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by the unitary transformation (independent of lr)'4 d is easily inverted numerically to obtain ts=d . If
p is represented in submatrix form as

1 i)t=— ~, for each lr,
v2 i ll

(A1)
Pt ass'i

s=
Ss S&

(A3)
where the submatrices of t are multiples of the unit
matrix of order 3. Then, suppressing the index lr, if 44

of (2.12) is written as tcs+sscr, where see and xt are real
and symmetric,

then X,=tpt ' gives rise to the relations

st= L(Sr+ 94)+&(ass—ps)3

(= lL(tts+S 4)+s(S4—a r)3
r 'r —xr

d=t 'at=i
44o

(A4)
(A2)

y+~,)
is transformation has been used by L. J. Slutsky and These results are valid for any attice with two atoms

C. W. Garland, J. Chem. Phys. 26, 787 (1957). per unit cell for the case of central forces.
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A consistent method of calculating the wave functions and electron-spin-resonance properties of a dilute

paramagnetic impurty in a molecular crystal is outlined, and the system of atomic hydrogen in solid argon

is treated as a detailed example. Starting from a one-electron, tight-binding, static-lattice picture of the

impurity-doped crystal, the crystal wave function is formed as the antisymmetrized product of atomic
Hartree-Fock functions. This is modi6ed for the interactions in the crystal by adding variational corrections

for crystal field effects, the spin-orbit interaction, and the Van der Kaals interaction. The spin-resonance

parameters are then found from the expectation value of the interaction with a magnetic 6eld. The results

lead to a reintepretation of parameters in previous theories and show that the various crystal perturbations

do not add independently to give a net result when there is appreciable overlap between the impurity and

host atoms. Estimates of the electronic g factor for hydrogen in argon are in good agreement with experi-

ment. The predicted hyperfine shifts for substitutional hydrogen impurities also agrees well. However, it
is shown that for interstitial sites the hyper6ne-shift calculations are unreliable.

I. INTRODUCTION

ECENTLY both spin-resonance and optical-ab-
sorption spectra of isolated impurities trapped in

rare-gas solids have been observed. ' 4 The outstanding
feature of the results is that the spectrum of a dilute
impurity is changed only slightly from the free-state
spectrum by the crystal environment. Several theo-
retical treatments relating these shifts to the polariza-
bility, spin-orbit splitting, etc., of the impurity and the
host lattice have been given for speci6c systems. In

*Based on a thesis submitted to the University of Rochester,
Rochester, New York, in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

$ Research supported in part by the U. S. Air Force through the
Air Force OfEce of Scienti6c Research.

f National Science Foundation Fellow.
tl Present address: Department of Physics, University of

Illinois, Urbana, Illinois,
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these, additivity of the effects of the various crystal
perturbations has been assumed and experimental data
have been used to evaluate parameters in the models. 4 '

The present work outlines a calculation of the ground-
state wave function and electron-spin-resonance pa-
rameters of a tight-binding paramagnetic center in a
rare-gas crystal. It is a "6rst principles" calculation in
the sense that experimentally determined quantities are
not used, and the major perturbations due to the crystal
environment are calculated simultaneously so that ef-

fects depending on two or more interactions are re-
tained. Specifically, the theory developed has been

applied to the case of atomic hydrogen in argon, and
order-of-magnitude estimates have been made as a
guide for applying the theory in detail. Excited states
and, therefore, optical properties could be treated, but
more attention to overlap effects would be necessary. '

' F. Adrian, J. Chem. Phys. 32, 972 (1960).
6 For a review see D. L. Dexter, in Solid StaQ I'hysics, edited by

F. Seitz and D. Turnbull (Academic Press Inc. , New York, 1958),
Vol. 6, p. 353.Examples of calculations include R. S.Knox, J.Phys.
Chem. Solids 9, 265 (1959); A. Gold, ibig. 18, 218 (1961);Phys.
14ey. 124, 1740 (1961).
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Starting from a one-electron, tight-binding, static-
lattice picture of the impurity-doped crystal, the Pauli
principle is satisfied by using an antisymmetric crystal
wave function. This wave function is then modified by
the addition of variational corrections of the correct
symmetry to account for the perturbations on the tight-
binding approximation due to the crystal Geld, spin-
orbit interaction, and Van der Waals interaction.

II. TRAPPING SITES IN RARE-GAS CRYSTALS

The rare gases crystallize in face-centered. cubic
lattices. For this study it is assumed that the impurity
is in one of the three stable sites pointed out by Foner
et a/. ,

' namely, the substitutional site and two inter-
stitial positions —an octahedral site at the center of the
face-centered cube or a tetrahedral site near any corner
of the face-centered cubic structure. The lattice may
relax about the trapped atom, but the symmetry of the
site is preserved because the ground electronic state is
orbitally nondegenerate. Other possible trapping sites
might be aggregates or vacancy-impurity combinations.

Preliminary calculations made in connection with
this study indicate that in argon the nearest neighbors
of a substitutional hydrogen atom relax by moving
inward by about 1% of the equilibrium atomic separa-
tion for the pure crystal. This is reasonable since the
hydrogen atom is "smaller" than the rare-gas atoms
and would behave something like a vacancy for which
the relaxation has been calculated to be 0.839% by
Halls and 0.32% by Kanzaki. ' The additional relaxation
inward arises from the long-range Van der Waal's at-
traction of the hydrogen not present in the case of the
vacancy. For the octahedral position, the relaxation of
the nearest neighbors is of the order of 4% outward.
This is consistent with Hall s figure of 5% relaxation
about an octahedral interstitial atom of the rare gas.

III. THE HAMILTONIAN

For a crystal consisting of X nuclei with charges
ZsIeI (J=1, , iV) and QsZq electrons, the Hamil-
tonian for electronic motion in the Born-Oppenheimer
approximation is

ZJ

-s, g(r,—Rs) e, (r;—Rs) IJ

r;—

+';srg5(r,—Rs)e,'Is . (3.1)

Here the symbols rn, M, A, and V have their usual
meaning. e is the electronic charge (a negative number)
and p; is the momentum operator —stttV;.

,8,= I e
I
is/2mc,

the Bohr magneton, and P = IeIA/2Mc, the nuclear
magneton. g is the electronic g factor, and y is the
nuclear g factor. A represents the vector potential for
the external magnetic field, H, and E is the electric field
within the crystal. Is is the spin operator in units of
pt for the Jth nucleus at position Rs. tr; is the Pauli
spin operator in units of —,'A for the electron with co-
ordinate r;, and L; is the orbital angular-momentum
operator in units of 5 for the same electron.

The first term in Eq. (3.1) is the kinetic energy of the
electrons, the second, third, and fourth terms account
for the electrostatic interaction of the electrons and
nuclei, "and the fifth term is the spin-orbit interaction. "
The sixth and seventh are the interaction with an ex-
ternal magnetic Geld, and the eighth is the hyperGne
interaction of the electrons and nuclei. " The inter-
action of the electron with the magnetic Geld is taken
only to 6rst order in H since the quadratic terms are
small for the fields involved and give rise to a dia-
magnetic e8ect which is not of interest in the present
calculation.

In the case of hydrogen in a rare-gas crystal, the
energy contributions fall into three groups:

I. The atomic binding energy (of order 10 eV or
more).

II. The Van der Waals, crystal Geld, and spin-
orbit energies (of order 0.1 to 0.001 eV or less).

III. The interaction with an external 8 field and
the hyperfine interaction (of order 10 ' eV).

It follows from this division of the Hamiltonian that
the interaction of the crystal with a magnetic Geld may
be most reasonably found by starting with the Hartree-
Fock wave functions for the free atoms, modifying

etc f e
P e;. E)(I p;—AI-

4trtsc' ' k c )

~ Since this work was begun a similar approach has been sug-
gested in a discussion of transition ion complexes. See W. Marshall
and R. Stuart, Phys. Rev. 123, 2048 (1961).
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Book Company, Inc. , New York, 1940).

