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as Ge. As we mentioned above, our resonant mechanism
scatters longitudinal phonons more strongly than
transverse phonons and, hence, the depression in Q„ is
smaller for the latter. In addition, the "transverse
phonon" depression will occur at a higher temperature

than that found for longitudinal phonons t mainly due
to the substitution of v, for t7P in (5.22)]. Since
phonon-phonon scattering is dominant at these tem-
peratures, the bound electron-transverse phonon inter-
action is negligible for a second reason.
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An expression is derived for the change in frequency of the lattice vibrations in a metal caused by the
interaction of the phonons with the conduction electrons. The various factors aGecting the magnitude of
these Kohn anomalies are considered, and a connection is made with the value of the electrical resistivity
of the pure metal. The valence of the metal is found to be the most important factor determining whether
such anomalies should be observable. The results of the calculations are applied to Pb, and give good
agreement with experiment.

Dt'rRODUn'rom
' T has been pointed out by Kohn' that the interact. ion

- of the conduction electrons in a metal with each
other and with the vibrations of the crystal lattice
should cause anomalies in the phonon spectra of metals.
In particular, it has been suggested that the group ve-

locity of phonons of wave number q will exhibit a
logarithmic singularity whenever

q=2kr+g,

where kr is the wave number of an electron at the Fermi
surface, and g is a vector of the reciprocal lattice. There
is, at the time of writing of this paper, some controversy
as to whether these anomalies should be observable
experimentally. While evidence for such behavior has
been found by Brockhouse et at.' in their investigation
of the lattice vibrations of lead, Harrison' has suggested
that this rejects the form of the electron dispersion
relations rather than being directly due to the electron-
phonon interaction in the way envisaged by Kohn. It is
the purpose of the present work to calculate the expected
magnitude of the Kohn anomalies in various metals
in a more quantitative way than has hitherto been
attempted.

A previous calculation of the magnitude of this effect
is due to Woll and Kohn4 who adopted a semiclassical

approach to the problem of calculating the vibration
frequencies of a lattice of point charges in a sea of
interacting electrons. Their method is a simplification

*Magnavox Research Fellow.
' W. Kohn, Phys. Rev. Letters 2, 393 (1959).
~B. N. Brockhouse, K. R. Rao, and A. D. B. Woods, Phys.

Rev. Letters 7, 93 (1961);B.N. Brockhouse, T. Arase, G. Caglioti,
K. R. Rao, and A. D. B. Woods, Phys. Rev. 128, 1099 (1962),

~ W. A. Harrison, Phys. Rev. 129, 2512 (1963).' E, J. Woll, Jr. , and W. Kohn, Phys. Rev. 126, 1693 (1962).

of Nakajima's' quantum-mechanical calculation and is
essentially a Hartree method which considers only terms
of first order in both the electron-electron and electron-
lattice interactions. However, while it is very satisfying
to be able to calculate the required quantities from first
principles, one cannot have complete conMence in a
calculation that neglects electron correlation. A more
serious criticism arises when it is pointed out that the
result givenby these authors contains terms that involve
the product of parameters describing both electron-
electron and electron-lattice interactions. Because the
Hamiltonian is diagonalized only to first order in each,
the validity of such terms is clearly in doubt, and in
fact does, as we shall see, lead to contradictions.

The eRect of the intera, ction of the electrons is to
attenuate the Kohn anomalies. In the Hartree approxi-
mation, this attenuation is quite large; this is, however,
an overestimate of the signi6cance of these interactions,
and is considerably reduced by the eRect of the lattice
potential on the electron wave functions,

We can separate the amplitude of the Kohn anomalies
into two parts: The first part is due to the second-order
corrections to the phonon energies caused by the elec-
tron-phonon interaction; the second part, which we
describe by an attenuation coefficient, n, arises from the
presence of in6nities in the derivative of the matrix
element for the interaction itself. No attempt is made in
this paper to calculate o., although some of the factors
affecting its magnitude will be discussed. The calculation
of the direct eRects of the interaction is a matter for
greater confidence, for here we may have recourse to
experiment. The electrical resistivity of pure metals is

S. Nakajirna, Busseiron Kenkyu, 65, 116 (1953). More ac-
cessible are the summaries of his work given by G. V. Chester,
Phil. Mag. Suppl. 10, 357 (1961) and in Ref. 10.
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calculated directly from the strength of the electron-
phonon interaction, and it is possible to invert these
formulas to obtain an average value for the relevant
matrix elements. These matrix elements of course con-
tain all the correlation effects.

