem given in Sec. II is
quite general and, in principle, can be applied both to
6nite and infinite systems provided our complete set
of states —used to de6ne the single-particle creation
and annihilation operators and then the charge and the
current operators (compare Eqs. (10) and (14)j-
satisfies proper boundary conditions. In the region of
small energy losses where one detects well-de6ned
nuclear levels, the shell-model wave functions seem to
be the obvious choice for the complete set of states. On
the other hand, the convenient set of states for calcu-
lating the high-energy-loss tail for large nuclei are
plane waves (compare Ref. 2). Any other system would

seem to be much more dificult to handle in this region.
As we intend to reproduce the experimental curves
above the region of the excitations of the well-de6ned
nuclear levels and in order to have a consistent theo-
retical description of the bump region (considered here)
and the high-energy-loss tail (considered in Ref. 2),
we choose the plane waves as our complete set of states
in the calculations presented in Sec. III.
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Ref. 1, we have (henceforth we follow the notation of
Ref 1)

4n-e' I'i
II'= (Ntl Fre"r*~ —[(p n)e"~*~+e"~*~(p c)j

gp 2M
A
ex

FIG. 2. Geometry of the elec-
tron scattering. p;, pf are the
initial and 6nal electron mo-
menta, respectively. e and 8„
are unit vectors.

[(F—i+KF0)/2M5ia (qX n)e'0. *.—(q 0/8M0)

X (Fg+ 2ICF0)e'"*~+[(Fg+ 2EF0)/8M'gaia

{pX(~a—q)e""*"—e""*"(~a—q)x p} I~'&, (1)

where q„'=q' —co', q is the three momentum transfer,
a& the energy loss, n is the electron Dirac operator, lu;&
and

I Nf) are the free-electron spinors, p and a are the
momentum and Pauli spin operators for the nonrela-
tivistic nucleons, Fr(q„') and Fs(q„') are the standard
nucleon form factors, and E is the static anomalous
magnetic moment (in nuclear magnetons).

We use the following approximation for the nucleon
form factors: Fr„(q„')=F0„(q„')=f(q„') for the proton,
and Fr„(q„')=0, Fs„(q„')=f(q„') for the neutron.

From (1) we get, summing over all nucleons inside
of the nucleus, the following expression for the transi-
tion matrix element from the ground (energy Eo) to
the excited state (energy E ) of the nucleus':

I M„o I'=8(co—Z„+Ep) (40re'/q„')'f'(q ')
X

I ((lt IN')Q-p —(Nr I all'& J-o) I', (2)
where

A
ey P.

The formula (5) is a starting point for constructing
the sum rules for the inelastic cross section integrated
over all energy losses. In fact, Eq. (5) can provide us
with a formula (see, e.g., Ref. 1 for details and refer-
ences to earlier papers) which gives

0 (q,8)= dop 0 (~,q, 8)
0

(6)

in terms of the ground-state expectation value of cer-
tain nuclear operators. We want, however, to follow
the approach developed in A and construct the sum
rule not for a(q, 8), but rather for a(a&,q,8). This can be
accomplished with the help of the following formula.
Let A(0), B(0) be two arbitrary operators at t=o of
the system with a Hamiltonian II such that A„p*(0)
XB p(0) is real (A„p——(nlA I0&). Then the following
identity holds:

Q 8 (00—E„+Ep)A„p*(0)B„p(0)

Q 0= (rs
I Q I 0)= (I I E [e,+ (q'/8M') (e,—2»)ge'0'

I 0&, = ——Im
+" 1

dt —e' '(ol T{At(t)B(0)}lo), (7)
Qo

J 0=(nl J

lo)=(nlrb

[(e/2M)(p, e"0'&+e"'rp', ) (3)

+ (»/2M)sa;X qe'0'~$
I 0),

where lo) and In) are the nuclear ground and excited
states, respectively, r, , y;, and e; are the position, mo-
mentum, and spin operators for the jth nucleon.
Besides,

;=-'(1+.*;),
»= 0 (1+r.r) (1+I) 0(1 r.~)&= 0 (—1+r*—~)+r*A,

with E=1.85, so p; reproduces the neutron and proton
magnetic moments.

