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The scattering of phonons from donor electrons in germanium is computed and applied to the problem
of heat conduction below the low-temperature maximum. The effective-mass approximation is used for the
electronic wave function. The calculation is analogous to that of the dispersive scattering of light by
atoms. Since the ground state is split into a singlet and a triplet with a separation of energy within the
thermal phonon distribution, anomalous effects due to resonance scattering occur. Apart from these, our
results are similar to previous work by Keyes. Taking into account the boundary and isotopic scattering as
well as the electron-phonon interaction, excellent quantitative agreement with thermal conductivity data
is obtained, with no adjustable parameters, for Sb and As donors in Ge. Certain discrepancies at higher
temperatures can be traced to the inadequacy of the effective-mass approximation. In addition, anomalies
in the "phonon drag" thermoelectric power can be understood on the basis of our theory. A by-product
of our calculation is the lifetime broadening of the triplet state. The slightly different case of n-type Si is
worked out while a more qualitative treatment of our resonant scattering mechanism is given for p-type
semiconductors and samples under uniaxial strain.

I. INTRODUCTION

'HE lattice thermal conductivity of doped semi-
conductors is unusual in several respects. ' '

First of all, the depression in conductivity below the
low-temperature nmaximum ( 15'K) is quite sub-
stantial for dilute concentrations of impurity atoms.
Secondly, the temperature dependence of the thermal
conductivity coe'.fcient E(T) in this region is often
"anomalous, " e.g., E(T) sometimes varies as T' down
to the lowest temperatures reached (0.3'K for p-type
Ge, 1.3'K for n-type Ge). As is well lu'own, '—' such a
temperature dependence implies that the effective
scattering rate increases with increasing phonon wave-
length. The usual scattering mechanisms do not exhibit
such a behavior. Further, the thermal conductivity of
doped Ge is unusually sensitive to strains. "Finally, as
a function of temperature, E(T) sometimes exhibits
wiggles. ' In this paper we shall limit ourselves mainly
to donor impurities in Ge and their effect in the liquid
helium (and slightly above) temperature range.

Substantial progress toward the understanding of
these phenomena has been made by Keyes. ' For
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impurity concentrations sucticiently low (& 10" cm '),
the impurity atoms may be regarded as independent
scatterers. Keyes calculates the phonon scattering by
the bound electron in the following way. The ground
state of Ge, fourfold degenerate in the effective-mass
theory, is split into a singlet and a triplet by the valley-
orbit interaction. These levels are split" hy a very small
amount, the "chemical shift" 4A. The energy change of
the electron in the presence of strain is, therefore,
substantial. The energy due to a static strain is propor-
tional to the square of the strain. Thus, if one uses this
static expression as an interaction Hamiltonian for the
phonons, the low-frequency scattering is proportional
to co', where co is the circular frequency of the phonon.
There is an additional source of co dependence in the
matrix elements: If the wave vector of the final phonon
has a magnitude greater than the reciprocal of the mean
radius ro of the localized state, the interaction is small.
The form of the single-mode relaxation time r (1/v. is
proportional to the scattering cross section) found by
Keyes is

in the usual acoustic approximation ro = kc, c some
average velocity of sound. When h increases past 1/rs,
the scattering dies off very quickly. It is this cutoff
which Keyes proposed as an explanation of the steep-
ness of slope of the conductivity curve below the
maximum.

Now, one expects the static interaction to provide a
good description of the scattering only when the
phonon frequency is small compared to the charac-
teristic frequency with which the electron wave function
adjusts to the perturbation. In our problem this
characteristic frequency is 4h. It happens that 4A lies
within the range of heat conduction, e.g., for Sb in Ge,
4A is 6.6'K. Therefore, a more accurate theory is called

' P. J. Price, Phys. Rev. 104, 1223 (1956).
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for to describe properly the dynamic response of the
electron. In a previous paper, ' one of the authors
compared the scattering of phonons by donor electrons
to the well-known problem of the scattering of light
from atoms. "The electron-phonon interaction induces
virtual transitions of the bound electron to higher
excited states. This analogy and the fact that 4A lies
within the energy range of heat conduction makes
obvious the fact that resonance scattering of phonons
will be significant in the experiments of interest. We
have then only to modify the usual theory" of resonance
fluorescence for the problem at hand. For low fre-
quencies (5"«46), our results agree with those of Keyes
apart from some inessential angular factors and some
different approximations. Besides providing a more
accurate description of the scattering process, we
believe our description of the mechanism is physically
more perspicuous than that of Keyes. '

The occurrence of resonances is also significant in
understanding the occurrence of the anomalous tem-
perature dependence mentioned in the first paragraph.
The idea is based on a very general result, proposed"'
by one of the authors as an explanation. for such
anomalous slopes in E(T). Crudely speaking, for the
long wavelengths of interest, one need consider only
S-wave scattering (neglecting complications due to
polarization and anisotropy) so that the scattering
cross section o is of the form 4'(sin'3)k ', where 3 is the
phase shif t and k the phonon wave number. As k

increases through the resonance value, 6 goes rapidly
through 90' and then varies slowly as k is increased
further. If 6 were a constant, for example, then (T cc k

—',
giving rise to a characteristic T' dependence for E(T).
More generally, one can only say that the scattering
decreases as k increases above the resonance value, and,
hence, the E(T) is steeper than T" in the corresponding
heat conductivity region. Practically speaking, for the
present problem the resonance is numerically important

ointly if it occurs at a frequency around the critical value
(=c/re) at which the cutoff discussed by Keyes' occurs.
It is, therefore, more important for Sb in Ge than for
As in Ge. These remarks will become clearer later on.

