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course, the ultimate solution of this problem involves
the intrinsic mechanisms of A.S.R., which are not
known at present. Several reasons. for its coherency are,
however, as follows:

(i) The wavelength hardly changes.
(ii) The beam is comparatively sharp.
(iii) The glancing angle depends on the wavelength,

as expressed in Fig. 6.
(iv) A close relation to the coherent equiangular re-

Qection is found as shown in Fig. 8.

It is seen from Fig. 7 that o. has an important relation
to the periodic law. This fact leads to a presumption
that A.S.R. is different to some extent from the ordinary
Thomson scattering. The angles o. of the elements Au,

Ag, and Cu are large and occupy peak positions of the
curve in Fig. 7. From the fact that these three elements

all belong to Group I and Series b in the Periodic Table,
we can presume that A.S.R. has an important relation
to the valence electrons. In this case, the behavior of the
valence electrons on the surface of the material has to
be considered. No definite explanation seems to be
known so far as to what behavior the surplus valence
electrons on the surface have, and the measurement of
A.S.R. seems to offer a clue for investigating their
characteristics.
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A critical frequency for thermal fluctuations is calculated above which heat transport proceeds by wave

propagation rather than by diffusion. This phenomenon should occur in some dielectric solids. It is the

analog of second sound in helium II. A macroscopic point of view is used which relies upon a modification

in the Fourier heat equation. Some quantitative results are obtained on the magnitude of this modification.

l. INTRODUCTION

'

~ VER since the initial experiments of Peshkov''
~ exhibiting second sound in liquid helium, con-

siderable speculation and effort has been devoted to the
possible existence of this phenomenon is solids. This
effort has been stimulated, in the main, by those
theories' ' of second sound which depend only upon
the presence of a phonon gas. Since phonon gas excita-
tions exist in any solid, second sound should be de-

tectable in solids as well as in liquid helium. We propose
that thermal waves should, indeed, be detectable in

many substances but that there is a critical frequency
for the onset of the phenomenon. This idea is current
and has been elegantly presented by Prohofsky~ from
a microscopic point of view. Here we wish to relate the
idea, heuristically, to a well-known paradox of heat

' V. Peshkov, J. Phys. U.S.S.R. 8, 131 (1944).' V. Peshkov, in Report of an International Conference on F'Nnda-

mental Particles and I.om Temperatmres (The Physical Society,
London, 1947), p. 19.

s F. London, Superguids John Wiley 8z Sons, Inc. , New York,
1954), Vol. II, p. 101.

4 J. C. Ward and J. Wilks, Phil. Mag. 42, 314 (1951).
' J. C. Ward and J. Wilks, Phil. Mag. 43, 48 (1952).' R. B.Dingle, Proc. Phys. Soc. (London) A65, 374 (1952).
E. W. Prohofsky, thesis, ( ornell Vniversity, 1963 (un-

published).

transport and to derive some simple quantitative pre-
dictions on this basis. Our point of view is essentially
macroscopic.

2. THERMAL DIFFUSION

It is well known that the diffusion equation for
thermal transport results from the following two ele-

mentary considerations: The first is a statement of the
continuity equation for heat transport in the absence
of density or pressure gradients. This is given by

where C is the heat capacity per unit volume, 1is the
absolute temperature, q is the thermal heat current

density, t represents time, and V' is the spatial gradient
operator. If this equation is combined with the phe-

nomenological Fourier equation of thermal conductivity
for heat Row in a solid,

the diffusion equation results. In Eq. (2), E is the
thermal conductivity. But a much more physically
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intuitive picture of heat transport is obtained if, instead
of the conductivity E, we choose to think in terms of a
thermal resistivity,

The diffusion equation which results from the combina-
tion of (1) and (2) is the well known

3. MODIFIED FOURIER HEAT EQUATION

As has been pointed out by many people, ' "the dif-
fusion equation leads to an infinite propa, gation ve-
locity for a finite thermal pulse. Such a state of affairs
is clearly not physical and a number of explanations
have been proposed for the dilimma. One of these has
a long and venerable history"" and a clear physical
interpretation. The dilemma is resolved by noting that
the Fourier heat equation, (2), is an approximation to
a more exact equation