If we square M„o and sum and average over final and
initial electron spin states, we get

—; P IM.pip=8(~ —E„+Zp)(C 'e/q')'f'( „q)Wp. (4)
spins

where

(1+cos8) 'W„
Qso Qlp (~/q)[(q' Jso )Qso+Q~p*(q Jap)j
+0 (2 tan'18+1) J p* J p

—
0 (2 tan'-'8+1 —3uP/q')

x[(g J"*)(q J-o)—l(J.0* J-.)], (5)
q= q/q and 8 is the scattering angle as shown in Fig. 2.

1
R(QQ; q(o) = ——Im

+" 1
dt -e'"'

—00

x(olr{Qt(t)Q(0)}lo); (8 )

(b) density-current correlation function (vector):

R)(QJ; q~) =—Im
+" 1

greco

f

x(ol 2'{Ji'(t)Q(0)+Q "(t)J,(0)}I o); (8b)

0 D. Pines, The Many Body Problem (W. A, Benjamin, Ne&v
York, 1961),

where A ( t)=te'~'A (0t)e '~' and T{ } is the time-
ordered product. If A„p*(0)B„p(0) is not real, we can
see from Eq. (5) that a term A„p(0)B„p*(0) is always
associated with it, so one can work with the real sum
A+0*(0)B p(0)+A o(0)B p*(0). Equation (7) is a
straightforward generalization of the formula (2.18)
of A (see also Ref. 8). From Eq. (5) we see that W can
be expressed in terms of the imaginary parts of the
I'"ourier transforms of

(a) density-density correlation function (scalar):
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(c) current-current correlation function (tensor):

Ru (JJ;q~)= ——Im
+00

t

X(0~T(J)t(t)J(.(0)+J) t(t)J)(0)) ~0). (Sc)

(1+cos8)—' g 8(t0—E„+Es)W'„

=R(QQ; qco)—P gtR((QJ; qt0)
.q

Now we can write Eq. (5) as the ground-state expecta-
tion value and have thus a sum rule for o (q, &o,8).

From Eq. (7) and Eqs. (Sa,b, c), we get

and J operators:

Q-Z Z 2 ~"s8... k(1+~.)
TITS 8$8Q k'

g2

L1+r.(1+4K)j a„„t(k+q)a„„(k),
16M'

1+KJ=g g Q 8„(2k+q)+ ty„„
~&8s & 2M 2M

E—8, , i 8„„a„,t( k+q) a„,(k),
2M

where 8= (eXq)„„,st, ss being the z-comPonent sPin
quantum numbers. If we use the reference system shown
in Fig. 2 with xy plane chosen to be the electron scatter-
ing plane and the spins of the nucleons are quantized
along the z axis, we get

+s P ~
tan. '-, 8+-,——

~5t~
u E 2qs) q„8,+q,—e„, (q„+sq )e.)

8=1
(q„—sq,)e., q„8.—q,e„)

(12)

+((3co'/2qs) —tans~8 ——,')qtq~ Rt t (JJ; qco) . (9)
Now we express all 8's in terms of owly ore two-particle
Feynman propagator de6ned as

We call E, E~, R~~ the response functions.
Obviously, if one is interested in the longitudinal

interaction only (as it is the case in A), one is left with
the R(QQ; q&0) function only. We may emphasize here
that the sum rule (9) is exact in the sense that no
approximations are made after the interaction Hamil-
tonian is assumed in the form shown by (1). This is
not true in the case of the sum rule which gives the
cross section integrated over energy losses. In order to
prove this sum rule, one uses the closure approximation,
and the co and &o' in (5) have to be approximated by
some (co), and (a&'), estimated independently (com-
pare Ref. 1). Equation (9) is the starting point of our
discussion.