There are many other scattering mechanisms which
compete with the one described. It is essential to
include boundary and isotope scattering, of course. At
high concentrations (-10" cm') where overlap
between bound-electron wave functions becomes large,
the impurity states probably merge with the conduction
band as discussed by Ziman. ' "Even at lower concen-
trations, impurity conduction may occur by the hopping
of electrons from occupied to unoccupied localized
states. This may occur due to the localized fields
produced by nearby ionized impurities or to the
"resonance" jumping between two sites sharing one

"W. Heitler, Qmaflm Theory of RaChafson (Oxford University
Press, London, 1954), 3rd ed. , Chap. 5.

"P. Carruthers, Bull. Am. Phys. Soc. 7, 16 (1962).
' J. M. Ziman, Phil. Mag, 1, 191 (1956).See also Refs. 4 and 5.

electron, as in a hydrogen molecule. ""Ke believe
that these involve negligible phonon scattering com-
pared to our single donor electron mechanism. At very
low temperatures (&1'K) where our mechanism
becomes ineffective, it is possible there is some new
scattering process.

The influence of some other quite different processes
may be remarked upon here. The strain-held scattering
due to the modification of the elastic force constants
via the anharmonic forces can be estimated according
to the methods of I. One calculates the displacements
induced by the polarization due to the extra electron.
The result is very similar to Eq. (1.1), but much
smaller in magnitude. The scattering due to the mass
difference of the impurity is very small in Born approxi-
mation. " However, when resonances occur in the
continuum, as found by Brout and Visscher'7 for a
particular case, the scattering is no longer negligible.
We would like to call attention to the important work
of Lifshitz, reviewed by Lifshitz himself in Ref. 18.
This work, which contains implicitly the results of
Refs. 16 and 17, has been unaccountably neglected.
Another obvious source of scattering is the phonon
modulation of the hyper fine coupling of the donor
electron to the impurity nucleus. However, calculation
shows this scattering to be very much weaker than that
due to the electron-phonon interaction considered in
Sec. III Lsee Eq. (3.20)]. Denoting the Fermi contact
term by A I s, the relative strength of the two processes
is S(EP)/S(EIF) = [24/1(I+1)j(46/A)' for O'K (this
holds for both Ge and Si). In general, 4A))A and, thus,
the hyperfine interaction may be neglected.

The calculation of the heat Aow is subject to well-
known coTnplications, ' ' even when the scattering cross
section is known. We use Callaway's semiphenomeno-
logical formulation of the problem. " We obtain es-
pecially good quantitative agreement with no adjustable
parameters in the region where our theory should be
most reliable, i.e., near the temperature at which
electron-phonon mechanism is most effective. The
special effects of the true resonances are of particular
interest. We find that as the temperature is decreased
from 1'K to about 0.5'K, the thermal resistance should
decrease abruptly for Sb in Ge. For As in Ge, the data'
show a dip at about 7'K, just about where we would
expect the true resonance scattering to occur. Un-
fortunately, other mechanisms (boundary and isotope
scattering) dominate at these temperatures due to the
rapid cutoff of our mechanism. Thus, the resonance will
be extremely narrow and is di%cult to detect. This
cutoff factor varies extremely rapidly I-= exp( —2k'rs') j
as can be seen from Eq. (1.1) and so the result is quite

I. C. Pyle, Phil. Mag. 6, 609 (1961)."A. Miller and E. Abrahams, Phys. Rev. 120, 745 (1960)."P.G. Klemens, Proc. Phys. Soc. (London) A68, 1113 (1955)."R.Brout and W. Visscher, Phys. Rev. Letters 9, 54 (1962).
I. M. Lifshitz, Suppl. Nuovo Cimento 3, 716 (1956).

'9 J. Callaway, Phys. Rev. 113, 1046 (1959).
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sensitive to the approximations used for this factor.
We believe that the result we obtain, that the resistivity
dies off a little too rapidly as the maximum is ap-
proached, is partly due to a poor approximation for
this factor. One other important source of resistance
in this region is the normal three-phonon process.

To summarize, we have found excellent experimental
agreement somewhat below the maximum by consider-
ing the scattering to be due to three processes: boundary
scattering, phonon scattering by bound electrons, and
isotopic scattering present in naturally occurring
germanium. Near the maximum the resistivity is
largely due to the isotopic scattering. We predict that
E(T) will be much steeper (T', for example) in the
corresponding region for an isotopically pure crystal.
Such experiments would be very sensitive to deviations
from the effective-mass theory wave functions (Sec. IV).

In Sec. II, we briefly review the corrected effective-
mass approximation" used to describe the shallow
impurity states and then, on the basis of the usual
adiabatic approximation, discuss the matrix elements
for electronic transitions between the singlet and triplet
states with absorption or emission of one phonon. We
have used Hasegawa's results. " Implicit in our whole
discussion is that 4A is large enough so that the donor
electron-phonon interaction may be considered as a
small perturbation causing transitions between the
singlet and triplet. The matrix elements found are
consistent with this assumption. We do not consider
in any way the (presumably small) spin-orbit inter-
action as a correction to the intervalley splitting.