"For example see L. I. Schifi, Qttarttam Mechartics (McGraw-
Hill Book Company, Inc. , New York, 1949), 1st ed. , p. 321; and
E. U. Condon and G. H. Shortley, The Theory of Atomic Spectra
(Cambridge University Press, Cambridge, England, 1935), p. 130.

' For example, see L. D. Landau and E. M. Lifschitz, QNantlm
Mechartics (Pergamon Press, Inc. , London, 1958), p. 486; and
N. F.Ramsey in Experimental Nuclear Physics, edited by E. Segrd,
(John Wiley tk Sons, Inc., New York, 1953), p. 381.
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and
e

Lr H, (3.2)
2fsc

respectively. Here Vz ls the intra-atomic potential of
the Ith atom and I.z is the angular-momentum opera-
tor, with Rz as origin. However, for all other atoms in
the crystal, the interactions are more complicated and
involve the vector potential at the nucleus of the atom
in question. This has been stressed by Slichter in his
treatment of a paramagnetic center having a wave
function made up of a linear combination of functions
centered on two nuclei. "

In particular, for g-shift calculations, energy terms
linear in H and tr are sought. In perturbation theory or
an equivalent variational scheme, these arise in 6rst
order from the spin-orbit interaction because of the
A tr term and in second order from the cross product
of the e (Exp) and the (y A+A p) terms. Provided
the vector potential is zero at the center on which the
wave function being considered is located, the 6rst-
order term is negligible, and the second-order term re-
duces to the form H LL tr, giving a g shift proportional
to the tensor LL. However, if A is nonzero, the first-
order energy may be made arbitrarily large by the
choice of gauge. This is offset by a corresponding change
in the second-order term, "but both contributions must
be considered.

To eliminate the problem of the arbitrariness of the
gauge we shall use a method originated by London. "
In this we introduce the gauge-invariant atomic wave
functions defined by

&„=&p„expL(ie/Ac) A„.r],
where A„ is the value of the vector potential at the
nuclear position of the atomic wave function q„. Xn

"C.P. Slichter, Principtes of Agagnetic Resonance (Harper tk
Row Publishers, Inc. , New York, 1963). The author is indebted
to Professor Slichter for access to a prepublication manuscript of
this text and for pointing out the importance of the vector-poten-
tial part of the spin-orbit interaction."F. London, J. Phys. Radium 8, 397 (1937).The use of gauge-
invariant wave functions here is equivalent to the unitary trans-
formation, T, introduced by Adrian in a similar discussion of the
electronic g factor of Ii centers, F. J. Adrian, Phys. Rev. 107, 488
(1957).

them for the interactions in group II, and using the
results to find the expectation value of the interactions
in group III.

The spin-orbit term and the orbital interaction with
the magnetic field have been left in terms of the vector
potential, to emphasize the importance of the choice
of a convenient gauge. For a speci6c atom in the crystal,
say, the Ith, we may choose the vector potential to be
zero at the nucleus. Then to a good approximation for
this atom, these interactions reduce to

eh
go Z

4nt'c' Ir—Rrl c)(lr —Rz~)

calculating expectation values of the Hamiltonian, the
differential operator in p "brings down" A„'s from the
exponential, and these combine with the vector po-
tential in the Hamiltonian to give operators depending
on the vector potential as measured from the nucleus
in question. The matrix elements of the Hamiltonian
calculated using the x's depend only on the diRerence
in vector potential between the centers involved and
are consequently gauge invariant.

In evaluating these matrix elements, the gauge may
be chosen for convenience. For the problem at hand it is
practical to take the origin of the vector potential at
the rare-gas nucleus for each of the rare-gas-impurity
pairs and to expand all other functions about these
centers. This is a particularly useful choice for calcula-
tions of the g-factor shift since the spin-orbit inter-
action arises from the highly localized electric 6elds in
the rare-gas atoms and hence lead to a Hamiltonian
that is important only in the neighborhood of the rare-
gas nuclei. Furthermore, because of this high degree of
localization of the spin-orbit interaction, the contribu-
tion of each of the rare-gas atoms to the g-factor shift
may be treated separately.

An effect noted by Bender" has been ignored. The
hyper6ne interaction leads to a slight difference in
polarizability between hyper6ne states. Consequently,
the Van der Waals energy depends on the state, and an
additional splitting is introduced. This could be in-
cluded in the present formalism by adding a variational
correction to account for the excited s states admixed
to the impurity ground state by the hyperfine inter-
action. Only one-electron operators are involved and
the theory would be formally the same as for the crystal
6eld and spin-orbit corrections. For numerical estimates
we shall use the perturbation theory results of Adrian'
and Herman and Margenau. "

IV. THE CRYSTAL WAVE FUNCTION

To modify the wave function for the noninteracting
atoms, a variational procedure similar to that of Hasse
and Buckingham" is used, i.e., a correction is added to
the wave function that is proportional to both the initial
wave function and the perturbation. For example, if
Ko is an unperturbed Hamiltonian having a ground-
state eigenfunction fo, and It is the perturbation;
Hasse's method is to seek a solution of the form P
= (1+)tl't)Ps, where X is a variational parameter.

In our case, the Inodi6ed crystal wave function is
taken to be

I'= i-''tl:&+2th'(«)+EP'(rt)
+P r„J'"(rr,r „), 5+s, (4.~)

'5 P. Bender, "Comments on Dr. Fontana's Paper" made at
The Ann Arbor Conference on Optical Pumping, Ann Arbor,
Michigan, 1959 (unpublished).

's R. Herman and H. Margenau, Phys. Rev. 122, 1204 (1961).
'7 H. R. Hassd, Proc. Cambridge Phil. Soc. 26, 5+ (1930);27,

66 (1931);R. A. Buckingham, Proc. Roy. Soc. (London) A160,
94 and 113 (1937).
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where Ct is the usual antisymmetrization operator
(F!) '"g.=t '(—1) "P.and Co is theproduct, g»p»(r;),
of the one-electron functions g»(r~), occupied by the X
electrons of the system. In Eq. (4.1), the correction
terms are

8»(r») =A»o»(r»),

r»(r») = z»w»(r») L» o»,

g«(r», r„)= X«u» &(r», r„),
where A&, Z&, and X«are variational parameters. The
wave function p»(r») is corrected by the function o»(r»)
for crystal field eRects, and by w»(r»)L». s» for spin-
orbit eRects. The last term u»'(r», r,) corrects the prod-
uct of the wave functions p» and p& simultaneously for
the Van der %aals or interatomic correlation effect.

If Hasse's method were to be extended literally, w» (r»)
and w»(r») L»»r» should be replaced by the crystal field

potential, and the spin-orbit intera, ction, respectively.
However, both are singular at the nuclei and lead to
divergencies in the matrix elements. From the argu-
ments of Shull and LOwdin" and the work of %ikner
and Das,"it is expected that a solution can be obtained
by using as our functions tp»(r») and w»(r»), a series

P„c l r» —R»l "'. For actual calculations only one term
will be kept and a corrected wave function of the form

0 ~ (~+) I«—R»l")0, (4.2)

where both 'A and e are to be chosen to minimize the
energy, will be used.

For u»&(r», r„), the first term of the multipole ex-
pansion for the Van der Kaals interaction will be used. "
This is the familiar dipole-dipole term given by

u»&(r», r„)= e'R "f(r» R»). (—r„—R„)
—3(r»—R») A(r —R ) P] (43).