We want to use the second quantization formulation
in discussing E. functions. We choose certain complete
system of states ~a), where n stands for a complete set
of quantum numbers for a single nucleon (they may be,
for example, spin, isospin, angular momentum, and
energy). For Q and J operators we then get

Q=ZQ(~ )P-a" a,eJ=E J(~P)a-"ae, (1o)

where u ~ay are the Fermi particle creation and annihila-
tion operators and Q(nP) and J(nP) are the matrix
elements of the single-particle operators which appear
in Eq. (3). If we choose for o. spin, isospin, and momen-
tum, which is the most convenient choice for an in-
finite system, we have the following expressions for Q

K(npyb; t) =(Oi T(apt(t)a. (t)a„t(0)as(0)) iO),

sK(nPy8; to) = dt e 'K(uPyb; t),
(13)

namely,
1

R(QQ;q )= ——Img Q( P)Q*(y&)

XK(nPyb; to), (14a)

Rt(QJ; qa&) =—Im P LJt*(ctP)Q(yb)

+Q*(~P)Ji(V~)PK(uPV~; ~), (14b)

' W. Czyz, Acta Phys. Polon. 20, 737 (1961).

Formulas (9) and (14) reduce, therefore, the problem
of calculating the inelastic cross section to evaluation
of one Feynman propagator K(nPy8; c0) and can, in
principle, be applied to small-energy-loss cross sections,
where the single-particle or collective levels are excited,
as well as to large energy losses, where no well-defined
nuclear states seem to be excited. In fact, a completely
analogous formulation was used in Ref. 9 to study the
giant dipole resonance excitation by electromagnetic
radiation. Its properties were described in terms of
properties of K (aPyB; &o) propagator.
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From Eqs. (9)—(14) one sees that the introduction
of the transverse interactions does not complicate the
calculations of the response function in any essential
way. In the computations of the response function for
the hard-core gas model (see A) we already had to use
an electronic computer, so the introduction of the
known J(oP) functions given by Eq. (11)and Eqs. (14)
is not going to cause any serious troubles. "

IIL QUASIELASTIC ELECTRON SCATTERING
FROM NUCLEI

In a typical experimentally measured inelastic cross
section (see, e.g. , Fig. 7) we would like to distinguish
the following three parts of the cross-section curve
which we shall henceforth ca,ll (a), (b), and (c):

(a) corresponds to the region of cp where well-defined
nuclear levels are excited (small &p's);

(b) corresponds to the region of &p where one sees the
characteristic broad bump (large pi's);

(c) corresponds to the tail of the bump (very large
cp s).

In A the (c) part was investigated and the conclusion
reached that it represents the inelastic electron scatter-
ing from Quctuations in the nuclear density distribu-
tion. The calculations of the cross section for the hard-
core Fermi gas model was also given there. In order to
define precisely the region (c), however, one has to
understand much better the bump region (b) and the
purpose of the considerations presented here is just to
describe that part of the cross section. Even from very
simple considerations which assume that the nucleus is
the free degenerate Fermi gas, one finds the existence
of the broad bump roughly of the right shape (see
Fig. 8 of A). Starting with this observation, we are
going to calculate that part of the cross section which
comes from the sum of all the single-particle excitations
compatible with the Pauli principle. We believe that
this is the dominant process in the (b) region.

One may add here that the calculations of the sum
rule Jp"dcp o (q,cp,8) seem to support this point of view
also. They consistently indicate (see Refs. 1, 11, and 12)
that Jp"d&p o (q, &p,8) depends very insignificantly on the
dynamical nucleon-nucleon correlations, i.e., it is given
by the properly antisymmetrized shell-model ground-
state wave function. As we expect the dynamical short-
range correlations to contribute as much to the excited
final states as to the ground-state Quctuations, we con-
sider the small contribution of the ground-state Quctua-
tions, established by the Jp"dpi a(q, or,8) sum rule, as an
argument in favor of the dominance of the single-
particle excitations in the (b) region, which almost ex-
haust the sum J;"do~ o. (q, cp,8) after all.

If we accept this point of view, we can picture our

' This was pointed out to the author by Dr. A. Goldberg."S. D. Drell and C. L. Schwartz, Phys. Rev. 112, 568 (1958).
"W. E. Drummond, Phys. Rev. 116, 183 (1959).

