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Elastic Scattering of Slow Electrons by Cesium Atoms*
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The elastic scattering cross section for the scattering of slow electrons by cesium atoms has been calculated
for incident electron energies ranging from 0.0005 to 0.13 Ry. The model used is an adiabatic one which
includes exchange. By means of a partial-wave expansion the problem is reduced to the solution of an
integrodi6'erential equation for each partial wave. The results of the calculation show rough agreement
with low-energy plasma resistivity experiments and with collision-time measurements, but do not support
the microwave experiments of Chen and Raether. The results of the calculation are quite sensitive to the
inclusion of exchange and to the form of the polarization potential; arguments are presented to show that
optimum parameters of an adiabatic model have been used in the present calculation.

I. INTRODUCTION

CURRENT interest in thermionic converters using
~ ~~ ionized cesium vapor has stimulated renewed

interest in the transport properties of a cesium plasma.
In particular, a number of recent experimental studies' '
have been directed toward a determination of the elec-
tron-neutral cesium atom cross section, a quantity
which controls the electrical resistivity of weakly
ionized plasmas. Except for the results of Chen and
Raether' these experiments, together with earlier meas-
urements by Soeckner and Mohler, ' give a coherent
but rough picture of the scattering cross section at
electron energies below 0.4 eV. The discrepancy between
these experiments and those of Chen and Raether is yet
to be resolved. The scattering cross section of cesium
for electron energies above 0.6 eV is known from the
early work of Brode. '

The purpose of the present investigation is to provide
a quantum-mechanical (phase shift) calculation of the
elastic-scattering cross section. Although there have
been extensive calculations of electron-hydrogen scat-
tering, ~ there has been only a limited amount of work
directed toward the scattering of slow electrons by
heavier atoms. We must mention, however, a recent
calculation by Robinson' of the elastic scattering of
electrons by cesium atoms, which calculation was ex-
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tended to extremely small incident velocities. Robinson's
work unfortunately suffers from several defects: (1) He
did not have self-consistent wave functions for cesium,
so he approximated by using Slater-type orbitals; (2) he
did not include exchange; and (3) although his "polar-
ization potential" was correct asymptotically, it was
adjusted more or less arbitrarily at intermediate radii.
We have found that the results of the calculation are
quite sensitive to the effective scattering potential
presented by the atomic system, and furthermore that
the inclusion of exchange completely alters the low-

energy cross section.
The model we have chosen to investigate is the

adiabaHc nsodel, so-called because the atomic system is
allowed to polarize in response to the instantaneous
position of the bombarding electron. For the low-
incident energies in which we are primarily interested,
the collision time is long compared to characteristic
atomic periods, and the atomic wave function can
readily adjust to the perturbing inQuence of the incident
electron; this, of course, is just the basis for the adia-
batic model. The model, thus, introduces a "polarization
potential" in a natural way.

We have investigated the adiabatic model both with
and without exchange effects. In the no-exchange case
the problem can be reduced (by expansion in partial
waves) to the solution of an ordinary differential equa-
tion, whereas in the exchange case the problem reduces
to the solution of an integrodiGerential equation.
Although these equations can be solved by straight-
forward numerical methods, the procedure here is some-
what more complicated than in the case of electron-
hydrogen scattering. In the 6rst place, many more
particle waves are required, a fact already apparent
from Robinson's work. ' Secondly, an iterative solution
to the integrodifferential equation, which appears to
work so well in the hydrogen-atom problem, 9 was found
unsatisfactory here, particularly for the lower order
partial waves, so that a noniterative solution was re-
quired. Finally, since the polarizability of the cesium
atom is much larger than that of hydrogen, the "polar-

' P. G. Burke and H. M. Schey, Phys. Rev. 126, 147 (1962).
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ization potential" must be introduced into the problem
with considerable case.