R~ and R„are, respectively, the coordinates of the
nuclei on which p»(r») and ps(r„) are centered, R
= R» —R„ is the separation of the nuclei, 2 is the unit
vector along R, and r» and r„are the coordinates of the
electrons. Here the discussion is limited to interatomic
correlation by assuming u»&(r», r„)=0 if p»(r») and
g&(r„) are centered on the same nucleus. "

To simplify the calculations, I.owdin's method of
symmetric orthonormalization" is applied to transform
the atomic functions into the orthonormalized one-
electron functions used to form Co. For the particular
unitary transformation introduced by Iov.din, the
orthonormal functions p& are given by the series

so"S.„+sQ. , poo"S.pSp„—, (4.4)

"H. Shull and P. O. Lowdin, J. Chem. Phys. 23, 1362 (1955)."E.G. Wikner and T. P. Das, Phys. Rev. 107, 497 (1957).
"See, for example, J. 0. Hirschfelder, C. F. Curtiss, and R. B.

Bird, Molecular Theory of Gases aud Lequsds (John Wiley»lc Sons,
Inc. , New York, 1954).

2' For the separation of correlation energy into intra- and inter-
atomic terms, see O. Sinanoglu, J. Chem. Phys. 33, 1212 (1960)
and Phys. Rev. 122, 493 (1961).

u P, O, Lowdin, Advan. Phys, 5, 1 (1956).

where the q»'s are free atomic functions, and 5 p is the
overlap between atomic wave functions q and cpr',

J +aa+pdsr
This series converges if Q l S„ l

(1.For the prob-
lem at hand, this convergence condition is satished for
the substitutional site. For the octahedral and tetra-
hedral sites, it is satisfied if only outer shell overlaps
are considered. If all shells are included, the question
of convergence is not clear cut since this su%ciency
condition is not met, but neither is a similar sufFicient
condition for divergence. However, for these "cramped"
sites, there is a relaxation of the lattice outwards from
the impurity, and so these cases would presumably be
convergent also. For this study it is assumed that this
series expansion is valid and that only terms up to
order 5' are important, i.e., the "5' approximation" is
made. A more detailed discussion of convergence is
given by I.owdin. "

Since our main concern is with the paramagnetic
atom, not all the variational parameters will be equally
important in calculating the magnetic effects. In par-
ticular, it is necessary to calculate X&&'s for all impurity-
rare-gas interactions, but 2& only for the rare gas, and
A& only for the impurity.

In calculating the Van der Kaals parameters, matrix
elements involving correlation corrections in two-,
three- and four-electron coordinates are encountered.
It is known that the three-electron term represents
only 2 to 9% of the total cohesive energy, s' so all but
the two-electron term will be neglected.

The anal assumption is that overlap integrals be-
tween host crystal atoms may be neglected. Their
main role is to determine the repulsive forces between
atoms, and thus the lattice structure for the pure
crystal, which is taken as given. Since both the overlap
and the Van der %aals interaction fall off rapidly with
distance, it can be shown that the nearest neighbors of
an impurity account for all but a few percent of the
perturbations on the impurity. For numerical estimates,
the "crystal" will, therefore, be defined as the impurity
a,nd its nearest neighbors.

V. CALCULATION OF THE VARIATIONAL PARAMETERS

A. The Crystal Energy

The variational parameters are found by minimizing
the crystal energy ignoring the hyperfine and mag-
netic-6eld interactions. To avoid the complication of
writing this energy in terms of atomic functions at this
point, an abbreviated form for the matrix element is
used. The wave function may be expanded as

C = O'C'o+ 8 P» h»(r»)C'o+ 0 Q» P»(r»)C'o

+~ E»,e»"(», .)~, (& &)

=uo+ui+ us+ us
&

~ B. M. Axilrod and E. Teller, J. Chem. Phys. 11, 299 (1943);
B. M. Axilrod, ibid. 19, 719 and 724 (1951).
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where uo is identified with SC'o, ui with 8+th&(rt)C'o,
etc.

In the tight-binding approximation, the correction
to the normalization is very small compared to unity
and may be expanded in a binomial series. Retaining
terms up to the square of the variational parameters,
this gives for the crystal energy,

tonian and the atomic wave functions. A skeletal outline
of this procedure is given in the Appendix. Because of
their length, more complete derivations are given
elsewhere. '4

Minimization of Eq. (5.4) leads to a set of coupled
equations for the variational parameters. For A& we find

P-= e+{CI «—5~+C(~ eP—3 n(—~ «—)5» }
+ {CM eA—5,+CPr eI3—) A(—M .A—)5g }
+{C'im eG5i,+C('B e5) G(m sir)5i, 2}

+CPi r„eCi—g (nM—+Ale)+ 2enA ggr„

+CPgx —eCiii (n—rN+op)+ 2eng5iix

+CPgi, eCg—i, (aM—+Aris)+2eaA5gi„

(5.2)
Z-:(J~,+J.t)~+Z&t.~+E Z I, „,() +)-)

(5.5)
where, for K' the first-five terms of the Hamiltonian,
Eq. (3.1), we have used the abbreviations

e= (uo I
se'I us&,

n=2(uiluo& p=(uil~'Iuo&+(uol~'Iui&

A = 2(uol uo&, M= (us I
~'I us&+(usl ~'I»)

@=2(uoluo&, res=(uolR'luo)+(uol&'Iuo),

p=(u, lu, ), p=(uilK'Iui),

a=(u, lu, ), X=(uolte'lus), (5 3)

g=(u, lu, ), n=(u Iac'Iu ),
C.~=(uiluo&+(uolui& P~~=(»l~'I»&+(uol&'I»&

c~~=(uil»H-(»Iui& P»=(»I~'I»)+(»l~'I»&
Cgk= (uolus&+(us lus), P»= (»I~

I »)+(»I ~
I »&

The contributions of the first and second powers and
the cross terms in the variational parameters have been
grouped together in square brackets which are labeled
with a subscript to indicate the term they contain. The
energy in this approximation is a polynomial of second
degree in the variational parameters. It may be
written as

P.= e+Q 2ItAt+Q Q Jt„At'A"

+Z»t&'+2 Zi ~o~'~"

Similar expressions hold for the other parameters.
The leading terms, such as It/Jft in Eq. (5.5), arise

directly from a perturbation on the free atom. On the
other hand, the cross terms arise from considering an
atom already corrected for one interaction being per-
turbed by a second. If the tight-binding approximation
is valid, this "second generation" effect is of secondary
importance compared to the leading terms and the
equations can be solved by iteration. Furthermore, it
is consistent to calculate the cross terms to order S'
only, while calculating the leading terms to order S'.

B. Crystal Field Parameters

A& is given by Eq. (5.5) in terms of the energy equa-
tion coe%cients I~, J~,, Eg„, and L~„,, These will be dis-
cussed for a hydrogen impurity atom. In atomic units
Io for (=0, the hydrogen 1s function, is given to second
order in overlap by"

Io= (oI "~i'olo) —Z(0I "l~)(~l~l'olo)

—l & 5'o-{«I "~l'-I )+ ( I
"~l'o

I
o)

—(01"I 0)C(0l &l'- ln)+2(nl &&o
I
0)5

+ C(o,o, le,or,,—lo;n, )—(o,o, le, r'~ 'ln, 0,)5}, (5.6)

where the potential 2 Vt(r;) is shorthand for the "ex-

yp p 2E,„Itfao+g g p 2I.t, „p4"'

+g g Q 2M', „zr) -. (5.4)

The coefficients Ig, etc., are found by expanding the
appropriate parts of Eq. (5.2) in terms of the Hamil-

David Young Smith, Ph. D. thesis, University of Rochester,
1962(unpublished). On 61e with University Micro6lms, Ann Arbor,
Michigan.