FIG. 3. The graph which dominates in
the big-bump region of the inelastic cross
section. It amounts to the quasifree
electron-nucleon scattering.

where n(ot) is the occupation number for the rr state.
If n represents a plane wave with momentum k, e(n) is
the free-Fermi-gas momentum distribution.

If we allow for a momentum distribution N(k) and
the single-particle energies E(k) differ from those of
the free Fermi gas, we get the formulas which we shall
call the impulse approximation. Although they do not
form any consistent approximation to the problem,
nevertheless, they prove to be useful in various physical
problems, and we expect them to work pretty well in
the (b) region of the inelastic cross section. In the im-

pulse approximation, after performation of the surn-

mations and integrations indicated in (11) and (14),
we get the following expression for the inelastic cross
section:

e')' 1
~(q,~ 8)=f'(q, ') I, Z8(~—E-+Ep)14'-

2p;) sin4-', 8 ~

where p; is the incident electron momentum and W
evaluated from (9) gives

(1+cos8) 'Q 8(p)—E„+Ep)W„

V
I(A (q,or)+8 (q, pp) tan'-', 8), (17)

(2z.)'

where V is the volume of the nucleus,

I= d'k e(k)[1—ri(I k+qI)]
)&8(cp—E(k+q)+E(k) ), (18)

cp (2
~(q,~)=2 1——

I
-Q,+1

m&q j
1-tG

+ I

——Qp 1——I+Qs
M' k2 q'3

pp' PQi
+ I

——2.63 I+1.71 —,(19)~'E q

& (q,p~) = (2/M') {G+5.77q' —Qs) . (20)

process by a graph shown in Fig. 3. (For more details
about these graphs see Refs. 2 and 9.)

The corresponding expression for ImE of Eq. (13) is

ImEp(nPy8; cp)

=8.,8e ( )(1—~(P))8( —E(P)+E(~)), (»)
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In (19) and (20) the value X=1.85 was used. l.5-
P (I.Sk&,ta)~~ 4%I ~ Salt

Ill=I ' d'k N(k)$1 —I([k+q)) j
Xk co&&(~-E(k+q)+Z(k)), (21a)

fls=l-' d'k~(k)(1 —~(~ k+q~))

Xk' cos'$5(a& —E(k+q)+E(k)), (21b)

G=I ' d'k n(k)L1 —N([k+qi) j
Xk'8(u) —E(k+q)+E(k)), (21c)

l.o-

P (kF,Cu)

0.5 a (l.5kF,OP)

a(kF,au)

0 I I

0.5 I. l.5

-0 5-

-l,0-

& I

2.0 ~ 2.5
I

3.0
~

lI f QJ
QJ «a~

M 2EF

4 e(p) =2Z.
(2rr)'/V

(22)

In the case of the free Fermi gas, obviously E(k)
=k'/2M and Qr and Qs are no longer integrals. In fact,

Qr=Q=Mre/q —xsq, Qs=Q', (23)

in this case, and N(k) is the well-known Fermi step
function. The integrals I and G are easy to evaluate:

I=m (M/q)Lkp' —(Mrs/q —$q)'j for a&)a"
(24a)=2m. (M'/q)re for m&e",

G= s Ek&s+ (M&o/q ', q)'j--
= kg~ —Mo)

for r0)a&
( 4b)

for or &co",

where a&"= qkr /M q'/2M. For—V we get from (17)

V=3rr Z/kps. (25)

As we believe that the (b) part of the inelastic elec-
tron cross section is dominated by the quasielastic
electron-nucleon scattering, the above formulas can
give us qualitatively the relative importance of the
longitudinal and transverse interactions. If we nor-
malize the Coulomb contribution to 1, we can write the
transverse contribution in the form

b(q,a,8) =n(q, ot)+P(q, co) tan'-,'8,

where n and P are read off (19)

co $20 ) 1 (G ) / ce')
~(q,~)=—

i

—+1 ~+ i

—ail'
l~

1——~+II'
MI q j M k2 jk q)