+@=—EV'T, —
Bt

(5)

' C. W. Ulbrich, Phys. Rev. 123, 2001 (1961).' P. Vernotte, Compt. Rend. 246, 3154 (1958)."C.Cattaneo. Compt. Rend. 247, 431 (1958)."J.C. Maxwell, Phil. Trans. Roy. Soc. 157, 49 (1867)."H. Grad, in Handblch der Physik, edited by S. Fliigge
(Springer-Verlag, Berlin, 1958), Vol. 12, p. 271.

where v. is a relaxation time.
Equation (5) is a truncated form of an extensive re-

lation which includes pressure and density spatial
variations and which may be derived from kinetic
theory in the case of an ideal gas. Such an equation was
obtained by Maxwell, " who, realizing the magnitude
of v appropriate to his problem, casually cast out the
time derivative term with a remark that it may be
neglected because "the rate of conduction will rapidly
establish itself. "He was certainly right for the case he
was treating. The more sophisticated and elaborate
treatment by Grad" also unearths the time derivative
term of Eq. (5) plus a number of other corrections to the
Fourier heat equation. All of the latter depend upon the
spatial variation of mechanical properties in the
medium. These extra corrections are not germane to
the matters which follow so we will ignore them here.
However, they must certainly be included in a careful
treatment dealing with a practical experimental situa-
tion. We restrict ourselves to a medium in which no
spatial pressure or density variations obtain.

It should also be remarked here that the modifications
to the Fourier heat equation which have been obtained
theoretically have been derived for ideal gases only and
not for the case at hand where the "gas" is that of
excitations (or phonons). Hence, Eq. (5) still retains,
somewhat, the nature of a hypothesis since it has not

been established generally either experimentally or
theoretically.

The physical significance of Eq, (5) is simple. It
states that there is a finite buildup time for the onset
of a thermal current after a temperature gradient is
clamped onto a specimen. The heat Row does not start
instantaneously but rather grows gradually with a re-
laxation time 7.. Conversely, if a thermal gradient is
suddenly removed there is a lag in the disappearance
of the heat current and Eq. (5) exhibits just such a
relaxation, whereas Eq. (2) does not. The relaxation
time r is associated with the communication "time"
between phonons (phonon-phonon collisions) for the
commencement of resistive fiow.

In fact, the rate 1/r must be connect:ed with thermal
resistance because v is the time for the establishment
of resistive flow. The rate 1/r refers to the frequency of
collisions of a "lossful" nature, i.e., those which give
rise to a thermal resistance. It is expected, therefore,
that r is proportional to E.

There is a total collision rate, 8, which is higher than
1/v. The rate E encompasses all types of collisions in-
cluding "lossless" ones which do not give rise directly
to thermal resistance. ""The total collision rate R
establishes an upper frequency, fit, for phonon-distri-
bution Quctuations, above which the concept of tern. -

perature loses its meaning. The thermal equilibrating
rate is of the order of E. This means tha, t the time 1/R
is that necessary to establish local thermal equilibrium.
This time is less than 7-, the time to establish steady
state resistive Qow. The temperature variations con-
templated here are less rapid than E but may be faster
than 1/r

4. THERMAL VfAVE3

If instead of employing Eq. (2) in combination with
(1) to obtain the differential equation for temperature,
one uses the more "exact" equation (5), the result is

(6)

and the temperature T is found to obey a dissipative
wave equation.

It is clear that Eq. (6) resolves the dilemma of infinite
propagation for a thermal signal. In fact, Eq. (6)
predicts a 6mite upper limiting velocity for the propa-
gation of a thermal signal. The limiting velocity, v, is
given by

and, indeed, the modification contained in (5) was
motivated by the need to produce just such a finite
"propagation" velocity. Also it is to be noted that

's J.M. Ziman, E&tsctrorts amd Phomorts iClarendon Press, Oxford,
1960), p. 289.

'4 P. G. Klemens, in Solid State Physics, edited by F. Seitz and
D. Turnbull (Academic Press Inc. , New York, 1958), Vol. 7, p. 4.
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Eq. (6) reduces, as it must, to the diffusion equation in
the limit of slow time variations of temperature.