GENERAL FORMULA

We shall now derive an expression for the lowest order
term in the change in frequency due to the electron-
phonon interaction. We start by considering a gas of
independent quasiparticles (we shall refer to them as
electrons) interacting with the phonon field of a crystal
lattice, and calculate the change in energy of the
phonons by elementary perturbation theory in a similar
procedure to that of Frohlich. Here is a catalog of some
of the quantities we shall need: k crystal momentum of
an electron; h& energy of an electron; v&

——8 8/ABk elec-
tron velocity; fk occupation number of state k; kr wave
number on the Fermi surface; m electron mass; e elec-
tron charge; k Boltzmann constant; g reciprocal lattice
vector; q phonon wave number; e~ average phonon
occupation number; T absolute temperature; O~ Debye
temperature; P valence; p electrical resistivity; o den-

sity; Q Debye cutoff wave number; 1Vp Avogadro's
number; A atomic weight; 8 Kronecker delta-function;
cp phonon frequency; M(k, k', q) electron-phonon matrix
element; V volume of crystal; her change in phonon
energy; p~, p2 radii of curvature of the Fermi surface;
~, velocity of sound; By Fermi energy.

The matrix element for scattering of an electron from
k t.o k' by the absorption of a phonon q isr

M(k, k') = (Ae, /2MÃVpp)' '8(k', k+q+g) J(k&k'),

where for any given metal the function J(k,k') depends
only on the wave functions of the electrons. The change
in energy of the phonon state q due to this interaction is

)m(k, k') (s
n.,AA(p= P — fj,8(k', k+q+g) . (2)

»&' bg —fSgr —ACV

The gradient of this quantity with respect to q displays
a logarithmic infinity at values of q close to those given
by Eq. (1), when for certain terms in the summand the
energy denominator becomes small. We note that so
far we have not treated the electron interactions ex-

plicitly; they have simply been absorbed into the matrix
element for the effective interaction.

At zero temperature, the occupation function fb is
equal to unity inside the Fermi surface and zero outside.
The summation is then simply performed for phonon
wave numbers near those at which anomalies occur. We
consider two points, A and 8, on the Fermi surface
where the electron velocities, v and vb, are parallel,
and where the principal radii of curvature of the surface

FIG. 1.Any two points
on the Fermi surface
where the electron ve-
locities are parallel may
give rise to an anomaly.

at A are pi and ps (Fig. 1).Let the vector AB be qp, the
angle between v and qo be 8, and consider the value of
expression (2) for a phonon of wave number q= qp+5q,
where 6q and qo are parallel. When Sq is small, we may
write

h(kb) = $(k.+qp) = h(k.),
h (k.+ teak) —h (kb+Sq+Sk) = A (v.—vb) ~ Sk—A vb. hq.

Then,

fs k

s bs —hs+, aApp» (V.—Vb) ~ Sk—Vb Sqacp,

Assuming that the matrix element and electron ve-
locities are slowly varying, we can 6nd the contribution
of states near A to the summation by integration over a
paraboloid with vertex at A. It is found to be

—V qg, sec0
(pips)"'- cos88q ln 8q&

2prsA (V Vb)s—
I Zrb

This expression applies to all shapes of electron Fermi
surface; for a surface containing holes the sign is re-
versed, since eb must be counted negative. It is valid
provided

~
v, —vb ~, pi ', ps ' differ from zero; otherwise

the order of the inlnity in the group velocity of sound
is raised. '

At a finite temperature T, the occupation function
f& is described by Fermi-Dirac statistics. The integral
leading to expression (4) is then modified, and the
logarithmic term becomes approximately

qpn, sec8 kT sec8( 1 1 )
ln 8q& — —+

~

—+—
~

Pb A

The group velocity of sound no longer tends to infinity
as q tends to either of its critical values, but to lnT. It is
roughly constant over a range of q of 2kT/An cos8.
Finally, we add the contributions of the terms with
positive and negative signs —that is, we add the
anomalies due to phonon absorption and emission.