In Sec. III, we calculate the phonon scattering
amplitude for virtual electronic transitions, transition
probabilities, and, 6nally, the single-mode relaxation
time. Angular averages are used to remove any aniso-
tropic features the latter may have. We have considered
the possibility that the electron is originally in the
triplet state. Since the scattering is by virtual processes,
with the possibiLity of vanishing energy denominators,
the usual second-order perturbation theory in the
Born approximation must be generalized to include
damping. We have calculated the width of the levels
forming the triplet and show explicitly that -,'M'(&4A.
We have also made a detailed comparison between our
relaxation time and that of Keyes. '

In Sec. IV, we compute the lattice thermal conduc-
tivity assuming the three-phonon scattering mechanisms
mentioned previously (bound electron, boundary, and
isotope). The integrals are evaluated by numerical
integration and compared to the experimental work
of Goff' and the calculations of Keyes. ' We discuss the
relative importance of other mechanisms, and, in
particular, show that the contribution of the true
excited states of the shallow impurity is small for
several reasons. It is also pointed out that the neglect

W. Kohn, in SolQ State Physics, edited by I". Seitz and D.
Turnbull (Academic Press Inc. , New York, 1957), Vol. 5, p. 258.

s' H. Hasegawa, Phys. Rev. 11S, 1518 (1960).

of "core" corrections to the donor wave functions
results in underestimating the scattering of high-
energy phonons.

Some extensions of our work to other kinds of doped
semiconductors are considered in the last section. A
quantitative analysis is given for m-type Si. A pre-
liminary treatment of p-type material indicates that
our electron-phonon mechanism will have the same
general features that it had in e-type material. The
effect of uniaxial strains on the resonant phonon
scattering is touched on. The resonant phonon fre-
quencies may be altered at will by varying the effective
"valley-orbit" splitting. Lastly, we indicate brieBy how
some depressions in the "phonon drag" thermoelectric
power of Ge' can be explained on the basis of our
calculations. We have not discussed the effect of large
static magnetic Gelds. Since the latter effectively
"compress" the donor-state wave function, they are of
some interest. As Keyes Grst pointed out, our electron-
phonon mechanism has a maximum around a&=c/rs
which depends critically on the size of the localized
state. As a result, the temperature at which this maxi-
mlm most strongly depresses the thermal conductivity
or phonon drag should increase with the application of a
magnetic Geld.

II. SHALLOW IMPURITIES AS TWO LEVEL SYSTEMS
AND MATRIX ELEMENTS FOR DIRECT

PHONON PROCESSES

For the nature of shallow impurity states, we refer to
the review article of Kohn in which the effective-mass
approximation (with corrections) is discussed. " As
mentioned in the Introduction, we are speci6cally
interested in Sb and As-doped Ge, the concentrations
being such that there is little overlap between impurity
states. Geometrically, for an effective donor-state radius
re =40 A, this condition should be met by concentrations
m, &10' cm '. To be more de6nite about allowed
values of n, , we must, of course, check that the scatter-
ing mechanisms involving interaction of donor states' "
are negligible compared to that arising from individual
donor states. This will be discussed in Sec. IV.

The ground state of a donor in Ge is fourfold de-
generate in the effective-mass approximation with
energy 9.2X10 ' eV below the conduction band. In
addition, there is a whole spectrum of hydrogenic
excited states (4.SX10 ' eV, 2.6X10 ' eV, etc. , below
the conduction band). Due to the intervalley inter-
action caused by the impurity potential, this ground
state is split. Because of the symmetry of the four
conduction-band minima in k space, the degeneracy is
only partly removed" to a 6rst approximation. The
result is two levels. The lowest level is a singlet (5),
and the highest a triplet (T), separated by the "valley-
orbit" splitting 4A.

The valley-orbit splitting 4A depends on both the
donor and the host semiconductor. The best available
determinations are listed in Table I for some relevant
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TmLE I. Experimental values of valley-orbit splittings 4A and
equivalent temperatures 1'z for some donors in Ge.'

Donor

Sb
P
As

4/&, (eV)
(X10 ')

0.57
2.90
4.15

Tr/ ('K)

6.6
33.6
48.1

a See Ref. 22.

donors in Ge." In addition, this table includes the
equivalent temperature Tz, with kF&—=4A, k being
Boltzmann's constant. The energy difference between
the unshifted triplet and the erst true excited state is
4.5X10 ' eV. Since we are interested in low ternpera-
tures (0(T&5'K), we shall neglect all excited states
a,nd concentrate on the singlet and triplet states.
Before proceeding, we may a,dd two remarks. First, the
smallness of 4A for Sb raises the question of whether
it will be valid later to treat the electron-phonon
interaction as a weak perturbation causing electronic
transitions between the singlet and triplet state levels.
In Sec. III, we shall see that it is. Moreover, our
calculation of the resonance scattering explicitly
satisfies unitarity (i.e., conservation of probability).
The second remark is that for consistency, if we consider
the possibility of the electron being originally in the
triplet state, we should certainly consider transitions
to the 6rst excited state, as well as to the lower singlet
state, since the energy differences are of the same order.
To consider transitions to true excited states would
result in no great difficulty, though the calculations
would become tedious. Certainly this extension might
be necessary if we wanted to consider the eGect of the
virtual electronic transitions for temperatures well out
of the liquid-helium range. We shall return to this
point at the end of Sec. IV.