II. FORMULATION OF THE PROBLEM

The scattering of slow electrons by cesium atoms is
essentially a two-electron problem (the bound electron
outside the closed shell and the bombarding electron).
The Schrodinger equation for the system may be written
as"

2Z(rr) 2Z(rs) 2—
Vt +Vs'+F.+ + ——4'(rt, r,)=0, (1)

since it destroys the symmetry of the wave function,
but the consistent use of fo' would result in considerable
complication: The radial equations resulting from the
partial wave expansion would not decouple. We felt
justified in using Eq. (2b) as it stands since the major
purpose of substituting fo for Po in the static model is
to introduce the polarization potential in a natural way.
Errors caused by the omission of the neglected terms in
(2b) are discussed in Sec. V.

The perturbed ground-state wave function it o' may
be expressed as"

r2 r12- 6'(rr) =A(rt)+ 2' P-(rs)4 (rt),

where j.'~ and r2 are position vectors to electrons 1 and 2,
respectively, and r» ——~r&—rs~. Z(r) is the effective
charge of the cesium ion core at position r. We were
fortunate in having a numerical tabulation of Z(r), as
well as ground-state and excited-state wave functions
of the cesium atom, from earlier work by one of the
authors. " In effect, Z(r)/r is a Prokovief potential, a
modification of the Hartree potential of the Cs+ ion,
which has been adjusted empirically to reproduce a
large number of the term values in the spectrum of
atomic cesium; it is described fully in Ref. 11.

In order to solve Eq. (1) in a pra, ctical way, some ap-
proximation must be introduced. One of the simpler
approximations which has yielded satisfactory results
for electron-hydrogen scattering is the static-exchange
mode/ in which + is approximated by ito(r&)F(rs)
~go(rs)F(rt), where Po is the ground-state wave func-
tion of the atomic electron. Polarization eGects can be
electively included by adding an appropriate polariza-
tion potential term to the integrodifferential equation
for Ii. This was essentially the approximation which we
wanted to use, the only difhculty being that because
polarization effects are much more important in cesium
than in hydrogen, it is important that the polarization
potential showing up in the equation for Ii be approxi-
mately correct at all radii. In order to introduce this
potential in a natural way, we go over to the adiabatic
model:

4 (rt, rs) =go'(rt)F (rs), (adiabatic, no exchange) (2a)

+(rt rs) f0 (rl)F (rs) +4'0(rs)F (rr)
(adiabatic with exchange) (2b)

where fo is the ground;state wave function of the
atomic system, and Po' is a perturbed ground-state
function, perturbed (adiabatically) by the presence of
the second electron.

The plus sign in Eq. (2b) refers to the symmetric
(singlet) state of the two electrons, and the minus sign
to the antisyrnmetric (triplet) state. The use of fo
instead of Po' in the & term is a defect of the model

'o We use atomic units (a.u.) throughout this paper; i.e., all
distances are measured in units of Bohr radii, all energies in Ry.
Cross sections will be expressed in units of ~a02."P.M. Stone, Phys. Rev. 127, 1151 (1962).

(Vs'+&o' I'oo )nF—( )rs—

2 l
~ to*( )I 4' —~o—lF( )A( ) (5)

where the upper sign refers to the singlet, and the lower
sign to the triplet state. Here kp'=—E—Ep is the kinetic
energy of the incident electron, Ep being the ground-
state energy of the cesium atom, and t » is defined as

2 2Z(r, )
I'oo(rs) = it o

— 4o
~12

(6)

The polarization potential, e~ is defined to be

2
t'y(rs) Pl(rs) l 10 Pl(rs) it'o 0'1 ~

~12

Equation (5) can be reduced to a radial equation
through the use of a partial-wave expansion:

F(r,)=g r-'f~(r)F~(coses).

Both Vpp and e„are spherically symmetric, so that

"See Ref. 7, p. 488.

where the summation is over the complete set of atomic
functions. For the problem under consideration, we
have found it sufhcient to express Po' as

$0 (rl) =go(rl)+pl(rs)f 1(rl)

where fr is a particular excited state wave function,
namely, the 6p function. Therefore, we shall limit the
discussion here to equations of the form of Eq. (4). The
validity of this approximation and the form of P(rs) will
be discussed in the next section.

