
PH VSICAL REVIEW VOI. UMP. tsS, NUM BFk JULY 196'
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The interaction energy between a helium atom and a hydrogen molecule has been calculated from first
principles using a simple wave function made up of 1S orbitals centered on the three nuclei. All molecular
integrals encountered were accurately calculated using an IBM 709 digital computer. If r represents the
distance measured along a line drawn from the helium nucleus to the midpoint of the hydrogen molecule
bond, and if y is the angle between this line and the axis of the hydrogen molecule, then the interaction energy
was computed at 15' increments of y from r =3.8 to 5.2 a.u. With the H2 bond length held constant at 1.406
a.u. it was found possible to represent the computed interaction energy quite accurately by the function
Ce ""Ll+BPs(cosy)], where E&(x) is a Legendre polynomial, C=17.283 double Ry, a=2.027 (a.u.) ', and
/=0. 375. The spherical average of the computed interaction energy agrees quite closely with an interaction
energy obtained from gas diffusion measurements. It is shown that it is impossible to represent the calculated
interaction energy by means of a dumbbell-type function, i.e., a function of the form f(p„)+J(p&,), where
f(x) is some suitable chosen function and p„and pq, represent the distance from the helium nucleus to the
two hydrogen nuclei, respectively. Results are also presented for a slightly elongated H2 bond length of
1.486 a.u.

I. INTRODUCTION

'HE interaction energy between two species X and
I"is defined as the energy of the composite system

X—I" minus the energy of the two when they are in-
finitely separated from one another. Such interaction
energies are invaluable in interpreting kinetic theory
and atomic and molecular scattering experiments as
well as in formulating theories of inelastic processes and
chemical reaction rates. The interaction energy between
H and H2, and H2 and H2 has been investigated previ-
ously. " In these calculations however, it was found
necessary to approximate the three- and four-center
molecular integrals encountered in the formalism. The
purpose of this research is to obtain the interaction
energy between a helium atom and a hydrogen molecule
using no molecular integral approximations. The inter-
action energy is computed at a sufhcient number of
points so that the form of its angular dependence is ap-
parent. To accomplish this we use a simple wave func-
tion made up of 15 orbitals centered on the hydrogen
and helium nuclei. This represents a direct extension of
the method used by Heitler and London' in their well-
known work on the energy of the hydrogen molecule.
We also investigate the question, can the hydrogen
molecule be treated as a dumbbell in its interaction with
a helium atom or any other atom, i.e., can the interaction
energy be expressed as an interaction between the
helium atom and the two ends of the hydrogen molecule.
After the true interaction energy has been calculated

one may see whether or not such a relationship is
satisfied.
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All distances are in a.u. (Bohr radii). If we define one-
and two-electron operators

(2.2)

(2.3)

then the Hamiltonian can be rewritten as

(2 4)

II. ENERGY OF THE HE-Hg SYSTEM

The geometry of the helium and hydrogen nuclei is
shown in Fig. 1. We treat the problem in the Born-
Oppenheimer approximation, calculating the energy of
the system for various fixed positions of the three nuclei.
The four electrons are numbered 1 to 4 and the distance
of the ith electron from the three nuclei is denoted byr;„r;b, and r i„respectively. The distance between the
ith and jth electron is called r, , With this notation, the
Hamiltonian in double Rydbergs for the He-H2 system
can be written as

i=1 pairs 7 7 Pab Pac Pbc
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The notation may be made even more compact by
defining total one- and total two-electron operators
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The energy 8 of the He-H2 system may now be ex-
pressed in terms of the basic integrals by substituting
Eqs. (2.16) through (2.21) into Eq. (2.12).

III. INTERACTION ENERGY

The expression (2.12) allows us to compute the energy
of the He-H2 system once the values of p &, p „p&„0.,
and P are given. The quantities p, z, p„,and p&. deter-
mine the geometry of the three nuclei (Fig. 1) while u
and P are the screening constants of the 15 orbitals
defined in Eqs. (2.5) and (2.6). We can see how to pick where

=K+&2, (3.1)

the values for n and P as well as how to obtain the
interaction energy from the energy of the composite
system by examining the expression (2.12) in the limit
of infinite separation between the helium atom and the
hydrogen molecule. In this limit, the overlaps s, and
sq, are zero as are all two-electron integrals containing
the orbital c and either a or b. In the limit r ~ 00, the
energy of the system becomes

pa&

&2= 2Lc I c]+Lcc I
cc].