Ke now consider the effective-mass wave functions, "
which to a good approximation are unchanged by
impurity potential corrections which lead to the valley-
orbit splitting. We have

+.(r)= 2 «"C'"(r) (2.1)

~ H. Fritzche, Phys. Rev. 120, 1120 (1960).

where +s(r) is the singlet donor state and 4s(r), with
d= (1, 2, 3), are the three degenerate states forming the
triplet. The function C&'&(r) can be closely approxi-
mated by the product of the Bloch function g&, (r) at the
bottom of the vth valley (Ak is the donor electron's
momentum at the vth conduction-band minimum) and
an envelope function P, (r). The latter can be approxi-
mated by a hydrogen-type function

P(r) (~g2$)—1/2 exp{ t'(@2+@2)/gs+s2/$2)1/2} (2 2)

where a and b are determined from the relevant effective
masses and ionization energy. Finally, the amplitudes

n&&'& are Axed entirely by the symmetry of the true
Hamiltonian of the impurity state (the full tetrahedral
group). Hasegawa, whose results" we wish to use, chose
the set (note that g, nq&'ns &'&= t/qq ),

no&" & = -', (1,1,1,1),
ni&'& = (1/V2) (1,0, 0, —1),

n, &"& = (1/v2) (0, 1, —1, 0),
ns&'&=-', (1, —1, —1, 1).

(2 3)

Even expression (2.2) is usually too complicated to
use and one approximates it by a valley-independent
function

p (r) (&p,&8) 1/2g r/ro— — (2.4)

where ro is some "appropriate average" of u and b. It
seems appropriate to regard s(} as a parameter to be
6xed by experiment. We shall have a few more remarks
on the proper choice of ro in Sec. IV, but for the time
being we mention that rs is of the order of 40 A.

The nota, tion we shall use for the matrix elements
describing electronic transitions between levels given
in Eq. (2.1), with the emission or absorption of a
phonon, should be clear from an example. As usual,
we only refer explicitly to the phonons and electrons
which are involved in the interaction. Suppose an
electron in the singlet state absorbs a phonon q and as a
result is excited to the level T; (one of three degenerate
levels forming the triplet state T). The amplitude for
the transition is denoted by

(2''I 1'"IV ~)

where V„ is the donor electron-phonon interaction
operator. Here the label q represents a, phonon of wave
vector il and polarization vector e&(q), or more briefly
/t—= (g, t). The context should always make it clear when

q represents IrlI.
Since Hasegawa has given a lucid discussion in his

paper" (see Secs. 1, 2, and 3B, in particular), we simply
quote his results for the relevant matrix elements. His
calculations were based on the following assumptions
and approximations, which are general enough for our
purposes as well:

(a) The bound electron-phonon interaction is taken
in the deformation-potential approximation suitable
for multivalley semiconductors, " with both dilation
and shearing strain terms included. Thus, we are limited
to one-phonon processes. No spin-orbit interaction is
considered.

(b) Only the acoustic modes contribute, which is
reasonable at the low temperatures and energy differ-
ences of interest. For the same reasons, umklapp
electronic processes, in general, and intervalley elec-
tronic transitions, in particular, were neglected. That
is, only the intravalley orbit-lattice coupling is included.

rs C. Herring and E. Vogt, Phys. Rev. 101, 944 (1956).
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Under the above conditions, Hasegawa found

&~l V"laT &=s(&-/3)f(v)&D. ("aq

&C,~l V" I
2' &= s(—&-/3)f(C)vD. "aqt*,

&2 l
v

l (( s&= &s l
v

l v T )

&q, T„Iv., ls)=&q, sl v., l r„&,
where

(a) the cuto6 function. , defined by

f(q) —= dr e*q'I" (r) (2.6a)

where
D.'"—= e (q) D. q/lql,

4

D =3 P n (v)n (v)g (v) g'(v)
v=1

(2.7a)

(2.7b)

with the unit vector E(' pointing from the origin to the
bottom of the ~th valley of the conductionv&band.
Hasegawa denotes the dyad X("':X'") as U'")~in his
work. "

(d) aqt and aqt* are the destruction and creation
operators of phonon q, and obey the usual commutation
rules with the following normalization:

$aqtvaq tv ] ~/(2&~qt)3qq v~tt
(2.8)

Laqttaq't'1=Laqt taq't' 3=0
v

where M is the total mass of the semiconductor and
A~« is the energy of phonon q.

We note that the D, matrices depend only on the
geometrical structure of the conduction band. The
deformation-potential constant Ed, related to dilation
due to the phonons actually appears in the matrix
elements in Eq. (2.5) but with the coefficient
P, nI&(")n„(").Since the ns(") coefficients are orthogonal,
the sum vanishes and the E& term does not appear in
the final result. The electronic transitions are due en-
tirely to the shearing strains produced by the phonons.