' H. Frohlich, Proc. Roy. Soc. (London) A215, 291 (1952).
7 J. M. Ziman, Electrons and Phonons (Clarendon Press, Oxford,

England, 1960),pp. 364, 182, 358.

This has also been shown by diQerent methods by A. M.
Afanas'ev and Yu. Eagan, Zh. Eksperim. i Teor. Fiz. 43, 1456
(1962) Ltrsnslstion: Soviet Phys. —JETP 16, 1030 (1963)).
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When the phonon energy is of the order of 2k T, the two
kinks in the dispersion curve merge to give a single
region over which the group velocity is proportional to
lnT. Since most experimental determinations of phonon
spectra by neutron or x-ray diBraction are performed at
room or liquid-air temperatures, which are of the order
of 0, the two anomalies will not generally be resolvable.

FIG. 2. The construc-
tion to find DCLu. 0 is
the estimated center of
the kink and I' is any
point on the curve.

MAGNITUDE OF THE ANOMALIES

As we remarked in the Introduction to this paper, it
is the same matrix element as occurs in the theory of the
electrical resistivity of pure metals that appears in
Eq. (2). For an isotropic metal, the Bloch theory of
electrical conduction gives the following relationship at
high temperatures between p and a certain average of
the matrix element. :

i%(k,k')
i
' Se%'krp p

0

e~kco 3~m-'V 4k T

Let us define a number C as the ratio of the actual value
of expression (4) to it.s value in a free-electron model—
that is, we put

(4A/I ) (ptps) ""Lvp/ (v,—v p)' J cos8 =C.

factor D, i.e., putting

D= (e'AN p/mmk) (p'o .
p/A T),

we have finally

D~/(o =DCLn (oq/Q) ln
( bq (

.
The order of magnitude of D gives us a very good idea
of whether a kink will be observable in any given metal.
Values of this parameter for some common metals are
given in Table I. It is to be seen that the valence, enter-
ing as it does to the third power in the definition of D,
is the dominating factor. We also note how much greater
the coefficient is for Pb than for Al.

The meaning of the set of coefficients DCLcx in the
interpretation of experimental results may be illustrated
very simply. It is a property of functions of the form

Expression (4) is then equal to approximately

—(CVm/Sm'5') 8q in
I 5q (6)

and we can combine relations (2), (5), and (6) to give

. that
y(x) = ax ln(bx)+ex,

x '(y —xdy/dx)=a,

AM e'ItNp p'o-p bq
C—lniaq[,

cp prmk A T Q
(7)

where an extra factor of 2 is included to allow for both
phonon emission and absorption. This tells us what the
relative shift of the phonon frequency in a metal would
be if (a) the Fermi surface were spherical, so that C was
equal to unity, (b) the matrix element were independent.
of q, and (c) electron interactions could be ignored. In
a real metal, none of these will be true. We introduce a
coeKcient I. to describe the ratio of the actual matrix
element M(q)—assumed now to be independent of k
and k'—to the average 37 used in expression (5), that is

M(qp) =LM.

A further coefficient, a, to be discussed in the next
section, is also introduced to describe the e8ects of elec-
tron interactions not already included in 3f. Swallowing
the remaining constants of Eq. (7) into a dimensionless

whence it is clear that in the construction of Fig. 2 the
gradient of OA is equal to u and is independent of the
position of I'. This provides a simple means of testing
whether a kink in an experimental dispersion curve has
the appropriate form to be considered a Kohn anomaly,
and, if so, of evaluating the factor DCI.e.

EFFECTS OF ELECTRON INTERACTIONS

Equation (2) describes the phonon frequencies in
terms of the matrix element for scattering of inde-
pendent quasiparticles. If we were to start with a set of
interacting electrons in Bloch states, we should need to
known the transformation by which the matrix element
M(q) of the quasiparticle gas could be derived from that
for the Bloch electrons Mp(q). Such an expression has
been given by Bardeen, ' and an essentially similar one
by Nakajima, ' who finds

r f
~k k+ q&~

TABLE I. Values of the quantities p, ~, and D for various metals. where p(q) describes the electron interact, ion. pre write
this as

Ag Al Pb Sn ~(q) =~p(q) (&+0)-'.
1 1
0.97 9.0
0.28 0.38

1
10.5
0.20

3
2.7

13
11.3

115

4
5.8

55
Because the summation is the same as that of expression

' J. Hardeen, Phys. Rev. 52, 688 {1937).