Lala]+Lblb]+2s. ,Lalb]+Laalbb]+I ablah] 1
E1

(1+s.~)
(3.1a)

(3.1b)

A careful analysis shows that Eq. (3.1a) is identical to
the expression for the energy of the hydrogen molecule
as obtained by Heitler and London' or Wang' using the
wave function a(1)b (2)+a(2)b (1). Equation (3.1b)
represents the energy of a helium atom computed with
a one determinant wave function made up from the
spin orbitals c+ and c . Such a wave function has the
simple spacial dependence c(1)c (2). Thus, in the limit of
in6nite separation the energy of the system, provided
that we pick the correct values for the screening con-
stants n and P, approaches the lowest energy which one
can obtain for an isolated helium atom and an isolated
hydrogen molecule given only the 15orbitals c, b, and c.
The correct value of 0. can be obtained from the calcula-
tion of Wang who did the Heitler-London calculation
varying the value of a to obtain the minimum energy.
He calculates this minimum energy to be —1.139double
Ry with a= 1.166 (a u.) ' and the hydrogen bond length
equal to 1.406 a.u. This is to be compared with an ex-
perimental energy of —1.173 at a bond length of 1.401.
The problem of finding the value of P which minimizes
the energy of the isolated helium atom is a trivial one~

6 S. C. Wang, Phys. Rev. 31, 579 (1928).
~ J. C. Slater, Quantum Theory of Atomic Structure (Mcoravr-

Hill Book Company, Inc., Neer York, 1960), Vol. II, p. 36.

and the correct value of P= 27j16=1.6875 (a.u.) i gives
an energy of —2.84766 double Ry as compared with an
experimental energy of —2.90372. These were the
values used for the screening constants n and P through-
out the present calculation. The interaction energy of
the system was taken to be the di6'erence between the
energy computed with Eq. (2.12) and the energy of the
isolated species as computed with the above wave
functions and screening constants, i.e., (—1.13907)
+(—2.84766) double Ry. The hydrogen bond length
was taken to be 1.406 a.u. , the value at which Wang
obtained the minimum.

Using the preceding formalism and parameters, the
helium-hydrogen molecule interaction energy was com-
puted, using an IBM 709 digital computer, for many
configurations of the system's geometry. Since the
length of the hydrogen bond is held constant throughout

FIG. 1. Geometry of He-H2 system.
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three nuclei. Most of this time was spent computing
two-center exchange integrals (type Lv'jiij7), three-
center exchange integrals (type (ij iik7) and three-
center Coulomb integrals (type t iii jk7).

IV. NUMERICAL RESULTS

The interaction energy V(r,y) as computed for the
He —H2 system is tabulated in Table I. It should be
noted that due to the symmetry of the hydrogen
molecule, V(r,y) = U(r, m —y). We, therefore, list in
Table I only values of p up to 90'. While the results in
Table I are given to three decimal places, the third is

—0.5—

-10—

TABLE II. vp and v2 vs r. Energy in milli-double Ry.
H2 bond =1.406 a.u.

-35—

-2.0
4.0 4.5

r (a.u.)
5.0

FIG. 2. I.n vp and ln v2 vs r.

5.5

(a.u.)

3.8
4.0
4.2

4.6
4.8
5.0
5.2

Calculated
vp v2

7.676 2.870
5.168 1.942
3.470 1.308
2.324 0.876
1.553 0.582
1.034 0.386
0.685 0.256
0.450 0.172

ln 'vp

2.038
1.642
1.244
0.843
0.440
0.034—0.378—0.798

ln v2

1.054
0.664
0.268—0.133—0.541—0.952—1.363—1.763

Exponential Gt

vp

7.806 2.929
5.204 1.953
3.470 1.302
2.313 0.868
1.542 0.579
1.028 0.386
0.686 0.257
0.457 0.172

TABLE I. Calculated He-H2 interaction energy. Energy given in
milli-double Ry. H2 bond = 1.406 a.u.

r
(a.u.)