An explicit representation of the functions D„(')
requires the choice of a coordinate system. If the
lattice vibrational spectrum can be characterized by
pure longitudinal and transverse modes, the three
polarization vectors e, (q) form a suitable basis, with

'4 H. Fritzche, Phys. Rev. 115, 336 (1959l.

is, in the isotropic approximation using Eq. (2.4),

f(U) = LI+ («9/2)'3 ' (2 6b)

It is useful to remember that f(q) is the qth Fourier
component of the charge distribution of the donor
state, i.e., the form factor of the donor atom.

(b) E„ is the deformation potential related to the
shearing strain due to the phonons. Ke shall take"
E„=19 eV in numerical calculations.

(c) The coefficients D„('& are defined by

ei(q) along q. Taking

ei(q) = (sin0 cosP, sine sing, cost)),

es(q) = (cos8 cosset, cose s&ntt, —sin8),

e, (q) = (—sintt, cosp, 0),
(2.9)

with 0 and p the usual spherical coordinates, Hasega, wa,

gives, in Table III of his paper, explicit representations
of D„'".Of course, the frequency spectrum of Ge is not
completely isotropic, but if experience is any guide, the
above assumption of one purely longitudinal and two
transverse modes is good enough at the low tempera-
tures of interest;. With these results we can now proceed
to find the relaxation time of a phonon due to its
interaction with an isolated donor electron via the
intravalley orbit-lattice coupling.

t' R. Orbach, Phys. Rev. Letters 8, 393 (1962). See also Part V
of R. Orbach's thesis, University of California, 1960, and R.
Orbach, Proc. Roy. Soc. (I ondon) 264, 458 (1961).

III. SCATTERING AMPLITUDES FOR VIRTUAL
ELECTRONIC TRANSITIONS AND RESULT-

ING PHONON RELAXATION TIME

It is sometimes stated that the only way in which
one can find a nonmonotonic phonon relaxation time
(as a function of the phonon's energy) is to consider
Avetastic phonon scattering mechanisms. If one restricts
oneself to real processes, this is generally true, but
etas6c vistual processes can also lead to resonance type
relaxation times.

In our problem, the most important electronic
transitions induced by the phonons are second-order
virtual transitions. By the usual density of Anal states
argument, the first-order real transitions 5+q +-+ T, are
easily seen to be negligible in comparison. Ke should
mention here that Orbach" has recently calculated
resonance scattering by spin systems on the assumption
of incoherent real transitions. His calculation as well
as earlier ones by other authors, however, involves the
tacit assumption that there is some additional pertur-
bation by means of which the excited state can relax—
such as, the spin-spin interaction. This additional
interaction, besides broadening the energy distribution
of the excited states, destroys the coherence of the
de-excitation. In the case we are considering, where
presumably only one type of interaction with the donor
electrons is important, coherence effects are important
and Orbach's approach would lead to incorrect results.
Of course, for a broad band of phonon frequencies, the
resonance fluorescence calculation gives rise to multi-
pHcatit&e probabilities of absorption and emission. "

The task before us, then, is to enumerate all possible
virtual electronic transitions resulting in a phonon q
being absorbed and a phonon g' being created. From
a formal point of view, the scattering problem for the
singlet electron is almost identical to the study of
resonance Ruorescence caused by the electron-photon
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MI(q, S~ q', S)=P, (3.1)
E,s+AoI, Er—

where the summation is over the three intermediate
states of the triplet, and Eg, Ez are the electronic
energies of the singlet and triplet states, respectively.
Defining 4h—=Ez —E8, we see that the energy de-
nominator vanishes for Ace« ——4A. Ke have resonant
scattering for certain phonon energies and, therefore,
we must extend our calculation to include the damping
effects to get rid of the singularity in Eq. (3.1). We
postpone this modification until we have discussed all

(Sl)

7j «

($2) (7j) (72)

7j
ql

$«

$«q 7 «

FIG. 1.Diagrams for virtual electronic transition with scattering
of phonon q ~ phonon q'. As in the text, 5 represents the singlet
state and T; represents one of the states of the triplet of the
donor electron. The numbers below each graI)l1 give the actual
number of transitions of a given type.

26 V. Weisskopf, Ann. Physik 9, 23 (1931).The original work
on broadening is to be found in V. Weisskopf and E. signer, Z.
P)Iysik,

'

63~s54 (1930};65, 18 (1930).

interaction in a two-level electronic system. ""Ke
have, in addition, to consider the nontrivial problem of
scattering by the donors in their various excited states,
in particular, the triplet. At any finite temperature,
the donors are excited and decay by means of the same
electron-phonon coupling considered here. For sim-

plicity, we might assume that even in the presence of
the heat current the deviation from equilibrium is
sufficiently small that the probability of finding an
atom in the various states is given by the Boltzmann
factor. By this means, one eBectively replaces an
explicit consideration of the direct inelastic processes
(S+q+-+ T) by assuming a distribution of electrons
among the two levels. From a more fundamental point
of view the "scattering in the triplet state" is built up of
the process (2 phonons+singlet —+ 2 phonons+singlet).
It will be noticed that in the two-level atom model
(valid so long as the effective-mass excited states are
far removed in energy), one should not include the
inelastic scattering (phonon+triplet ~ 2 phonons
+singlet) because the dominant contribution to this
process conserves energy, i.e., breaks up into two real
processes, decay of the triplet followed by scattering
of the phonon by the singlet state. This latter process
is already included.