(3), the matrix element for the quasiparticle gas has the
same rapid variation near qo as has the frequency shift
itself, and the magnitude of the kink is correspondingly
diminished. In the limit of small interaction constant,
this term enters the frequency shift as a factor (1—2P).

This result is inconsistent with that of Nakajima,
who calculates that the frequency shift contains a term
of only (1—P) in. the same limit. It is simply seen—by
examining for instance, the steps from Eqs. (2.4) to (2.5)
ln Rcf. 4—that this (4Kculty ls duc to neglect of terms
of order PM at all steps in the calculation save the last.
It is thus dificult to estimate the magnitude of the co-
efBcient 0. which describes these effects, because of un-

certainty in both the validity of the Hartree approxima-
tion and the accuracy of the formalism in which it is
used. Bardeen and Pines" have estimated using a collec-
tive description of the interactions that Nakajima's
method is valid whenever q(k„ the cutoff wave riumber
for plasma oscillations. At greater wave numbers ex-
change terms may enter, reducing the effect of the elec-
tron interactions. The presence of the lattice potential
also reduces the difference' between the long- and
short-wavelength values of M(q).

A simple form for 3IIs(q) is given by the rigid-ion
approximation, "which predict:s that Ms(q) is initially
constant but begins to decrease rapidly as q becomes
greater than Q. Electron interactions reduce its value for
small q to something which depends on the Bloch
character of the electrons and which is zero for free
electrons. Presumably the Bloch character is most pro-
nounced, and, hence, the effect of electron interactions
least observable, in those metals in which the electron-
phonon interaction is strongest, and in which the Kohn
anomalies are consequently most likely to be observed.
With this justification, and because we know so little
about the magnitudes involved, we shall, in what
follows, ignore the effects of electron interactions,
putting n equal to unity.

GEOMETRICAL CONSIDERATIONS

We can distinguish three separate cases in which
Eq. (2) predicts that in principle an anomaly will occur:

FIG. 3. . For a
multiply connected
Fermi surface, there
may be many differ-
ent situations in
which anomalies can
occur.

'4 J. Sardeen and D. Pines, Phys. Rev. 99, 1140 (1955)."R f. 7, p. 185.

(i) A and 8 equivalent points In. this case expression
(4) simplifies, since v, = —vs and 8 is zero. This is the
situation envisaged by Kohn in which the effect occurs
for a phonon that spans the Fermi surface;

q 2kf+g.

(ii) A and 8 nonequivalent points in the same band
When the Fermi surface is everywhere convex, there
can clearly be no two nonequivalent points where the
electron velocities are parallel. For a multiply connected
Fermi surface, however, this is not the case, and there
may be many different points on the Fermi surface
where the electron velocities are parallel (Fig. 3). When
there is a minimal amount of symmetry in the crystal
structure, such points occur in pairs and there may be
some cancellation between them.

An important point about such transitions as these is
that the electron velocities on the two parts of the Fermi
surface may be parallel rather than antiparallel. In the
schematic diagram of a section of the Fermi surface of
Cu shown in Fig. 3 for instance, the point A is on the
"belly" of the surface while 82 is a saddlepoint situated
on one of the "necks." In this case, (vb —v,) ' will be
larger than either nb

' or v ' and the factor C may be
much greater than unity. In the model of nearly free
electrons" which was used elsewhere, " C for Cu was
found to be roughly equal to 4. This is insufficient to
counteract the effects of the low value of D given in
Table I, and to render the anomaly observable.

(iii) A and 8 in diferent bands The geo. metrical
factor C for such transitions may be large for the same
reasons as in case (ii). However, anomalies may not be
present in certain crystal directions if the matrix element
connecting these states falls to zero or is small. It is
commonly true, especially in divalent metals, that when
electron and hole surfaces coexist they lie very near to
the boundaries of the Brillouin zone. As is well known,
states that are actually on the zone boundary possess
definite symmetry characteristics. The electron-phonon
interaction is consequently incapable of causing transi-
tions between states that are on the same zone boundary
but in different bands. Since phonon spectra are nor-
mally measured along symmetry directions, anomalies
may frequently be absent where they might otherwise
have been expected.