3.8
4.0
4.2
4.4
46
48
5.0
5.2

0'

10.546
7.110
4.777
3.199
2.135
1.420
0.941
0.622

15'

10.190
6.870
4.616
3.092
2.064
1.372
0.910
0.601

v
30' 45'

9.274 8.136
6.252 5.480
4.200 3.678
2.814 2.461
1.879 1.640
1.251 1.090
0.830 0.722
0.550 0.476

60' 75' 90'

7.130 6.470 6.241
4.796 4.351 4.197
3.216 2.918 2.816
2.133 1.952 1.886
1.417 1.301 1.262
0.936 0.863 0.842
0.615 0.568 0.558
0.401 0.369 0.364

M. P. Barnett and C. A. Coulson, Phil. Trans. Roy. Soc.
A243, 221 (1951).

the calculation, it was found more convenient to denote
the geometry of the system with the values of r and the
angle y rather than with the distances p, q, p„,and p q, .
Here r is defined to be the distance from the helium
nucleus to the middle of the H2 bond and y is the angle
between r and the axis of the Hs molecule (Fig. 1). All
one-electron, two-electron, and overlap integrals, Eqs.
(2.13), (2.14), and (2.15), were computed exactly using
existing digital computer subprograms. These subpro-
grams are based upon the zeta-function method of
molecular integral evaluation developed by Barnett and
Coulson. ' All such subprograms used were checked by
computing several known integrals; the subprograms
should give values which are accurate to the fifth place
to the right of the decimal. It required approximately
six minutes on the IBM 709 computer to compute the
energy of the He-H2 system for a given geometry of the

probably meaningless due to errors in computing the
molecular integrals.

For a given value of r, the interaction. energy is a
function only of p, and we may try to ht this angular
dependence with some simple analytic function. If we
consider the function

U (y) = 'vp+ vsPs (cos'y)
& (4 1)

where vp and vp are constants and Ps(x) is a Legendre
polynomial, we can pick e& and v2 so that the calculated

TABLE III. vp(r)+vm(r)P&(cosy) fit to interaction energy.
Energy in milli-double Ry. H2 bond =1.406 a.u.

r
(a.u.)

3.8
4.0
4.2

4.6
4.8
5.0
5.2

00

10.546
7.110
4.777
3.199
2.135
1.420
0.941
0.622

15'

10.258
6.915
4.646
3.111
2.077
1.382
0.916
0.604

30' 45' 60' 75' 90'

9.470 8.394 7.318 6.530 6.241
6.382 5.654 4.926 4.392 4.197
4.287 3.797 3.306 2.948 2.816
2.871 2.543 2.214 1.974 1.886
1.917 1.699 1.480 1.320 1.262
1.276 1.131 0.986 0.880 0.842
0.845 0.749 0.653 0.583 0.558
0.557 0.493 0.429 0.381 0.364

interaction energy is represented exactly at two values
of y. If we choose zo and v2 so that we get an exact fit at
y =0' and 90', we may then evaluate the function (4.1)
at intermediate values of y and see how well it agrees
with the computed values. The values thus calculated
for ~0 and e2 are listed in Table II. Using these values of
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V (r,y) = ee(r)+vs(r)Ps(cosy). (4.2)

TABLE IV. Dumbbell model potential. Energy given in milli-
double Ry. H2 bond =1.406 a.u.

(a.u. )

3.8
4.0
4.2
4.4
4.6
4.8
5.0
5.2

00

16.830
11.204
7.459
4.965
3.306
2.200
1.465
0.975

15'

15.874
10.575
7.045
4.692
3.125
2.082
1.386
0.923

30'

13.465
8.987
5.996
4.000
2.668
1.779
1.186
0.791

45'

10.606
7.093
4.742
3.168
2.116
1.413
0.943
0.630

60' 75' 90'

8.177 6.635 6.115
5.477 4.448 4.100
3.667 2.980 2.748
2.454 1.995 1.840
1.641 1.335 1.232
1.097 0.893 0.824
0.733 0.597 0.551
0.490 0.399 0.368

es and ns we evaluate the function (4.1) and tabulate the
results in Table III. By comparing Tables I and III,
one can see that the function (4.1) represents the angu-
lar dependence of the calculated interaction energy
quite well.