2' Here we introduce the rounded-bracket notation

(pt
~
Operator

~ q t)
to indicate that the matrix elements are taken between atomic
functions, q &'s. Heretofore, we have used only matrix elements of
Lowdin functions, @&'s.These are indicated by the angular brackets
Qt

~
Operator~gt). For simplicity of notation, we shall generally

abbreviate wave functions with their quantum number index and
indicate their associated coordinate by a subscript. Thus (q o(r;) )
will be denoted (e;(.
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change" potential de6ned by

zV, (r,) I v,')
ZJ

I ~")+2'(n~lrv 'In; ) I v")
I
r;—Rgl

(n —Irv 'I (~) I
v'") (5.7)

Here the primes on the summations indicate that J
does not include the atom on which y& is centered, and

g does not include any function with the same center
as q&.

The energy eigenvalues for the atomic wave func-
tions have canceled, leaving matrix elements of poten-
tials and the variational function v&. Aside from ex-
change corrections, this has the general form of the
matrix element of the crystal 6eld times the variational
correction less the product of the matrix elements of the
crystal field and the variation.

In the case of a molecular crystal the electron on one
atom will experience an attractive potential provided
its wave function overlaps the intra-atomic potential
of a neighboring atom. It is, therefore, to be expected
that, if there is no overlap, I~ is zero and that Ig must
have a leading term related to the electron overlap
integrals. Actual calculations show that for hydrogen
in argon. the matrix elements of the potential, and hence

Ig, are essentially proportional to the square of the
hydrogen 1s-argon 3P overlap. The exchange correc-
tions to the potential are also of order 5' and arise
from considering the interaction of the exchange charge
clouds y&*q& and p&*q&, where y& is a hydrogen func-
tion and q» a rare-gas function.

Since I~ is of order 5', J~~ is needed only to order 5'
to 6nd A.' to order S'. The result in atomic units is

of the kinetic energy added by the correction term v&p&.

The second approximation to h.& is given by adding
corrections in J~„Eg~, and L~,». Since these cross
terms are considered to order S' in finding A.& to order
S', the term ~~(J~„+J„~)Jtt. 'A. & is negligible because A. &

is of order 5' in molecular crystals.
The cross term Ktg«V. & is zero for the case of y&,

a hydrogen 1s function. The main reason is that the
coefficient E~, consists of overlap matrix elements in-
volving the spin-orbit correction for a rare gas and an
impurity state. These are of order S' and consequently
negligible.

The cross term with the Van der Kaals parameter
I.g, „,(X"&+X&"),is given by

Q Q L, „,(x-+z-)

=2(l "+l ")((&'~ I """lr'~, )
ping

(hpjl ~"'~'
I 5'I ) (sl ~'I 5))

—E Z (~"'+l'")(va,
l

'"' ';le'p)(kl 'lk), (5.9)

where v;; is the dipole-dipole interaction between elec-
trons with coordinates r; and r;, centered on two dif-
ferent atoms. For our choice of u,,&p, both v;; and I;;&p
are the same and are given by Eq. (4.3).

The first half of this contribution arises from the
interaction of I;,&p and the normalized wave function
as corrected for crystal field effects. The second term
arises from the excess Van der %aals energy associated
with the extent to which (1+A&v&)g& exceeds its nor-
malized value.

~«=l(~l~" ~"l~) (5.8) C. Spin-Orbit Parameters

This term arises from the kinetic-energy operator in The solution of the variational calculation for the
Hamiltonian, and J~~ may be considered as a measure spin-orbit parameters is

', (jt.„+j—„p)Z++X,(A +Q Q Mp, „,(X +X )

(5.10)

functions as p&=(R&(l rl)y&(a, p)8($), where R&(l rl) is
the radial part of q &, y&(8, q) is its angular dependence,
and b($) is its spin function. Then, since the spherical
harmonics form a complete set for the angular-mo-
mentum o erator summin over closed shells in the

The spin-orbit parameters are important only for the
g-shift calculations and always appear with coefficients
proportional to S'. Thus, 2& is required only to order 5'.

For q &, a rare-gas wave function ig is given by
p g

'~=(~lx «(~ )'l~) second term leads to
—Z(tI~'&. ~le)(nlx& ~l8, (511);,=((Gtslx„tl g~) p(gtl„~l g.)(g.lxl @~))

11

where X is the spin-orbit factor (A'/4''c')r 'BV/Br
Since only S' terms are considered; the sum on g runs
over states centered on the same atom as q &.

This equation may be simplified by writing the wave

x(y'~(g) I (& ~)'ly&s(g)). (5.12)

Here the sum over g runs over the non-s subshells.
The only appreciable terms in j~~ are those arising
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from the kinetic-energy operator in the Hamiltonian.
The equation for j~g may be reduced to simpler form as
was i~ by using completeness for angular-spin operators.
The result in atomic units is

energy operator. In addition, the cross term E„,tA'/j t~
is of order S' for molecular crystals because it contains
A~ and thus may be ignored.

The Anal cross term, Mt, »P»+X&&), is similar to
1.) „„(X»+X'"),but with v&(r;) replaced by w&(r;) L; cr,

D. Van der Waals Parameters

X(yt~(~) I (L o)'Iy~~(g)), (5.13)

where the sum over g runs over non-s subshells. Here
the assumption that w& is an s-like function has been
used. For this choice,

~(w&L o) =$(Bw&/Br)+(w&/r)](L o)r. (5.14)

The cross term Q„gtsr (jt„+j„t)Z&j« ' is found to be
less than a thousandth of the leading term for 2&, and
may be neglected. The main reason for this is the small
size of the function x where the wave function is appre-
ciable relative to the terms in j'~~arising from the kinetic-

The solution of the variational calculation for the
Van der Waals parameters shows that it is not possible
to 6nd a particular X&&, but that the system of equation
can be solved for the sum (V"+X«).This is, of course,
physically reasonable since we are calculating the Van
der Waals interaction between two atoms and the
effect, being a property of the system, cannot be divided
between the atoms independently. Hence, in our case,
the sum of the Van der Kaals parameters X&& and X&&

has meaning, but separated, the individual terms do not.
The Van der YVaals parameter for minimum energy

is given by

(5.15)

(g&+X«) has a leading term proportional to S', that
is, overlap is not essential for the Van der Waals inter-
action. The S' terms are extremely complicated and
give little understanding of the processes at work.
Hence, only the direct terms will be presented here.

Neglecting overlap, the term D~„ is given to order
S' by

(5.16)

This term represents the electrostatic interaction be-
tween the electrons in states p;& and q, & as modified

by I,,&&. It can be put in a more familiar form by adding
the quantity

which is zero by the oddness of I;,&&. The result is ex-
plicitly the matrix element of the interaction of two
neutral charge clouds. This interaction may be ex-
panded in a multipole series and the usual expression
for Van der Waals interactions results.

The term Y~, g„ is given by the matrix elements
arising from the kinetic energy operators in the Hamil-
tonian. To order S' it is

No cross terms involving Tg, , „appear since these are of
order S', the S' terms vanishing because of the oddness
of I,;;«. This also holds for the cross terms I, tgp
since, as we have shown, h.& is of order greater than S'.
While the cross term involving the spin-orbit inter-

action is of order S', it is found to be negligible com-
pared to the leading Van der Waals terms. This can
easily be seen since both Eqs. (5.16) for IIt„, and (5.17)
for Y~, , ~„are roughly either sums or products of dipole
matrix elements for the charge distributions

I
p&l' and

I
y" I'. For the ground state, these are of order unity.

However, the spin-orbit correction may be shown to
lead to matrix elements of order j.0 ' or so.

VI. CALCULATION OF ELECTRON SPIN
RESONANCE PARAMETERS

A. The Hyyerfine and Magnetic Field
Perturbations

The magnetic energy levels for a 'S&~& state are ob-
tained from the Breit-Rabi formula, "which gives the
energy levels in terms of the magnetic field and two
parameters: The hyperfine splitting in the absence of a
magnetic field, A, and the electronic g factor.