Equation (2b), with Po' defined by Eq. (4), may now
be substituted into the Schrodinger equation, Eq. (I).
If this equation is multiplied on the left by go* and the
result integrated over the coordinates of particle 1, one
obtains
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Kq. (5) becomes

fl"+ &o'—Voo —vn—
l(1+1)-

fi= +go

theory. Thus,

and

p„(r,)=—Vp„(r,)

(g gp)
(15)

X (&o—&o')&io fog o«+
0 (21+1)

X r' f P r &'+'idr+r i'+'& f~gpr'dr
0 0

where r 'Pp is the normalized radial part of the ground-
state wave function 1t p. The integrodifferential Eq. (9)
may be solved in a noniterative fashion by the pro-
cedure used by Marriott. 's We note that Kq. (9) has
the form

provided

ni" +y(r)nr &$(r,ni) +r'Po——, (12b)

(&o—&o')~lo gid o«+
o (2l+1)

X gly pr i'+'&dr—1—(Ep—kp') hip

fl"+y(r) fl &$(r,fl)——&r'@QX (sum of

definite integrals involving fl) . (10)
If we write

fl(r) =gi(r)+A lni(r),

then g~ and e~ satisfy the following diGerential
equations:

(12a)

v„(r) = —2n/r', (17)

where a is to be identified with the polarizability of the
atom.

Castillejo, Percival, and Seaton" have shown that
the first excited state (2p) contributes 65.8% of the
long-range polarization in hydrogen. In cesium the erst
excited state (6p) lies only 0.1036 Ry above the ground
state, and we find that this state contributes 92% of
the long-range polarization. At closer radii other excited
states (particularly the 7s and continuum states)
become more important, but we find that the 6p state
is still the most important perturbing state at all im-
portant radii (r) 3 to 4 a.u.). At still closer radii, the
potential Voo dominates the solution of the differential
equation. We have, therefore, been led to consider
Eq. (4) as an appropriate choice for the perturbed
ground state, fp'. If we measure the polar angle 8l
/where fi(rl) =pl(rl, ei, pl)j from the axis defined by
the instantaneous position of electron 2, we need con-
sider only one of the 6p states, namely, that correspond-
ing to m=0.

One is tempted to use the perturbation solution for
pl(rs), namely, Kq. (15), at all radii. However, a nu-
merical calculation of V&0 shows that this is not justiied
at intermediate radii. We have, therefore, treated
Eq. (4) as a trial wave function for fo'(rl), with pl a
variational parameter. In the spirit of the adiabatic
approximation,

v.= —2-'
I Vo- I'/(&.—&o) - (16)

Now the ground state of the atom (both cesium and
hydrogen) is an s state, so that at very large distances
the dominant contribution to the sum in Eq. (16) comes
from perturbing p states, and v„ takes the form

H =Ho(rl)+ V'(rl, rs), (18)
X nip pdr

p (21+1)
nidor &'+'&dr . (13)

The differential equations, (12a) and (12b), may be
solved numerically, A can be calculated, and 6nally
fl may be calculated by means of Eq. (11).

III. THE POLARIZATION POTENTIAL

The use of Eq. (3) for the perturbed ground-state
wave function leads to a polarization potential of the
form

vv(rs) =2-' P.(rs) V.o(rs)

where
H p =—Vi —2Z(ri)/rl,
V'= 2/rls —2Z(rs)/rs .

The total energy is given by

(1+pl ) /+0+pl +i+ VQQ+pl Vll+2plVlo] t (19)

where V00 and V&0 have been previously de6ned, and
V» is given by

(20)

If dp/dp is set equal to zero, one finds, after some
algebra, that pl(rs) can be obtained from the equation

When the bombarding electron is far from the atom,
the coefncients p„may be evaluated from perturbation

V~o

(1—Pi') (K—&o+Vii —Voo)
(21)

"R.Marriott, Proc. Phys. Soc. (London) 72, 121 (1958).
' L. Castillejo, I. C. Percival, and M. J. Seaton, Proc. Roy.