After computing the values of eo and v2 for each value
of r, we have essentially fitted the computed interaction
energy with a function of the form

5.5

5.0

4.5

4.0

~~ 3.5
lQ
Cl

3,0
LLI

03

~ 2.5%i

1

y 2.0

f.5

1.0

0.5

We may now attempt to 6t the values of vo and v2 listed
in Table II with a simple'function of r. What functional
form we should try is made immediately apparent if we

plot the logarithm of vo and v2 versus r, as is done in
Fig. 2. The result is two parallel lines, which means that
we may write

-05 l 1 t 1 1 t 1

4.0 4.2 4.4 4.6 4.8 5.0 5.2 5.4 5.6 5.8 6.0
r (au. )

vs(r) =Cac—""

us(r) =Cse-"". (4.3b)

FIG. 3. Amdur-Malinauskas experimental potentials and the calcu-
(4 3a) lated eo(r) for the He-Hs interaction.

The correct values for the constants are

Co= 17 283, C2= 6485 m-double Ry,
z= 2.027(a.u. ) '. (4.3c)

TABLE V. Calculated He-H2 interaction energy. Energy given in
milli-double Ry. 82 bond =1.486 a.u.

r
(a.u.)

3.8
4.0
4.2
4.4
4.6
4.8
5.0
5.2

00

11.452
7.737
5.210
3.496
2.338
1.558
1.033
0.683

15'

11.021
7.446
5.013
3.364
2.249
1.499
0.995
0.658

30' 45' 60' 75' 90'

9.919 8.568 7.391 6.626 6.364
6.700 5.782 4.981 4.464 4-.289
4.511 3.887 3.346 2.998 2.880
3.026 2.605 2.240 2.008 1.933
2.024 1.739 1.492 1.339 1.294
1.349 1.157 0.989 0.888 0.862
0.896 0.767 0.651 0.582 0.568
0.595 0.506 0.424 0.375 0.367

In Table II we list the values of the functions (4.3a) and
(4.3b) evaluated for the various values of r. The fit is
seen to be quite good. From the preceding discussion, it
is seen that the He-H2 interaction energy may be
expressed quite accurately by the function

In order to obtain some idea of the accuracy of our
calculation, we compare our vs(r) with the spherically
averaged He-H2 interaction potential obtained by
Amdur and Malinauskas' from gas diffusion experiments
carried out below 350'K. They postulated several ana-
lytic forms for the potential and then determined the
parameters in these potential functions so as to obtain
the best fit to their data. In Eq. (4.5) we give the
parameters for the modified Buckingham exp —6 po-
tential determined by Amdur and Malinauskas in this
way; Eq. (4.6) expresses their result in the form of a
simple exponential function. They also obtained parame-
ters for a Lennard-Jones 6—12 potential, form eL(r /r)"
—2(r /r)'7, and for an inverse power of r function,
form D/r', but these will not be given in the present
work.

e -6 fr
Vr(r) = e~" "'r"&-~ —,r&~r~,x, (4.5a)

1 6/ot n — k r

r &r,, (4.5b)

where n=13.22, r =3.375 A=6.378 a.u. , e=14.76'K
=0.04678 m-double Ry, r, =point at which Kq.

V (r,v) = Coe "'(1+8Ps(cosy) 7,
5=0.375.

'A. P. Malinauskas, thesis, Massachusetts Institute of Tech-
4.4 nology Chemistry Department, 1962 (unpublished).
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TABLE VI. Vp and v2 vs r. Energy in milli-double Ry.
H~ bond =1.486 a.u.

causes us to look with great skepticism upon research
which uses this assumption as a starting point. ""

r
(a.u.)

Calculated
&p ln vp ln e2

Exponential 6t
&0 V2

VI. RESULTS FOR LENGTHENED H2 BOND

3.8
4.0
4.2
4.4
4.6
4.8
5.0
5.2

8.060 3.392
5.438 2.298
3.657 1.553
2.454 1.042
1.642 0.696
1.094 0.464
0.723 0.310
0.473 0.211

2.087
1.693
1.297
0.898
0.496
0.090—0.324—0.749

1.221
0.832
0.440
0.041—0.363—0.768—1.171—1.557

8.060 3.392
5.393 2.280
3.608 1.533
2.414 1.031
1.616 0.693
1.081 0.466
0.723 0.313
0.484 0.211

(4.5a) has its maximum value.