The g factor is a measure of the interaction of the
spin of the electron with the magnetic field and in
general is a dyadic. Since the experiments on impurities
in rare gases are generally done with polycrystalline
samples, only the isotropic part is considered. It is the
coefEcient of ~sP,H o in the interaction of the solid
with the magnetic field. This interaction arises from
the sixth and seventh terms in the Hamiltonian, Eq.
(3.1). The hyper6ne interaction is given by the last
term in the Hamiltonian. For the present problem, only
the Fermi contact interaction is important.

ss G. Breit and I. I. Rabi, Phys. Rev. 38, 2083 (1931).



VARIATIONAL THEORY OF PARAMAGNETI C I M PURI TIES 2063

These terms in the Hamiltonian are all sums of one-
electron operators, and their expectation values may be
written down in analogy with the terms in the expres-
sion for the crystal energy, Eq. (5.2). The result is a
polynomial in the variational parameters. We shall use
the same symbols for the coefficients in this polynomial
as we did in Eq. (5.4), but with primes added to dis-
tinguish them from the crystal-energy terms.

3. The g Shift

For an impurity with an s electron having unpaired
spin, the g shift arises almost exclusively from the spin-
orbit interaction correction to the rare-gas wave func-
tions and the fact that in the solid the wave functions
of the impurity overlap the rare-gas atoms. A g shift
corresponding to higher angular-momentum states ad-
mixed to the impurity ground state by the crystal field
and the Van der Waals interactions exists, but is negli-
gible compared to the spin-orbit overlap effect.

The constant term in the energy polynomial for the
magnetic Geld interaction, e', includes a sum over all
electronic states. The contributions of the closed-shell
rare-gas states sum to zero, leaving only the impurity
term which is identical to the interaction of the free
impurity with the magnetic field.

The A, X, 'A', and A'A contributions consist of terms
of the form & p

I Q&II I ") & p
I Q I ")& p

I
"&I ") o»ums «

terms multiplied by &p I
It&

I tl), zW p, where Q is an arbi-
trary operator and h~, the magnetic field interaction,
is the sixth plus seventh terms of the Hamiltonian.
Since Lowdin functions are spin eigenfunctions, these
terms cancel identically or are zero by orthogonality.

The g shift arises from the term linear in the spin-
orbit parameter, Z&, which is

M' —o'2 =Pt z&l &&lwt'L ehgg+h~tttL trl ()
—Z,&&l~'L ~l»&~l&~l ()

—E,&kl&~le)&el~'L ~l I)l (6 1)

treated in a similar manner, but because of the can-
cellation of S' terms, no contribution results.

The shifts due to higher angular-momentum states
introduced to the ground state of the impurity by the
crystal Geld and Van der Waals interactions, do not
arise directly from the variational calculation, but
come about naturally when the wave functions result-
ing from the calculation are considered as the correct
starting functions for a perturbation calculation of the
spin-orbit and magnetic Geld interactions. These g
shifts occur in the second-order energy term and are
proportional to the square of the variational parameters
associated with the higher angular-momentum states.
In the case of the crystal field, this leads to a change in

g of order S' which is negligible in the present approxi-
mation. The shift due to the Van der Waals interaction
is not obviously negligible. However, numerical calcula-
tions show that its contribution is less than 1'Po of the
observed shifts in the reported hydrogen-rare-gas sys-
tems and even less for the alkali metal-rare-gas systems.

C. The Hyyer6ne Splitting

The shift in hyperGne splitting arises from renor-
malization associated with orthogonalization of the
one-electron wave functions and both the crystal field
and the Van der Waals corrections. The spin-orbit
interaction makes no contribution to the splitting.

The renormalizing eGect appears in the constant term
and leads to the expression

6&overlap (0 I
~ (r Ro)

I P)=2 So.'—2 Z S,o (6 4)
(ols(r —R,) lo)

where A is the hyperGne splitting for atomic hydrogen.
The contribution of the crystal Geld interaction

appears as a normalization correction to the density of
the hydrogen atom's wave function. The result is

Expanding the operator in the Grst term, we have for
m& an s-like function y t I fi 1d/~ = —2~'(o

I
p'

I o) . (6.5)

w~L ~h„+I „wtL g=Pwt(e r H+gL H), (6.2)

where F=z(L,L+L,L,)j;i, j=x, y, s. I' is the opera-
tor corresponding to the g-shift tensor.

Considering just those parts of Eq. (6.1) involving
F, it is found on expansion to order S', that the second
two terms of Eq. (6.1) are cancelled in order S' by the
first term. This happens because the sum over g runs
over a set that is complete for the angular operators.
A term of order S' remains, however. The result of
simplifying this is

dg= —2Q &S o

XL(olw Fln) —ppSso(plw Flet)j, (6.3)

where n and P are rare-gas P states centered on the same
atom.

All contributions involving ZP, ZA, and 'A may be

The Van der Waals correction makes two contribu-
tions. The Grst is proportional to X and appears in
order S' since all S9 contributions integrate to zero
because of the oddness of I;,«. The result is given by

AA vdw (x)

(o,&, IN;, o s(r,—R,) I&,0,)= —2Q (X"+X o)
0( rf (oil(r —Ro) I0)

—(0,&, IN,,o
I&,o,)yp s.,(o,&, l~;,o

l&,~,), (6.6)

where the symbol P& « indicates the sum over n
where q" and q & are on the same atom, but are not the
same state. The second contribution is proportional to
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The AZ, ZA, and AA cross terms do not contribute since
the A terms are zero to order S" because of the oddness
of u;, &&, and the A terms vanish to order S' since A

itself is of order S'.

VII. ORDER OZ MAGNITUDE CALCULATIONS
AND DISCUSSION

As a sample of the calculations involved, the leading
terms in the solutions for the variational parameters
have been evaluated and from these the hyperfine
splitting and the g shift have been predicted for a
hydrogen atom trapped in the substitutional and the
octahedral sites of an argon lattice. '~

A. The Variational Parameters

The variational parameters for hydrogen as an im-

purity in argon were evaluated through terms in intra-
atomic exchange. Inter'atomic exchange was neglected
for the approximate calculation of these parameters.
The results are shown in Table I.

TABLE I. Calculated variational parameters for the argon-
hydrogen system.

Variational function.

Crystal 6eld—variational form
A.~r" (representative value at
R=6.5uo for p=hydrogen 1s state)

Spin orbit —variational form Z&r"'
(for g =argon 3P states)

Van der Waals parameter —X&= (Xp&+X&')

(negligible for g =argon ts and 2s states)

Parameter values in
atomic units

h'=1.65X10 '
n =4.5

Z,3 =1.50X 10-3
n'=0.95

X'~ =0.0769
&"=0.0701
X'~ =0.923

The effect of neglecting interatomic exchange terms
in calculating the spin-orbit parameter is negligible,
since their only effect is to give S' corrections to the g
shift.

The most pronounced exchange effects probably occur
in the crystal-field parameter since the direct terms of
this are of the same order of magnitude as the exchange
terms. Phillips" has shown that for systems such as
this the exchange terms may be comparable to the
direct terms and considerable cancellation should occur.
A large uncertainty, therefore, accompanies the calcu-
lation of the numerator of the expression for A.&, I~,
even if the exchange terms could be evaluated easily.

The Van der Waals parameters, p p&+X&p), are prob-

'~The argon ground state wave functions of D. R. Hartree
and W. Hartree, Proc. Roy. Soc. (London) A166, 450 (1938),
were used in these calculations.

J. C. Phillips, J. Phys. Chem. Solids 11, 226 (1959) and
M. H. Cohen and V. Heine, Phys. Rev. 122, 1821 (1961).

X' and again represents a normalization correction. It is

~~vdw(&')/~ = —2 (&'"+~"')'(o.t~ I
(Nv'")'I o t ) (6 7)

0(g

ably given reasonably well in this approximation for
internuclear distances greater than six Bohr units.
However, at smaller distances the overlap terms be-
come increasingly important, but since the Van der
Waals parameters have leading terms of order S', the
overlap effects will not be as pronounced as for the
crystal field parameter.