In Fig. 1, we have drawn perturbation diagrams for
the four possible kinds of virtual transitions. We first
consider the case in which the electron is initially in the
singlet state. The total scattering amplitude for transi-
tions such as S1 is, in the Born approximation,

the diagrams in Fig. 1; actually this correction is of
negligible interest in transport processes such as thermal
conduction.

The total scattering amplitude for S2 transitions
(where in contrast to S1, the phonon q' is emitted
before phonon q is absorbed) is

Ms(q, S —+ q', S)

s (q', sl vlq, q, T„)(q,q, T,
l vlq, s&

(AM, +EB)—(AoI, +AoI, +EI)

,sl vl q, q, T„&&q,q, T„Ivl q, s&
(3 2)

r=1 —(A, .+4a)

Next, we consider the scattering by electron in the
triplet state. In contrast to the previously discussed
transitions Si and S2, all the transitions of type Ti are
noninterfering since the initial level T„and the final
level T, are different (though degenerate). Thus, we
have nine scattering amplitudes of type T1

MI(q, T, +q', T,) =—- . (3.3)
(AIo,+4k)

Transitions of type T2 are again noninterfering but
they are of the resonant type, similar to Si. The nine
scattering amplitudes are

Ms(q, T,~ q', T,)

(q', T,
l vl q', q,s)(q', q, sl vl q, T,&

(3.4)—(A(o, —4A)

We note that MI(q, T,~ q', T,) and M (qs, T„~q', T,)
for the same values of r and s are interfering processes.

We must now improve on the Born approximation
used up to now and include the effects of damping in
order to get rid of the meaningless singularities in Eqs.
(3.1) and (3.4). This was hrst done by Weisslropf" on
the similar problem of resonance IIIuorescence. The
result of the electron-phonon interaction is to give
rise to a shift and breadth to the excited state. Formally,
the modification of the Born approximation is to replace
the unperturbed energies by complex values E —+E'
—-', iM, where E' is the real, renormalized energy and
M' the transition rate for the electron to go to a lower
state via phonon emission. The problem may be solved
in an economical way by the use of Van Hove's resolvent
formalism. '~ As remarked by Van Hove, the two level
atom is the unstable analog of the Lee model, solved
in Ref. 27. For the scattering of a phonon by a singlet
electron the unperturbed denominator (F&o E) is re-—
placed by Do '(E)=Eo E Go(E+ie), whe—re D—o is
the diagoiial part of the resolvent for the triplet state
aIId 0 ls essellt la lly tile Irre(luclbie self-eIIeI'gy ( e Is

I' I„.Pan Hove, P)Iysica 21, 901 (1955); 22, 343 (1956}.
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a positive infinitesimal, defining the sign of the imagi-
nary part of Go). The root of Re(DO '(E,))=0 gives the
perturbed energy E„of the excited state, which is
quasistationary with lifetime I' ', where

and triplet state as a function of the temperature T and
n, =a,*a, gives the number of phonons in the qth mode.
We note that, whether the electrons are in thermal
equilibrium or not,

I'=2 Im)Gp(E„)/(1+8 ReGO/BE„)j=2 ImGO(E, ). BB(T)+3Bp(T) = 1. (3 g)

E, +—=A(o,"~46—& E,"++iyp, (3.5)

where 2yz—=AI'z is the "lifetime broadening"' of the
triplet state. To first order, we have

On the other hand, phonon scattering by the triplet
electron (or any excited state) is much more involved,
as we noted in the third paragraph of this section.
We hope to systematically investigate the inelastic
scattering elsewhere. We shall not distinguish in our
notation between the unperturbed and renormalized
energies. Naturally, the experimental values we shall
use correspond to the renormalized ones. In summary,
then, the damping effects result in an effective change
for the 51 and 52 denominators (E, and E;+, respec-
tively) given by

Using Eq. (2.6), we are able to evaluate the various
scattering amplitudes given by Eqs. (3.1), (3.4), (3.5),
and (3.6) (corrected for damping):

Mg(q, S—+ q', 5)
3

=+Bc'/(&a +~v) 2 D"'D.'"ae *as,

M2(q, S~ q', 5)

B„/(E—,.+ ~y) Q —D,~'&D, &"a,a,.*, (3.9)

Mg(q, T„+q', T,)—

B~q/(E—q+ iy)D o'—&D o&a, +aq,

M2(q, T,~ q', T,)

I (q,s I
V

I
T&12

pl=hm Im Q
AMq 4A 26

(3 6)
=+B-/(&' +~~)D "'D.'"'a&a'*,

The necessary modification for the energy de-
nominators of the Ti and T2 processes is not so well
discussed in the literature. Formally, however, the
processes S1and T1 are identical and so are the processes
S2 and T2. Making use of the general formulation of
Heitler, " we find that to lowest order, at least, the
changes in the T1 and T2 energy denominators (E,+
and E;, respectively) are given by Eq. (3.5) again.
Of course, only Si and T2 are resonant processes. The
modification of the nonresonant denominators is
numerically unimportant and is only included for
reasons of symmetry. Although we do not consider
it any further, we should also point out that we have
neglected to include the imaginary part of the phonon
self-energy in modifying the energy denominators.