There is one further situation in which the effect
vanishes for reasons of symmetry. That is when the
wave number at the Fermi surface happens to be equal
to one quarter of a reciprocal lattice vector. There is
then a positive anomaly superimposed upon a negative
one of equal magnitude, and no net kink is observable.

APPLICATION TO Pb

Lead is of especial interest, both because the coeS-
cient D is so large for this metal and because the phonon

's N. F. Mott and H. Jones, Metals amd A/toys (Clsrendon Press,
Oxford, England, 1936), p. 59.

'3 P. L. Taylor (to be published).
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spectrum and Fermi surface have been the subject of
careful experimental investigation. It is thought to
contain four conduction electrons per atom, forming a
Fermi surface consisting of a simple hole surface in the
second zone and a multiply connected electron surface
in the third zone. '~" A section through a (110) plane
is shown in Fig. 4, based on the application of the model
of nearly free electrons to Gold's data" on the de Haas-
van Alphen effect. We shall attempt to show that such
a surface is fully compatible with the phonon spectrum
in the L110j direction determined by Brockhouse et ul. '
from neutron scattering experiments and, hence, also
with Paskin and Weiss'results from x-ray experiments. "

On a surface as complex as that proposed by Gold,
there will be many different pairs of points which might
cause anomalies. However, it has been estimated by

FIG. 4. A section in a (110) plane through the Fermi surface
of lead. The broken lines are the free-electron surface and the
solid lines a proposed surface.

that author that the portions of the surface of which
Fig. 4 is a section are close to being cylindrical in shape.
One of the radii of curvature appearing in the expression
for the coefficient C will then be large, and we may ex-
pect these regions to dominate the effect. Figure 5 shows
on the same scale the lengths of wave vector in the
$110J direction at which anomalies may be expected on
the basis of this model together with a rough estimate
of their relative magnitudes, calculated using a nearly
free electron model. For the reasons of symmetry dis-
cussed earlier, transitions cannot occur from regions a

"A. V. Gold, Phil. Trans. Roy. Soc. (London) A251, 85 (1958)
and Phil. Mag. 5, 70 (1960).

"W. A. Harrison, Phys. Rev. 118, 1190 (1960).
"A.R. Mackintosh, Proc. Roy. Soc. (London) A271, 88 (1963).
'r J. A. Rayne, Phys. Rev. 129, 652 (1963).
' A. Paskin and R. J. Weiss, Phys. Rev. Letters 9, 199 (1962).
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FIG. ~. The positions at which kinks in the phonon spectrum
in the! 110$ direction are predicted, with a rough indication of
their magnitude. The positions are marked in units of 0.1(2~/o).
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"B.N. Brockhouse et al. , (Grat Ref. 2), in a paper which makes
some general comments similar to those presented here on the
magnitude of anomalies, has attributed this kink to transitions
a —f.This cannot be correct, since such transitions could lead only
to a downward anomaly.

and f to b, c, d, or e, and the transitions from b to d are
largely cancelled by those from c to e. Because u and f
are a large distance from any zone boundary, umklapp
processes are unlikely to be able to cause any transitions
between them. The large distance between these points
also means that 3f(q) will be small, and so the value
of I. for these transitions is correspondingly small.

A comparison of Fig. 5 with the experimental phonon
dispersion curve (Fig. 3 of first Ref. 2) shows that a
satisfactory agreement has been obtained. There is a
large kink at q~0.4(2s/a) which can be accounted for
by the combined effects of the transitions b —c, c—d, and
d—e, and an upward anomaly at q 1.24(2m/u) which
coincides with the position predicted for transitions
b —d."The uncertainty with which the radii of curva-
ture in the plane perpendicular to that of Fig. 4 are
known makes a comparison of the magnitude of the
kink with the theoretical prediction dificult; there is,
however, no obvious inconsistency.

It thus seems reasonable to suppose that Kohn
anomalies are experimentally observable, in certain
metals at least, and that the drastic reduction in the
effect, suggested by Woll and Kohn, need not always
occur. It is perhaps also worth noting that this effect is
rare among Fermi surface tools in being capable of
distinguishing between electron and hole surfaces.