0.0

O tional

CI
-0 5-

Exp. Octahedra

—l.o- Present Results
Adrians Results —-—

I I I I

6 7 8 9
R (Atomic Units}

Pro. 1. The g-factor shift for a hydrogen atom trapped in an
argon lattice at an octahedral site versus the nearest-neighbor
distance, R. The circles represent experimental points according
to the assignment of resonances made by Foner et al. (see Ref. 2).

B. The g Shift

The g shift for a system of hydrogen in a rare gas is
given by Eq. (6.3). The diagonal or isotropic elements
are

&g= —4Q Z S.p

&&L(ol~ I-.'l~) —Zpspp(PI~ L.'l~) J. (&.&)

The corresponding result of Adrian's perturbation
theory approach is

&g= (4/3Err)$ p'X „.(uILg'In), (7.2)

where EII is the average energy of the excited states
of the hydrogen impurity, and P „, is the spin-orbit
splitting constant for the rare gas p orbital. '

In both cases contributions to Ag come from rare-gas
0. states since the overlap integrals are nonzero only
for states with projected angular mome~turn, mq, zero
along the line joining the hydrogen and rare-gas nuclei.
The result of a calculation of the projected components
of the angular momentum for arbitrary magnetic field
direction shows that for both the substitutional and the
octahedral sites two thirds of the neighbors are effective
in producing a g shift.

Figure 1 shows Ag for hydrogen in an octahedral site
in argon as a function of internuclear distance. The
agreement between the present result and Adrian's
calculation is remarkable considering the vastly dif-
ferent theoretical techniques used. In addition to the
theoretical curves, two "experimental" points are
plotted using the assignments to undistorted lattice
sites made by Foner eI al.' One is for the octahedral site
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—Nodal planes for the composite excited state

FIG. 2. A schematic plot of the charge density of the para-
magnetic electron for a hydrogen impurity atom at an octahedral
trapping site in a rare-gas solid. The solid curve shows the density
of the "ground state" for which the spin-orbit interaction has been
neglected. The dashed curve represents the excited state to which
the "ground state" is coupled by the spin-orbit interaction. The
solid curve has no azimuthal nodes, whereas the composite excited
state has eight. The excited state of the crystal, therefore, corre-
sponds to a diffuse g state centered about the impurity.

and the other is derived from the data for a substitu-
tional site. The theory seems to agree reasonably with
this assignme~t of trapping sites. Even better agree-
ment would be expected if the effect of argon 2p states
were included since the g shifts predicted by the present
theory would be increased at smaller internuclear
separations.

Both results are quadratic in wave function overlap,
depend on the component of angular momentum parallel
to the magnetic 6eld, and are related to the spin-orbit
effect in the rare-gas atoms by 2"and X ~„respectively.
The essential diGerence between the two points of view
is that here we consider the crystal as a whole, while
previously just excited states for the isolated impurity
were included in the perturbation treatment.

The result of making a perturbation-theory calcula-
tion for the crystal as a whole may be anticipated by
considering the symmetry of the excited states admixed
by the spin-orbit interaction to the electronic state
having unpaired spin. The solid curve in Fig. 2 indicates
schematically the charge distribution of the paramag-
netic electron as determined by orthogonalized atomic
functions for a hydrogen atom trapped in an octahedral
site of a rare-gas solid. The 6gure is drawn for a plane
passing through the impurity and four neighboring
atoms. The outer shell electrons for the rare gas are
assumed to be in 2p states, for simplicity, and the lobes
of the distribution are labeled according to the sign of
the wave function.

In the neighborhood of the impurity the distribution
is spherically symmetric, but near the rare-gas atoms it
has the character of a po state centered on the individual
rare-gas nuclei. ' The strong electric field near the rare-

~ po. is used to denote the p function directed along the line
joining the nucleus of the rare-gas atom and that of the impurity
atom. ~ states are directed along lines perpendicular to the axis
of the o states.

gas nuclei cause a spin-orbit mixing with states having
a x-like character centered on the same nuclei. These
excited states are shown as dashed curves. The excited
state of the crystal is the totality of these x-like states,
and it has four aximuthal nodal planes intersecting at
the impurity as indicated by the solid lines. This may
be seen from a direct calculation or more simply from
the symmetry of the site."The excited state, therefore,
corresponds, at the very least, to an I=4 or g state
with the impurity nucleus as origin.

The results of a second-order perturbation-theory
treatment considering the entire crystal would be the
same as Eq. (7.2), but with an energy denominator
given by a weighted average of the excitation energies
of the system of impurity plus crystal. The lowest
"impurity-like" state to contribute to this average
would be the g state for principal quantum number five
which, in the case of the free hydrogen atom, has an
energy of 24/25 of the ionization energy.

The low-lying excited states of the impurity, there-
fore, cannot contribute to the perturbation theory sum
over excited levels, and the energy denominator should
be at least the ionization energy for the impurity in
the crystal. Moreover, since the highly excited states
of the impurity are spread out in the crystal they are
probably more sensitive to the matrix material than to
the details of the impurity, and a better choice for the
average excitation energy denominator of Eq. (7.2)
might be some energy characteristic of the rare-gas
matrix. The latter conjecture is supported by the
variational calculation since the "energy-denominator"-
like term, jgb in the expression 2&= i1/j ~—1 for the
spin-orbit variational parameter is associated with the
host atom, rather than the impurity. "

A possible choice for the characteristic matrix energy
would be the average excitation energy of the rare gas.
For argon this is" 13.6 eV which is the same as the
ionization energy of free hydrogen. Another choice is
the energy of the 6rst exciton peak of the rare-gas solid.
Baldini finds this to be approximately 12.0 eV in argon. "
All these energies are nearly the same as the average
energy for hydrogen, viz. , 11.9 eV, used in evaluating
Eq. (7.2). Hence, for a hydrogen impurity no appreci-
able difference arises from the two points of view. How-
ever, the approximate equality between the excitation
energies of the impurity and matrix atoms does not
hold for the alkali metals, for which the average
energies range from 3.62 to 2.64 eV."

It might be argued that the present model would not
apply to alkali impurities since the ground states of the
alkali atoms would be greatly perturbed by the 6eld of

"For a pertinent discussion of the mixing of 0. and 7r states and
the selection rules involved in the vy, center see Ref. 13.

3'A further discussion of the perturbation theory and varia-
tional results and speculations as to their relationship to an energy
band picture of the solid will be included in a subsequent paper."In Ref. 5 the average excitation energy is taken as the average
of the energy of the 6rst excited state and the ionization energy."G.Baidini, Phys. Rev. 12S, 1562 (1962).
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the rare-gas atoms and that, consequently, the un-
perturbed energy levels of the free impurity would have
no significance in the solid. However, spectroscopic ex-
periments indicate that there is little perturbation of
the impurity atoms by the crystal environment. For
example, electronic transitions of sodium in argon corre-
sponding to the 'S&/s ~3p and 4p 'Er/s 3/Q transitions
in the free atom generally show shifts of only a few
percent. 4 The largest fraction of these shifts doubtless
arises from perturbations of the final p states, and it
seems reasonable to assume that the ground state re-
mains atomic in nature. Preliminary calculations on
these systems indicate that the agreement of the present
point of view with experiment'4 is better than the un-
modified form of Eq. (7.2).

C. The Hyjper6ne Interaction

The shift in the hyperfine interaction arises from the
orthogonalization of the wave functions in the solid, the
e8ects of the crystal 6eM, and the Van der Waals
interaction.

The shift in hyperfine interaction due to orthogonali-
zation (overlap) is given by Eq. (6.4); it may be com-
pared with Adrian's result:

~~overlap
. QSss (7.3)

II4 C. K. Jen, V. A. Bowers, E. L. Cochran, and S. N. Foner,
Phys. Rev. 126, 1749 (1962).