(26)

a&s (0 q'
~

—2.63 +1.71
Ms kq M'

where P=Q(k, q). E(k) is the energy of a single-
particle excitation as a function of its momentum. The
volume V in (17)we get from the normalization equation
which for equal number of neutrons and protons is

Fro. 4. a and P coeKcients of (26) versus energy loss for two
momentum transfers g =ky, g =1.5k@, where the Fermi momentum
&@=280MeV. The Coulomb contribution is normalized to i.

e(p) -L1+s (p/ps)'ge
— ' o". (27)

of course, a very crude estimation and gets worse with
increasing q as our approximate interaction Hamil-
tonian (1) is supposed to work well if q'/M'((1. Never-
theless, one can see that the transverse interactions are
very important even for small 8, provided the momen-
tum transfer is of the order of kp. Besides, due to com-
plicated interference eGects, n becomes negative for
large energy losses. As P is positive, it results in a
destructive interference of the transverse interaction
contributions and for certain 8's we may have only the
Coulomb interaction contributing. The curves n and p
in Fig. 4 stop at co =ot.=qkp/M+q'/2M, where I, thus,
the cross section, becomes zero. One can accept, how-
ever, that even for co slightly bigger than or„ the relative
importance of the longitudinal and transversal con-
tributions is roughly given by (26). In such a case the
moral of the present estimation would be that one has
to include the transverse interactions in any realistic
calculations dealing with short-range correlations (which
according to A dominate for &u)~,), even in the case
of small-angle inelastic scattering. On the other hand,
however, one may again expect for certain angles 0 a
destructive interference to occur which would make the
transverse interaction contribution negligible.

Unfortunately, there is no experimental data on in-
elastic electron scattering from large nuclei which
would make it possible to confront our impulse approxi-
mation formulas (18)-(21) with experiment. In order
to see, however, that the (b) region is indeed dominated
by the single-particle excitations, we compare our im-
pulse approximation cross section with experimental
data on inelastic electron scattering from C". For that
purpose we use the momentum distribution as given by
the oscillator well model of C" nucleus,

P (q,r0) = (1/M') (G+5.77q' —0') .

The n and P coefficients are shown in Fig. 4. This is,

In this case

V= -'(rr@'/Pos) Z. (28)
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nant term in (17) is B(q,es) tan'$8, which depends on E
roughly like (0.5+E+Es). The cross section is evalu-
ated for E= 1.85 but, e.g. , 10% changes in E result
approximately in 10% changes in the cross section.

Some general remarks are in order here. As was
already said, the impulse approximation is not a con-
sistent approximation in general. In the case of infinite
nuclear matter, however, one can do a better job
dressing both the particle and the hole lines (see Fig. 3)
in some more or less consistent way. First, the integrals
in (17)—(19) now have the form

~(MeV)

-2 1 1 1 I l f I I I 1 1 1 l 1

0 l6 32 48 64 80 96 I 12 l28
ENERGY BELOW ELASTIC PEAK, MeV

1I=——Im d'k de Gi(kl e)Gi(k+q, e+oi)
27ri

(29a)

FIG. 5. Comparison of impulse approximation calculations for
C" with measurements of Leiss and Taylor (Ref. 3). The energy
of incident electrons is 80.9 MeV. The scattering angle is 135'. The
nucleon form factors are taken from Ref. j.3.

0,= —(irI) ' Im
27ri

d'k k cosg

The results for E(k) =k'/2M are shown in Figs. 5, 6,
and 7. The curve begins at co=25 MeV as we want to
be outside of the region where individual well-defined
states are seen and our simple mechanism is certainly
not applicable. Bearing in mind that we have chosen
plane waves as our basic complete set of states which are
suitable for nuclear matter calculations rather than for
small nuclei like C", the agreement with experiment is
rather good. We would consider it encouraging to try
to fit any forthcoming data on the (b) region of the in-
elastic electron cross section from large nuclei in terms
of single-particle excitations.