The interesting aspect of Eq. (6) obtains in the high-
frequency limit of fast thermal Quctuations. If T varies
at a rate, f= (1/2~)(1/T)(BT/Bt), much faster than
f,=1/2n. r, then Eq. (6) predicts wave propagation of
temperature instead of diffusion. The frequency f, is
the critical frequency for the onset of thermal waves.
This frequency is directly proportional to the thermal
resistivity. It is zero if the thermal resistivity is zero.

S. EVALUATION OF e

The interesting and important question about the
foregoing concerns the value of ~. This is the crucial
parameter. It determines the critical frequency and
the attenuation of the "thermal wave. " It is at this
point that our discussion diverges from the previous
work of Ulbrich and Vernotte. We evaluate 7 quanti-
tatively on the physical grounds that the square of the
thermal wave propagation velocity v' must be just one
third of the square of the phonon velocity, s', in the
medium.

This. of course, is only true for a medium in which the
transport of heat occurs via the phonon gas. It may not
be true, for example, in an electrical conductor. It
would obtain though for an insulating solid or for a
Quid.

The deduction of Eq. (8) is based on the following.
The thermal wave (f) 1/2~v) constitutes a coherent
propagation of density disturbances in the phonon gas.
This is what one would mean by a temperature wave.
And this is precisely the description used for the case
of second sound in liquid helium II. Now, the limiting
velocity of propagation of second sound (low-tempera-
ture limit) has been calculated theoretically on just this
notion of the transport of a phonon density disturb-
ance. ' ' Ward and Wilks" were the first to calculate
the velocity of second sound with this model in place of
the two-Quid one used by Landau. "Their result was
the same as Landau's and is that exhibited in Eq. (8).

Equation (8) can be understood physically in the
following manner for the case of liquid helium. The
phonons may be viewed as a gas of particles, each of
which moves with the same speed s. (We limit ourselves
here, of course, to an idealized elastic medium which is
dispersionless. ) The phonons move in random direc-
tions, however. Therefore, the average root mean square
velocity of a group of phonons in any one particular
direction is

w=s v3.

"L.Landau, J. Phys. U.S.S.R. S, 71 (1941).

This results from the combination of

ss —s s+s s+s s

with
sx av= sy av= ss a,v= &

In particular, an energy disturbance in the phonon gas
is carried with this mean velocity, n, in the direction of
propagation of the disturbance. The forgoing is not
meant to constitute a proof of Eq. (8) but merely a
physical view of it. Perhaps the clearest and most de-
tailed derivation of Eq. (8) is given by London' in a
section of his book entitled "Compression Waves of the
Phonon Gas." There, following Ward and Wilks, he
introduces the average momentum current density
tensor which yields the factor -,'in exact analogy to
Eq. (10) and for the same reasons.

The connection to the case of solids is simply that a
thermal wave represents the same microscopic phe-
nomena whether it exists in He II or in a solid. A ther-
mal wave is the propagation of a phonon density dis-
turbance. Hence, such a wave should always propagate
with a velocity, v, related by Eq. (8) to the sound
(phonon) velocity, s. Indeed, the implication that
second sound should exist in solids, since its appearance
depends merely upon the presence of a phonon gas, was
remarked upon by Ward and Wilks in their paper4 and
speculated upon by Peshkov' in his. However, no note
was taken of the fact that there is a critical frequency
for the onset of the phenomenon. For liquid He II this
critical frequency is zero, but for other substances it is
given by

6. CONCLUSION

A quantitative estimate of the relaxation time 7 in
terms of known and measurable macroscopic parame-
ters has been obtained Lcombination of Eqs. (7) and

(8)3
3 E
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And the connection to second sound or thermal wave
propagation has been indicated with the result that
there is a critical lower frequency, f„given by Eq. (11),
below which thermal wave propagation will not exist.
As noted earlier, there is also an upper frequency limit

f~ above which the concept of temperature becomes
hazy and again thermal waves will not exist.

With regard to the magnitudes involved and the
practicality of detecting second sound in solids it should
be mentioned that certain alkali halides —especially
KCl—look promising if the experiment is carried out
at low temperatures. Ke are undertaking experiments
presently to detect the efrect.