Soc. (London) A254, 259 (1960).



P. M. STONE AND J. R. REITZ

'IO

IO

EO
CQ
K'
4J
l5
O
K
g IO

49
K
laJ
R
UJ

IO

IO
0 5 l0 l5 20 25 30 35

RADIAL I OS ITION, IN 80 HR RADII

FIG. k. Potentials for cesium. The negative of the potentials has
been plotted; i.e., they are all negative potentials. The polarization
potential of Robinson (Ref. 8) is apparently small by a factor of
2 at large radii.

'5 G. E. Chamberlain and J. C. Zorn, Bull. Am. Phys. Soc. 5,
241 (1960);J. C. Zorn and P. Fontana, fbftf. 5, 242 (1960).' F. S. Ham, in Solid State Physics, edited by F. Seitz and
D. Turnbull (Academic Press Inc., New York, 1955), Vol. 1,
p. 176.

which reduces to the perturbation theory result at large
radii (i.e., large rs)

We have calculated Pr(rs) numerically from Eq. (21)
and used the result to calculate the polarization po-
tential according to Eq. (7). Since this gives only 92%
of the long-range polarization, we have scaled up the
potential by a constant factor, so that asymptotically
vr is given by Eq. (17) with cr the experimentally ob-
served" polarizability (243 a.u.) of the atom. The po-
larization potential so calculated is plotted in Fig.1
along with the perturbation-theory result.

In addition to the polarization of the valence electron,
there is another polarization effect which is not con-
tained within the two-electron picture. This is polar-
ization of the Cs ion core, and this leads to a polarization
potential of the form —2u./r4. The experimental value"
of o,, is 8.22 a.u. , which is small compared to the atomic
value. Thus, core polarization does not appear to be
particularly important, but even so we have effectively
included it by scaling our result to agree with the ex-
perimental polarization of the atom (valence electron
plus core) at large distances.

IV. NUMERICAL PROCEDURE

The differential equations describing the elastic
scattering problem were integrated numerically on an
IBM-704 computer. The initial phase of the problem
consisted of computing the radial functions pbp and gr
from the input data Z(r). Next, the potential integrals,
Upp(rs), Utp(rs), and U»(rs), were computed and stored
in the machine.

The solutions to the differential equations (12) for

g~ and e~ were started at the origin with a power series
development which included terms through r'. The
equations were then integrated forward by the Numerov
method, '~ which is an integration scheme accurate to the
fifth power of the interval size. The integrations were
carried out to r=40 at an interval size of h=0.02. At
this point, A & )defined by Eq. (13)$was calculated, the
function f~ formed, and the integration of f~ continued
at an interval size h= 0.2 to r =92. During the last inte-
gration the right-hand side of Eq. (9), as well as Upp,

was set equal to zero, and the polarization potential was
accurately approximated by

e~= —486/(r'+25)'; r) 40. (22)

Integrals of the type J'p" q(r')dr' appearing in the dif-
ferential equation were calculated by the trapezoidal
rule using the integration mesh h.

At r= 92 the phase shift b& was determined directly
from the code. 8& is defined by the asymptotic form of

I

f& ~ C&rj &(kr)+Cpm&(kr)
~ (1/k)PCt sin(kr —shr) —Cs cos(kr —shr)$ (23)
= (Cs/k) sin(kr+5( —-,'hr) .

The code determined C& and C2 by comparing the nu-
merical solution at the last two mesh points with the
spherical Bessel functions (obtained by a standard
subroutine.

A check on the accuracy of the integration procedure
was made by turning the integration around at r=40
and integrating backwards to the origin. Comparison
of the solutions shows that the functions agree to three
significant 6gures. Round-off error propagating through
the large number of mesh points of the integration de-
stroyed the remaining digits. An over-all check of the
effect of round-off and truncation error was determined
by calculating the spherical Hessel functions using our
code with all potentials set equal to zero. The resulting
phase shifts differed from zero by the order of —0.0005
rad in all cases.