This completes our enumeration of the possible
virtual transitions to first order. The total probability
per unit time for the scattering of phonon q to state

is

W(q -+ q')n, (1+n, )

= (2'/A)5 (Ace,—A(u, ')

X)B (T)~M (q, 5 q', 5)+M, (q, S q', 5)~'

+Br(T) P i M, (q, T„+q', T,)—
+ m, (q, T,~ q', T,) ~

'j. (3.7)

In Eq. (3.7), W(q-+ q') is a reduced transition proba-
bility in that the statistical factors are separated. The
B(T)'s are the occupation probabilities for the singlet

D (&)D (&') D (&)D (&')

+B~(T) 2...=~ E,. +~'Yr E,+ i'Yr— —(3.12)

Since the expressions are already quite complicated, we
shall simplify the resonance terms immediately by
making use of the fact that pp«4A. Ke can completely
omit 7~ even in the resonance denominators since we
plan to use our results to compute a single-mode
relaxation time 1,g (see below) for use in a heat trans-
port calculation. When 1/r~~ is very large, so little heat
Qow occurs at that frequency that putting 7&=0 has
little numerical consequence. Away from the resonance,
vp has negligible importance. It is a simple matter to
keep the damping factor in the expressions if for some
reason this is desired. With this simplification and using

B-= (E /3)'—f(q)f(q')qq' (3 1o)

Combining Eqs. (3.9) and (3.7) and making use of the
phonon "matrix elements, "

(a.a'*)'= (a *a.)'
=(A/2W'(. ') '.(1+ ')

we find

W(q —+ q')

2 A ) 1
h(M, Acuq )B—qq'—

A 2M) coqMg'

3 2 1
&& Bs(T) Q D &'&D ~'&

Eq +i%z Eq + i&r—
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the delta function, (3.12) becomes

W(q ~ (7')

where [. ] represents the same expression as in Eq.
(3.14a), I,„ is the number of uncompensated donor
electrons per cm ', and

2'xBqq ' 1
t)((otgt —o)tg g )(2')„)2 [(Ao),t)' —(46)2]2 (D,")a.= ——

l
dQ' D."'.

4~&
(3.18a,)

X (Bs(T)DS"2(4g) 2+BT(T)[(DT"' Ds"—}

where
X (A(dst)'+(DT" +Ds"}(4h)']}, (3.14a)

D tt'= (g L) (t)D (t'))2

DTtt'=/(D (t)D (t'))2 (3.14b)

For the application of our results to transport theory,
the so-called "single-mode relaxation time" 7.«defined
by

(3.15)

E'Q SQ~ or~g (P)qt) gt)st

2 3'p'p [(gpi, )' —(44)')' 4, i 4, )

{Bs(T)(DS")a2(4~)'
Vg ~V~~

+B (T)([ "]) } (317)

is of great use. Equation (3.15) gives the rate of decay
of a single phonon q into all other modes. We have
simply added the effect of the S-uncorrelated impurity
donor electrons in the sample of interest, since we have
neglected any phonon scattering due to the donor-donor
interaction. In general, r defined by Eq. (3.15) does not
coincide with the one appropriate to heat conduction,
since the inverse transitions have not been taken into
account. By formulating a proper transport equation
in terms of (3.15), one finds in simple cases (e.g. ,
isotopic scattering) that the correct r is just that given
in Eq. (3.15), or differs only by a multiplicative
constant of order unity. ' ' We shall adopt (3.15) as the
effective relaxation time. The uncertainty thereby
introduced is certainly no greater than that due to other
rough approximations presently necessary in the
calculation of the lattice thermal conductivity.

To use (3.14) to calculate the relaxation time given in
Eq. (3.15), we change the sum to an integral in the
usual way. For the phonon spectrum, which is assumed
to be unchanged by the donor impurities, we make the
usual acoustic approximation

~. =v (f)A)V; (3.16)

where v& depends only on the directional coordinates
of 41. The angular integration over dQ'=sing'dg'dtt' is
approximated in the usual crude fashion, where

v, (f)',gt ') is replaced by its angular average vt

= (1/42r) J'dQ' Vt (O',Q') WhereVer it OCCurS. POr COn-

sistency, vt((t, tt) is also averaged. We find the following
relaxation time:

The evaluation of these angular functions is straight-
forward using the definition of D,"' [Eq. (3.14b)] and
Hasegawa's representation of D„'". One may easily
verify the following exact results":

3(Ds"') a = (DT"') ~

3(Ds +Ds 2 )a'= (DT +DT 4 )a'

3(Ds"')a =2(Ds"'+Ds"') a

(3.19)

Our final expression [using the relations (3.19) in Eq.
(3.17)] for the single-mode relaxation time is

and

E 4e,„
G—=

34)rp2(46)'

(3.21)

((Ds" »=—— dQ(Ds"')a
4x

=48/225, 32/225, and 40/225

for 1= 1, 2, 3. (3.18b)

It might be useful to make a few remarks about this
relaxation time in Eq. (3.20), in particular, the differ-
ence between the singlet and triplet donor electron
contributions. Note first of all that, at resonance
(Igo)=46), the factor in the curly bracket reduces to
Bs(T)+3BT(T), which is 1. That is, at resonance, the
relaxation time is temperature-independent and we

would have obtained the same result if we had assumed
all the electrons were in the singlet state. The second
point is that, of course, Bs(T)))BT(T) for the low

temperatures of interest. If we assume, for simplicity,
that these occupation probabilities are given by the
usual Boltzmann factors, then BT/Bs exp( Trg/T), —— —
where 7.'z is given in Table I. While we may set 8&——0
for As with little error, Tg is small enough for Sb that
Bz is appreciable even for T as low as 3 or O'K. Note
also that the triplet contribution increases with the
phonon energy. To be more exact, it would seem that

"In Table IV of Ref. 22, the first entry should read (Dsu')a
(4/15) (sin228+sin48 sin22p). Note that

(Ds"')ai = (ss)(Ds"'+Ds"')a

making the second column redundant.