Us(r) = Qe (4.6)

where Q= 1.104X10 "K=3.499X10' m-double Ry,
X= 5.234 A ' = 2.770 (a.u. ) '. In Fig. 3 we plot our calcu-
lated vv(r) along with the Amdur-Malinauskas experi-
mental potentials gives above. The agreement is better
than one might expect from such a simple wave function
as the one we used.

U'(r, y) =Co'e "'"L1+O'Ps(cosy)], (6.1)

TABLE VII. ve(r)+vs(r)Ps(cosy) tit to interaction energy. Energy
in milli-double Ry. H2 bond =1.486 a.u.

The interaction energy was also computed as a func-
tion of r and y with the H2 bond length = 1.486 a.u. , a
little longer than the equilibrium distance. For this
small change in bond length, the value 1.166 for n, the
hydrogen 1S orbital screening constant, should still be
quite good and this was the value used. The procedure
was identical to that for the 1.406 bond length and the
results are presented in Table V. These results were then
fitted to the functional form of (4.1) and the values of vs

and v2 thus obtained listed in Table VI. The fit thus
obtained to the calculated interaction energy is given in
Table VII. The final analytic form obtained for the
interaction energy at this expanded H2 bond length is
given by

V. DUMBBEIL MODEL FOR THE POTENTIAL
r

(a.u.) 00 15 30' 45' 60' 75' 90'

It is interesting to see whether it is possible to find a
function f(x) such that the calculated interaction po-
tential may be represented by

(5 1)

If it were possible to do this, then we could say that each
hydrogen atom of the hydrogen molecule interacts more
or less independently with the helium atom and that the
hydrogen molecule interacts as if it were a dumbbell
made up from two hydrogen atoms on the end of a rod.
If the relation (5.1) does hold, we can easily find out
from our calculated interaction energy what the func-
tion f(x) must be, for if y=sr/2, p„=pb,and

f(p-) = s U(r, ~/2).

By considering the interaction energy listed in Table I
for y=90'as a function of p„,we find that f(x) should
be given quite closely by the simple function

f(x) =De v", —

D=8064 m-double Ry P=2.0345 (a.u. ) '. (5.2)

In Table IV we evaluate the dumbbell model expression
(5.1) for various values of r and p using Eq. (5.2) for
f(x) By comparing . Tables I and IV, we see that the
dumbbell model is not very good; it produces a potential
which is much more aspherical than the true potential
really is. The failure of the dumbbell model to account
for the true dependence of the interaction energy upon p

' R. Brout, J. Chem. Phys. 22, 934 (1954)."K.F. Herzfeld and T. A. Litovitz, Absorption and Dispersion
of Ultrasonic Waves (Academic Press Inc. , New York, 1959),p. 303.

3.8
4.0
4.2

4.6
4.8
5.0
5.2

11.452
7.737
5.210
3.496
2.338
1.558
1.033
0.683

11.111
7.506
5.054
3.391
2.268
1.511
1.002
0.662

10.180
6.875
4.627
3.105
2.077
1.384
0.917
0.604

8.908 7.636 6.704 6.364
6.013 5.151 4.520 4.289
4.045 3.462 3.036 2.880
2.714 2.324 2.038 1.933
1.816 1.555 1.364 1.294
1.210 1.036 0.908 0.862
0.801 0.685 0.600 0.568
0.525 0.446 0.388 0.367

VII. CONCLUSION

We have succeeded in calculating from erst principles
the interaction energy between a helium atom and a
hydrogen molecule. Although a relatively simple wave
function was used, no approximations had to be made
for the molecular integrals encountered, and the inter-
action energy was obtained for many configurations of
the three nuclei involved. The spherically averaged
results agree quite well with an interaction energy de-
termined by gas-diffusion measurements. It was
found possible to represent the calculated interaction
energy quite accurately with a function of the form
Ce ""L1+8Ps(cosy)$. It was shown that it is impossible
to represent the calculated interaction potential by a
dumbbell-type potential, i.e., f(p„)+f(pb, ) where f(x)
is some appropriate function. In the paper following, the