V. THE SCATTERING CROSS SECTION

The elastic-scattering cross section may be calculated
once the phase shifts are known. For the case of no

'7 B.Numerov, Publ. Observ. Astrophys. Cent. Russie (Moscow)
ll (1923); Monthly Notices Roy. Astron. Soc. 84, 592 (1924) . See
also, G. W. Pratt, Phys. Rev. SS, 1217 (1952).
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exchange, the cross section (in units of s.as', with
as=Bohr radius) is given by the usual phase-shift
expression,

(2l+1) sinsb&o

&e) ~

(24)

Here the superscript 0 refers to the no-exchange case.
When exchange is included, the cross section may be
written

0'= so' +so' (25)

where 0+ and r are calculated from expressions of
tyPe (24) with Bra rePlaced by 8&+ or 8&—,resPectively.
The superscript (+) refers to the singlet, and the (—)
to a triplet state of the system.

Phase shifts and cross sections were calculated for
incident electron energies (ks') ranging from 0.0005 to
0.13.Enough partial waves were included to insure con-
vergence of (24) and (25); at the highest energies we
required seven partial waves. The numerical values of
the phase shifts are tabulated in Table I, and the cal-
culated cross sections are plotted in Fig. 2 along with
some experimental results. It is apparent from the figure
that the inclusion of exchange has a drastic effect on
the cross section at low energies. The no-exchange case
does not agree with experiment, but the calculation
which includes exchange, while it by no means gives
good agreement, does reproduce the trend of the experi-

I 1 I I I I I I

o o,oe aors 0.06 aoe o.Io O.Ia o,I o O.ie 0.Ie
ENERGY IN UNITS OF I5.6eV

FIG. 2. Elastic-scattering cross section for slow electrons on
cesium atoms. Brode's (Ref. 6) experiment measures the total
scattering cross section so that the rise of his values above the
Grst excitation energy is due to inelastic collisions. The part
marked "plasma experiments" is qualitative only. For details of
this region, see Fig. 4. The data of Chen and Raether (Ref. 4)
are also shown.

k2

0.001
0.003
0.005
0.007
0.010
0.013
0.020
0.030
0.040
0.050
0.070
0.090
0.110
0.130

k'

0.001
0.003
0.005
0.007
0.010
0.013
0.020
0.030
0.040
0.050
0.070
0.090
0.110
0.130

k'

0.001
0.003
0.005
0.007
0.010
0.013
0.020
0.030
0.040
0.050
0.070
0.090
0.110
0.130

k2

0.001
0.003
0.005
0.007
0.010
0.013
0.020
0.030
0.040
0.050
0.070
0.090
0.110
0.130

l=0 l=i
9.523 3.323
9.349 3.898
9.220 4.410
9.103 4.642
8.954 4.773
8.837 4.824
8.613 4.826
8.367 4.773
8.184 4.713
8.027 4.654
7.783 4.549
7.613 4.452
7.428 4.370
7.343 4.291

Phase shifts —With exchange
Symmetric case (b&+)

l=o l=i
9.248 3.241
8.996 3.400
8.822 3,531
8.673 3.599
8.493 3.655
8.353 3.691
8.095 3.699
7.818 3.660
7.621 3.621
7.456 3.579
7.221 3.531
7.045 3.505
6.916 3.505
6.810 3.512

Phase shifts —With exchange
Antisymmetric case (S~ )

l=o l=i
9.799 6.336
9.648 6.330
9.524 6,301
9.410 6.254
9.260 6.156
9.146 6.086
8.922 5.910
8.665 5.708
8.471 5.562
8,302 5.403
8.039 5.177
7.821 4.993
7.647 4.841
7.493 4.712