We have also done a bit more realistic calculations
of the C" cross sections (Figs. 5, 6, and 7) using the
root-mean-square radius of C" nucleus determined by
the elastic electron scattering" which gives ps—122
MeV in (27). Then the introduction of some average
eGective mass of the order 0.7M—0.77M improves con-
siderably the agreement with experiment. Introduction
of an average effective mass is probably not a bad
approximation, if co is not too large. For large co's the
fact that M, ii(k) increases with k turns out to be im-

portant, as indicated by the discussion below. Another
point which one should keep in mind is that although
the plane waves which we use as the basic complete
set of states do not seem to be a good zeroth approxima-
tion for a light nucleus like C", the process of summa-
tion over all numerous possible single-particle excita-
tions may turn out to be rather insensitive to the choice
of the basic set of states.

We wouM like also to point out that the cross section
at tII=135' and 148.5 MeV of incident electron energy
(Fig. 7) is sensitive to the assumed magnetic moments
of the nucleons inside of the nucleus. In fact, the domi-

'3 R. Herman and R. Hofstadter, High-Energy Electron Scatter-
sng (Stanford University Press, Stanford, California, 1960).
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FIG. 6. The same as in Fig. 5, except the incident
electron energy is 98.0 MeV.

where Gi(p, e) is the exact one-particle propagator.
Gi(p, e) has the well-known integral representation (see,
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e.g. , Ref. 14)
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where Ep is the Fermi energy. Thus,
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We see that the bigger the I"s, the less pronounced is
the eRect mentioned above. From the known order of
magnitude of the imaginary part of the optical poten-
tial, one would estimate that co is smeared out over a
10—20-MeV energy interval. At any rate it seems that
the optical parameters of the dispersive nuclear medium
which "dress" the particle and the hole may be as
important in de6ning the region of dominance of the
"quasielastic" scattering as the Fermi momentum kp
which gives ~, (compare A). An alternative way of
analyzing the (b) region of the inelastic electron cross
sections would then be in terms of the replacement
(36), where the E(k) function could be taken from a
Brueckner type of calculation and F's left as free pa-
rameters. In any case, the above considerations indicate
that the measurements of the (b) region give a direct
access to the otherwise hard to measure functions E(k).

CONCLUSIONS

(1) The paper presents arguments that in the region
of a big bump in the inelastic electron-nucleus cross
section the graph shown in Fig. 3 (i.e., quasielastic

scattering) dominates.

(2) The sum rule including all the transverse inter-
actions to order q'/M' is given. The importance of the
transverse interactions is estimated and found im-

portant for q and ~ of order kp and EI, , respectively.

(3) From the example of inelastic scattering from C"
nucleus at 0= 135', one sees that a very large percentage
of the cross section is due to the magnetic moments of
the nucleons inside of C" nucleus. The cross section
for large q's (Fig. 7) is very sensitive to the magnitude
of the magnetic moments. Figure 7 shows the agree-
ment with experiment for very reasonable values of
3E ff and po and for magnetic moments equal to those
of the free nucleons. So, one may conclude that the
magnetic moments of the nucleons inside of nuclei
cannot be appreciably different from the free nucleon

ones. Unfortunately, this argument is not model-
independent.

(4) There exist some complicated interference effects
between different parts of the transition amplitude
(longitudinal-transverse, transverse-transverse). There
are regions of the q, co plane where they act construc-
tively and regions where they act destructively (com-
pare Fig. 4). Consequently, for certain. angles 0 the
transverse eRects cancel almost completely and only
the Coulomb interaction contributes.

(3) In order to define precisely the region of the q, co

plane where the dynamical correlations dominate, one
has to study extensively, both experimentally and theo-
retically, the bump region. The finite size eRects are not
the only ones which make the estimations based on the
free Fermi gas model unreliable (compare A). In this
paper, it is argued that the dispersive eRects of the
nuclear medium are also very important in defining
that region. In particular, the shape of the bump (e.g. ,
the position of its maximum) depends on the energy-
momenturn relation E(k) of the single-particle excita-
tions. Thus, the analysis of the forthcoming experi-
mental data on the inelastic electron scattering will
presumably give a direct access to the otherwise hard
to measure function E(k).
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