where H2bond =1.486 a.u. , Co'=16 666 m-double Ry,
tt'= 2.009 (a.u.) ', 5'=0.425. The biggest change upon
lengthening the bond is in the value of 8. This should
have been expected since this parameter represents a
measure of the asphericity of the molecule, and surely
the molecule becomes less and less like a sphere as it is
elongated.
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probability for rotational excitation upon collision be-
tween a helium atom and a hydrogen molecule is com-
puted using the calculated interaction energy.
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Inelastic Scattering from a Diatomic Molecule: Rotational Excitation
upon Collision between He and H& and H2 and H2$*
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The formalism developed by Arthurs and Dalgarno has been used in the distorted wave approximation to
calculate the inelastic scattering cross section for rotational excitation from the j=0 to the j=2 rotational
state in collisions between a helium atom and a hydrogen molecule or two hydrogen molecules. All necessary
computations were done with a digital computer, thus, allowing the Arthurs-Dalgarno formalism to be
applied with no added approximations. The interaction energy between He and H2 obtained in the preceding
paper was used for the He-H2 calculation while the interaction energy given by Takayanagi was used for
the H2-H2 problem. Values for the total inelastic cross sections are given as well as graphs for the He —Hm

di6erential scattering cross section. Incident kinetic energies up to only 0.25 eV in the center-of-mass system
were considered; for these low energies, vibrational or electronic excitation is impossible so that change in
rotational quantum number is the only inelastic process possible. The results obtained for the H2 —H2 cross
section do not agree with the rate of de-excitation from the j=2 rotational level in H2 gas as measured by
dispersion experiments with ultrasonic waves. The disagreement may be due to an incorrect H& —H2 inter-
action potential or failure to consider all important de-excitation mechanisms.

I. INTRODUCTION

HEN a diatomic molecule collides with another

~

~

~

~

~

~ ~

particle, atom, or molecule, inelastic as well as
elastic scattering may occur; the diatomic molecule
may undergo changes in any of the quantum numbers
describing the state of its internal coordinates. If ini-
tially the diatomic molecule is in its ground electronic,
vibrational, and rotational state, and we confine our-
selves to incident kinetic energies measured in the
center-of-mass coordinate system that are below the
energy necessary to excite the molecule to its erst
excited vibrational state, then the only energetically
possible inelastic process is change in rotational quan-
tum number. Under these conditions, fairly low-incident
energies, and no other competing inelastic process, it is
possible to compute the inelastic scattering cross section
from a rigorous quantum mechanical formalism and
only two approximations. The first approximation is to
treat the problem in the Born-Oppenheimer or adia-
batic approximation where the net eGect of the electrons

$ Supported by a grant from the National Science Foundation.
*This work is part of a thesis submitted by the author to the

Massachusetts Institute of Technology in partial ful6llment of
the requirements for the degree of Doctor of Philosophy in
physics.

f. Present address: Bell Telephone Laboratories, Murray Hill,
New Jersey.

is to provide a potential energy function of r, the dis-
tance measured along a line from the incoming particle
to the center of mass of the diatomic molecule, and y,
the angle between this line and the line joining the two
nuclei of the molecule. This approximation is surely
justified for low-incident velocities where the electrons
have plenty of time to readjust themselves as the col-
liding partners move towards their rendezvous. The
second necessary approximation is to use the method of
distorted waves'' to solve the coupled differential
equations which result from the Schrodinger equation
of the problem. For low-incident energies, it turns out
that the distorted-wave approximation is quite good.
The low-incident kinetic energies also make feasible the
use of a partial wave analysis of the problem. While this
is not an approximation, its use reduces the computa-
tions to solving ordinary differential equations, an easy
task for a digital computer.

In the present work, the general methods described
above are used to calculate the inelastic cross section
for rotational excitation of a hydrogen molecule from
the j=0 to the j= 2 state when it collides with either

' T. Wu and T. Ohmura, Quantum Theory of Scattering (Prentice-
Hall, Inc. , Englewood Cliffs, New Jersey, 1962), p. 219.

2 N. F. Mott and H. S. W. Massey, Theory of Atomic Collisiorls
(Oxford University Press, New York, 1949), Chaps. VI and
VIII.