Phase shifts for higher l
Bp=B)+=8)

l =4b l =5
0.002 0.001
0.006 0.002
0.010 0.004
0.015 0.008
0.021 0.011
0.029 0.015
0.046 0.024
0.062 0.034
0.086 0.049
0.104 0,059
0.139 0.078
0.167 0.095
0.199 0.115
0.225 0.131

l=6l —3b

0.005
0.015
0.024
0.034
0.048
0.065
0.099
0.138
0.181
0.217
0.285
0.340
0.393
0.437

~ ~ ~

0.048
0.059
0.073
0.084

l=2
0.014
0.046
0.077
0.110
0.152
0.205
0.311
0.472
0.638
0.800
1.128
1.435
1.695
1.892

l=2
0.014
0.046
0.078
0.105
0.147
0.183
0.274
0.371
0.446
0.508
0.629
0.755
0.933
1.155

l=2
0.017
0.052
0.086
0.104
0.181
0.220
0.428
0.841
1.289
1.675
2.080
2.222
2.314
2.363

~ ~ ~

0.039
0.049
0.056

a An integral number of m's have been added to the l =0 and l =1 phase
shifts so that the phase shifts decrease with increasing l.

b At energies above k~=0.04 the exchange phase shifts begin to differ
noticeably from the no-exchange phase shifts. The difference increases
linearly so that at k~=0.13 the bg+ and 83 are 14% below and above
(respectively) the listed values. Similarly, t4+ and 8& are 2.5 /& below and
above the listed values.
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energies, and our calculation appears to extrapolate
smoothly into Robinson's high energy results. '

An attempt was made to estimate the consequences
of using Ps instead of fs' in the + term of @, Eq. (2b).
When Ps' is used, the equation for F(rs), Eq. (5), has a
second term on the right side, namely,
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FIG. 3. ERect of polarization potential on calculated elastic-
scattering cross section. The polarization potential obtained from
perturbation theory gives a cross section with a smaller minimum
and no peak at k'=0.04. Both calculations include exchange.

ments (a minimum cross section at about 0.09 eV). At
the higher energies (above 0.08) our calculation may be
compared with Brode's experimental results. Brode's
results are for total cross section and, therefore, include
both elastic and inelastic contributions; the peak that
Brode found at 0.17, and which drops off at higher
energies, is presumably due to inelastic collisions
(excitation). Thus, our higher energy results appear to
be reasonable. As expected, the effect of exchange
becomes less important at the higher energies.

In order to determine how sensitive the results of the
calculation are to variations in potential, the polariza-
tion potential was varied. As a preliminary check, the
no-exchange case was rerun with only 90% of the
polarization potential. The cross section showed changes
of from 10 to 20%, but the basic form of the cross
section versus energy curve was preserved. However,
when the shape of the polarization potential was modi-
6ed, the cross section was altered rather substantially.
our calculation was repeated, both for the exchange and
no-exchange case, using the polarization potential as
determined from perturbation theory (see Fig. 1).The
results with exchange are shown in Fig. 3, where it is
seen that a substantially larger polarization potential
at intermediate radii has almost completely eliminated
the low-energy dip in the cross section. At energies
above 0.08, variations in polarization potential have a
relatively small effect. Furthermore, as noted, the
eGect of exchanges becomes less important at high

( 2 2Z(rs)
dr,y,*(r,) I

= — pi(ri)F(ri)gi(rs). (26)&r„r,
This term is smaller than the first term because P(ri) is
small at large radii where pi is important, and it i(rs)
itself is smaller than fs(rs) at the critical radii of about
4—10 a.u. A comparison of the two terms by graphical
integration —using F(ri) as calculated, i.e., without the
second term —indicates that the second term is less
than 20% of the first. Though this is not negligible, it
implies changes in the phase shifts of only a few percent.