4 5 6 T 8 9 l0

R (Atomic Units)

FIG. 3. The shift in hyper6ne splitting for a hydrogen atom
trapped in an argon lattice at an octahedral site versus the nearest
neighbor distance, R. Curves 1, 2, and 3 summarize the present
results. Curve 4 is Adrian's perturbation theory prediction. Curve
1 is based on a model of overlapping atoms interacting with a
dipole-dipole Van der Waals force. Curve 2 includes, in addition,
the effects of the non-exchange-corrected rare gas crystal Geld,
and Curve 3 includes the effect of exchange corrections to the
dipole-dipole approximation. The circles represent experimental
points according to the assignment of resonances made by Foner
et a1. (see Ref. 2).

The two equations differ by the addition term —2+„S»
X(0[&(r—XII) [p)/(0~&(r —Re~0) that occurs in the
present result. The first part of Eq. (6.4) is just Adrian's
result and arises from the increase in the hydrogen wave
function at the nucleus, due to renormalization. The
second part is the cross term between the hydrogen
wave function, y', and the argon functions, p&, admixed
by orthogonalization. Calculations indicate that at
small internuclear distances this new term is important.
For example, in the argon-hydrogen system at E=Sao
(the octahedral site nearest-neighbor distance) it is
15% of the leading term, whereas at R=10aII it is
only a 3% correction.

The shift in hyperfine interaction associated with the
crystal field is a normalization correction to the elec-
tron density at the nucleus of the impurity. It is given
by Eq. (6.5). This term has no counterpart in Adrian's
study which is essentially a "point-ion" approximation.
Numerical estimates of the crystal-fieM parameter, A',
indicate that this effect is of order S', because the
crystal fMld is localized within the atoms. However, it
is dificult to estimate because of the cancellation occur-
ring between direct and exchange term. s in the expres-
sion for A& and many-body screening eGects. ' "

The Van der Waals, or correlation, eGect produces
two shifts. One is proportional to (%&+X&') and is of
order S'. The other is a term of order S' in (),o&+g»)s.
The first is given by Eq. (6.6). It does not arise in
Adrian's study since it represents a cross term resulting
from orthogonalization and the interaction between
atoms. However, part of this term does appear in Jen's
treatment of the hyperfine interaction. "This may be
shown by a second-order perturbation theory treatment
of the 1/r, ; interaction using antisymmetric wave func-
tions. The result is a hyperhne-splitting shift propor-
tional to the repulsive or Coulomb-exchange interaction
similar to the second term of Eq. (6.6) in which
(V&+h&') plays the part of the reciprocal of the energy
denominator. The 6rst and third terms are exchange
terms not having as simple an interpretation.

The (hs&+h&)' term arises from the renormalization
of the impurities wave function caused by the Van der
Waals correction. It is given by Eq. (6.7) and should be
compared with Adrian's result which is

where E~ is the average excitation energy of argon and
Ez&~ is the Van der Waal energy for the interaction
between a hydrogen atom and an argon atom.

In addition the diGerence in the Van der Waals inter-
action for the various higher s states mixed into the
ground state by the hyperfine interaction leads to a
shift in the hyperfine splitting. From the work of
Adrian' and Herman and Margenau" this is

~a/& = —(2/&/r)&vaw, (7.5)
'~ J. E. Robinson, F. Bassani, R. S. Knox, and J. R. Schrieffer,

Phys. Rev. Letters 9, 215 (1962).
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where E~~ is the average excitation energy of
hydrogen.

The numerical estimates for the shift in hyperfine
splitting of a hydrogen atom in an argon lattice are
given in Fig. 3 for both the present results and Adrian's
treatment. Three curves are given for the present work.
Each of these includes the shift due to orthogonaliza-
tion, Eq. (6.4), the "quadratic" Van der Waals hyper-
fine shift, Eq. (6.7), and the Bender-Herman term as
calculated by the perturbation theory treatment of
Adrian, Eq. (7.5). The sum of these shifts is shown as
curve 1. Curve 2 contains, in addition, the crystal-field
correction, Eq. (6.5), and curve 3 contains the "linear"
Van der Waals correction, Eq. (6.6), but no crystal-
field correction. Curve 4 is Adrian's result.

Both curves 1 and 4 are in reasonable agreement with
the experimental points and tend to substantiate the
assignment of trapping sites. Curve 2 does not fit at all
for interstitials and predicts too large a shift for sub-
stitutional impurities. Curve 3 fits reasonably for sub-
stitutional sites and possibly for interstitials, but
its behavior for small internuclear distances seems
unreasonable.

From the work of Phillips" it. is reasonable to expect
that the crystal-held parameter is much smaller than
the single direct term calculated here. In fact, the
cancellation of direct and exchange terms probably re-
duces it by at least an order of magnitude if not more.
This would explain the disagreement of curve 2 with
experiment even at relatively large internuclear dis-
tances. If we assume complete cancellation, i.e., set
A.'=0 and include the linear Van der Waals term, there
is reasonable agreement with experiment a,t the sub-
stitutional site (curve 3). However, the linear Van der
Waals term, which is negative, increases rapidly below
6 Bohr units as the exchange dipole matrix elements
become large and causes curve 3 to reverse in direction.

Thus, we 6nd that both the relatively simple pictures
of the hyperfine shift that neglect crystal field and
linear Van der Waals terms give good agreement with
experiment. Attempts to re6ne this simple picture only
worsen the agreement, particularly at small inter-
nuclear distances. This indicates that at the substitu-
tional-site-distances corrections to an overlap-plus-Van
der Waals force calculation are small, but that at
smaller distances the corrections become the dominant
terms, and the model is no longer applicable,

At these smaller separations the solution to the
problem of calculating the wave functions must be re-
examined. As previously pointed out by Adrian, the
multipole expansion for the Van der Waals energy no
longer holds. Furthermore, the simple idea of a crystal
Geld is considerably modified by exchange and many-
body screening effects. ' ' The tight-binding model of
atomic one-electron functions with small corrections for
crystal 6eld and electron correlation probably can be
pushed further using more Rexible variational functions
in the general framework given here, but the 1/r,; in.

teraction must be treated in a better approximation
and the exchange effects included at all steps.

VII. CONCLUSION

In this study a calculation correct to second order in
wave-function overlap has been made for the ground-
state wave function and electron-spin. -resonance pa-
rameters of a paramagnetic impurity in a rare gas.
Starting from a one-electron, tight-binding, static-
lattice picture of the impurity-doped crystal, the Pauli
principle is satisfied by using an antisymmetric crystal
wave function. This wave function is then modified by
the addition of variational terms of the correct syrn-
metry to account for the perturbations on the tight-
binding approximation due to the crystal field, spin-
orbit, and Van der Waals interactions.

The results show that, if there is no overlap, the
effects of the individual perturbations due to the crystal
environment are independent. H there is appreciable
overlap, the individual effects are coupled and must be
calculated simultaneously. In this case, the intra-
atomic potentials of the atoms neighboring the im-

purity must be taken into account as a crystal field,
and the Van der Waals eRect must be calculated for
overlapping charge distributions.

For a paramagnetic center in a relatively weak crystal
field, the g shift arises because the electronic wave
functions, centered on the impurity, overlap neighbor-
ing atoms in which there is appreciable spin-orbit
interaction. The g shift is independent of crystal 6eld
and correlation effects, and appears to be the most
reliably calculated parameter for a tight-binding center
of known geometry in a molecular crystal.

The shift in the hyperfine interaction arises from (1)
the orthogonalization of the wave functions for the elec-
trons in the solid, (2) the crystal field, and (3) the Van
der Waals interaction. Since this shift is the sum of
three quantities, it is less reliably calculated than the g
shift because cancellation occurs. Indeed, at small
separations, the predicted shifts are the difference of
two very large numbers which are, at best, known only
approximately.

It is found that the relatively simple picture of
slightly overlapping atoms undergoing a multipole Van
der Waals interaction gives good results for substitu-
tional sites in rare-gas crystals, but that at interstitial
sites it breaks down; and the shifts in the hyper6ne
interaction cannot be accurately estimated without
including crystal 6eld and all exchange effects correctly.

It should be noted. that the difFiculties encountered in
making the crysta, l field and Van d.er Waals calculations
for interstitial impurities have negligible effect on the g-
shift calculations. In the case of the crystal Geld, the
primary effect is a change in the impurity's s-state
radial distribution which, of course, doesn t affect the
magnetic properties directly. Likewise, the electron
correlation correction to the wave function leads to a
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g shift only in the equivalent of fourth-order perturba-
tion theory and is negligible. Hence, although it is
difhcult to calculate the hyperfine interaction accurately
for interstitial sites, the g shift should be given to a good
approximation by Eq. (7.1) or Eq. (7.2) if E~ is re-
placed by the appropriate average excitation energy for
the system of rare-gas crystal plus impurity.

At the present time the methods outlined here are
being applied to the calculation of the g shift for the
alkali metals trapped in rare gas solids. The results will
be published as soon as the numerical work is completed.

Since we are mainly concerned with the impurity atom,
we need only consider the case for $ the 1s hydrogen
state. Then we profit from the fact that since the
hydrogen atom has only one electron, all exchange terms
involving q& are between electrons on different atoms
and so are of order S'.

Using these facts we And on substitution of the ex-
plicit forms for H; and G,; and identification of atomic
and crystal potentials the result

I,= (o
I
~ox v,

I o)—E(01~o1„)(n I
z vo I 0)
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APPENDIX

As an example of the calculation of the energy
equation coeKcients, an outline of the derivation of the
quantities determining h.& will be given. The general
method is to start with the Hamiltonian and, replace
the Lowdin functions by their series representations in
atomic functions.

To simplify the derivation, the Hamil tonian is
written symbolically as

X'=WjP;H,+Q', &; Gg, (A1)

where lV, H;, and G;; are, respectively, those portions
of the Hamiltonian depending on no electron coordi-
nates, on one coordinate r;, and on two coordinates r;,
and r;. The prime on the double summation indicates
that all terms having the indices i and g equal are
omitted.

——,
' p s,.((ol.tv.

l )+( I.ozv,
l 0)

(o
I

~o
I
o)L(0 lr, v. In)+2(n I

z v,
I 0)3

+L(0,0;
I
v,'r, ;—'10;n, )—(0,0;

I
v,'r, ,-'ln, o;)j}.

Here the atomic eigenvalues have canceled, leaving only
matrix elements of the crystal field potential.

The first two terms of Eq. (A3) are just the "zero-
order" term in the Lowdin expansion. The next three
terms and half of the sixth result from replacing qP in
the bra or i et of the term &ole'X'10) and &OIX'10)
with p'= ~"—lgn5'0 y + . The other half of the
sixth term, (nl Zvol0), comes from replacing p& with
g"= p"—AS„oy' in the 6rst matrix element of Z„&0 I

v'I g)
X&&IZVOIO). The remainder of the equation results
from expanding the bra of the second and third terms
of Eq. (A2). Expansion of g& in the l et gives nothing
since the resulting terms cancel identically.

B. The J~, Terms

The leading term in I~ is itself proportional to 5',
so we need to find Jg~ to order 5'. During its evaluation,
one term that arises is of the form

r= (];I
~,&[ ', V'2 —Zrr, , —-

+P&(@le" '14)+zv&]"'&
I g') (A4)

2'= «(( l
(~')'I ()+-:(PI

&" v" I g)

+ (& I
"~v~"

I k), (A5)1~=&&'I ~"&'I &*&

Expansion of the V' term, integration by parts, and
identification of the crystal field and atomic potentials

Using the expansion of Eq. (A1) and substituting
in Eq. (5.3), we have

2&k I "Iv&—L(~ I
&

I 4&+ & &~'~ I
G' I &'~ &

—
&n'~ I

G'
I u'4&j (A2)

where e~ is the energy eigenvalue for the atomic state
q &. The terms involving the atomic eigenvalues cancel
against similar terms in the complete expression, and
the terms in the crystalline potential are dropped
since they are of order S'.
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The final expressions are

&« ——', (-~l v~~ »&I ~),
and

(A6)

J1,=0 if $ and g are on different atoms,

=(k~~l&"I:rv '—(»Ir'~ 'I»)
-(41 -'14)]s;

I ~,~;)+(~,~;ls,' I ~.~;)
&&(~,';I ';-'I ~,';),

if $ and g are on the same atom.

SC'=Q;Ko(r;)+h, .(r;)+P' V(r;).

From Eq. (5.3) we have for this Hamiltonian

(A7)

C. The X~„Term

To evaluate this term to order 5', the Hamiltonian
may be approximated by the one-electron operator
made up of approximate one-electron atomic Hamil-
tonians, Xo, plus the crystal-field interaction without
exchange, Q'V. Writing the spin-orbit term, h„,
separately from the atomic terms, we have,

(AS)

&.«.~"=&'l(&l»'&~'(& ~) I &)+&'(&I"~'(& ~)~'ll) —Z. &"(&Io'~"& ~l»(el~'I &)
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~'~ ~l k)+&'(k I
"I~) (~ I&'~'& ~

I 8
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+~"(~ I
~"& ~l»1:(& I
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—E.(&I"I ~) ( I

~'I &)1) .

In the "I"notation the cross term in the energy is

= 2(u, I;1I'-
I
u,)—2(uo

I
K

I uo&(ur I uo&

—4(» I uo&(uo I
~'I »&—4(us I «&(uo I

~'I »&

Since we are interested in the case for y& an impurity
function, the matrix elements on the right-hand side are
either of order S' because they represent exchange Z Z Z 24, one (~"'+~'")
terms, or because m& for hydrogen is zero to order 5'.
An even more general argument holds for many of the
terms which must vanish because of the sum over
closed shells. The cross terms with Z&, therefore, make
no contribution to A&.

D. The Lq, „,Terms

Since this term involves the function I;,&& approxi-
mating the Hamiltonian by (A7) would suppress terms
involving the Van der Waals interaction. However,
since we seek only a small correction to Ig we can
approximate the Hamiltonian as the sum of the atomic
Hamiltonians and the interactions between electrons
expanded as a multipole series. From the work of
Brooks'6 one would presume that the dipole-dipole
term would be sufhcient to estimate the correction.
Thus, we shall use

K'- P;Xo(r;)+-', P';,;8;;, (A9)

where the interaction v;; is the dipole-dipole interaction
between different atoms. It has the same form as that
chosen for I;,&&. Notice that we exclude intra-atomic
terms by requiring that r; and r; be coordinates of
functions centered on different atoms.

"F.C. Brooks, Phys. Rev. 86, 92 (1952).

+S(ur I uo&(uo I
us&(uo I

~'
I uo& (A10)

The free atomic energy eigenvalues, e„, will cancel in
the first two terms except for the gradient term in the
matrix element (ur IK'I uo&. However, these are zero be-
cause of the oddness of the undifferentiated part of
I;,&'l. The e„'s don't enter into the second set of terms
because of the oddness of I,,&&. Furthermore, the second,
fourth, and fifth terms are zero for the same reason.
The only terms that remain are in v;, and, after simpli-
fication, the final result for the Van der Waals correction
to the crystal-field parameter is

P g I.r „,(goo+.goo)

—(8'~ I u"'~' l 8'~ ) (81 "10))
—2 E 0 "'+&'")(w lu' "o' ln'~ )(tl ~'I () (All)
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