A further attempt to determine the effect of this lack
of full symmetry in the wave function' was made by
normalizing the fs' part of O'. Thus, calculations were
rerun using

+(ri, rs) = po'(ri)F(rs)Alt o(rs)F(ri), (27)
I:1+p'( )3'"

leading to Eq. (5) with the right side multiplied by
L1+p'(r&)]''. This increases the right side by con-
siderably more than the addition of Eq. (26), and so has
an exaggerated effect. The result of the calculation was
a decrease in the cross section of less than 4% at energies
k'&0.20, a decrease of nearly 10% near k'=0.05 and a
decrease of less than 5% at higher energies. It is clear,
then, that the neglected term gives only a small
contribution.

Figure 4 shows our calculated low-energy cross
section replotted on a different scale, together with the
results of various groups of experimenters. Since plasma
resistivity experiments really measure a momentum-
transfer cross section, de6ned by

do
o.si —— —(1—cose) dQ,

dQ
(28)

we have calculated the latter quantity from our phase
shifts, and this result is also plotted on Fig. 4 for a
limited range of energies. Actually, the momentum
transfer cross section is not very different from the
elastic scattering cross section in this energy range.

Finally, it is perhaps worthwhile to note that the
rapid rise of the calculated cross section at low energies

"The choice between Eqs. (2b) and (27) is not clear-cut Since.
Ps and P& are individually normalized, Eq. (27) is the natural
consequence of using Eq. (4). On the other hand, Eq. (4) is not
really correct at the smaller radii, since there is an appreciable
admixture of excited s states. It was felt, at least initially, that the
unnormalized Po' is a somewhat better approximation to the
correct adiabatic wave functions in the 2-4 A range, whereas at
the larger radii the normalization is not important.
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implies that care is necessary when assigning energies
to experimentally obtained cross sections. All the ex-
periments referred to in Fig. 4, except Brode, involve
electrons with a distribution of velocities, presumably
Maxwellian. Thus, the slower moving electrons may
contribute strongly to the over-all results in some ex-
periments, but in others (such as plasma resistivity
measurements) electrons with low-scattering cross
sections will presumably contribute more heavily.

VI. CONCLUSIONS

The adiabatic model has been extended about as far
as is possible. The model predicts an elastic-scattering
cross section in rough agreement with most experi-
mental results, although the lowest energy (plasma
resistivity) experiments differ by about a factor of 2
from our calculation. Because of the sensitivity of the
calculation to the form of the polarization potential, it

v MULLANE Y
& DI BELI US

f l I f I

O. I 0.2 0.3 0.4 0.5 0.6 0.7 ' 0.8 0.9 LO I. I I.2
INCIDENT VELOCITY ~eV

FIG. 4. Comparison with experiment. All except Brode's experi-
ment are momentum-transfer cross sections and are averages over
the electron velocity distributions of a plasma. The correct values
of Flavin and Meyerand are shown (see Ref. 3). The results of
Chen and Raether are not shown on this plot (see Fig. 2).

appears quite possible that a better estimate of this
quantity could improve the agreement. One way of
improving the polarization potential would be to go
over to the close-coupling model' in which only terms
involving 1I s and 1I r are retained in the wave function.
Here lf s is the ground state, and Pr the first excited P
state of the atom. Such a model should be better suited
to cesium than to hydrogen; however, the model leads
to coupled integrodifferential equations and is about
an order of magnitude more dificult than the adiabatic
model considered here.

Note added im proof. Equation (17) should read
s~(r) = u/—r4; i.e., the factor of 2 should not be present.
Our calculation of the long-range potential is then a
calculation of the polarizability giving a value of
o.=66.5X10 '4 cm', in complete agreement with the
calculation of Sternheimer" but considerably greater
than experiment. "The small up-scaling mentioned near
the end of Sec. III is not appropriate but can be con-
sidered as including to some extent the eGects of higher
states and the polarizability of the core. In any case,
the phase shifts are not sensitive to this up-scaling and
the results are nearly unchanged. The authors are in-
debted to Dr. Peter Bender and Dr. Thomas F.
O' Malley for pointing out this error in the identification
of the polarizability.
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