1 G (46)4 (eq 44 1 3
+ (Ds"')a

r, t ut'St [(Ace )'—(46)2]2 S)V)s 2S2V2'

X (Bs(T)+BT(T)[2+())go),t/46)2)}, (3.20)
where

st =—(1+[r /()o2)]v 4)42= f '((0/vt), —-
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if we simply assumed all the electrons were in the
ground singlet state, we would overestimate the
scattering strength for A~(46 and underestimate it for
A~&46. The last remark we wish to make is that the
temperature dependence of 7 is closely related to our
mechanism of phonon scattering via virtual electronic
transitions in a two-level system. If we had assumed
that the phonons were scattered mainly by real elec-
tronic transitions, as Orbach" did in the spin-phonon
problem, we would 6nd that the temperature depend-
ence of r is quite different to that in Eq. (3.20), namely,
1/r ~ PBs(T)—3Br(T)].

We now turn our attention to the consistency. of the
perturbative approach we have used in discussing the
donor-electron mechanism. First of all, our expansion
requires for its validity

V,
~
~«(4~) ~,

i=1
(3.22)

'Yr ——s- P B(Ao)„4D)~(q, S—
~

V~ T„)
~

'

gran
2

D (t) 2

2 X3~pQ
f'(&7)q'(e, &+1)

XP S(~„—4&/a) (3.23)

L„'(4a)' ((D,&'&)')o 1

$2/34 ~ ff 5 ) p
—4A/k, T

v'her e

8&-=- & &$1+ (4hr «!(2fiE;,))-'] 4 &» . (3.24)

Using Table III of Hasegawa, "it is fairly easy to prove

where V; is the electron-phonon interaction due to the
ith donor impurity and we assume a random distri-
bution of donors. This inequality is equivalent to
&V(V,p)'(((4&)'. If (V„,) is assumed to be correctly
given by the matrix elements in Eq. (2.5), a simple
numerical check will show that this inequality is
easily satisfied up to the highest impurity concen-
trations for Sb as well as As, We note that this also
"justifies" our use of the adiabatic or Born-Oppenheimer

approximation, even though the usual condition
(which, in this problem, would be A&0((46) may not
hold.

The next problem is to estimate 7z, one-half the
lifetime broadening of the triplet-state levels. Our
entire approach in this paper is based on treating the
electron-phonon interaction as a weak perturbation
causing transitions between the singlet and triplet
states. A necessary but not suff:cient condition is that
p~&&4A. Using the same sort of approximations as in
the derivation of Eq. (3.17), we find from Eqs. (3.6),
(2.6a), and (3.10)

TABLE II. The valley-orbit splitting versus the lifetime
broadening 2pp of the triplet state.

Impurity
in Ge

As
Sb

4A (eV)
(X10 ')

4.15
0.57

4A/27r'

5300
65

4a/2mr»

70
5

4g/2~ra

1400
30

O
a Effective Bohr radius ro =45 A and O'K.
b Effective Bohr radius r0 =23 A and O'K.
0 Values found by W. D. Twose, as quoted in Ref. 22, at 7'K.

that for r= 1, 2, or 3,

' ((D "')')o 2( 2 1
+

g (g~) 5 (3g (gi) g (i'2) )
(3.25)

where g(0~) is any function of 8&. Thus, the last result
of Eq. (3.23) reduces to

2 2 1
=G „+—4(e„q)f'(q),

5 38'' 82'
(3.27)

where the dimensionless factor P(e, ,q) is defined by

g(e&, q)—= 1+I7 '$(q e,)'—2 p (q)'(e, ) '] (3.28)

and the function f(q) and constant G are given in Eqs.
(2.6b) and (3.21), respectively. In Figs. 2 and 3 we
have sketched 1/r versus &e for longitudinal phonons,
using the formula given by Keyes (3.27) and the
improved formula derived in this paper (3.20) with
T=O'K. In Fig. 2, which is for Sb-doped Ge, we have
also sketched what Eq. (3.20) would predict if re=0.
We see that we still get a resonance but instead of the
scattering vanishing asst increases, it settles down to a
constant, independent of co. For later use, we have also
included in Fig. 3 the value of 1/rs for pure boundary
scattering with an effective mean-free path I.=0.4S
cm. Lastly, we may note that longitudinal phonons are
scattered much more strongly than transverse phonons
a,r$,

E '(4A)' 2 1 1
V,=— +— ~. (3.26)

2n3'X5. A'p 3vi» vP 1 e 4+"rl——

In Table II, we have listed some values of 7r (relative
to 4A) for Sb and As found from Eq. (3.26). The
average velocities used are those computed by
Hasegawa, " from elasticity data, 8~= 5.37&(10' cm
sec ' and 82=83——3.28X10' cm sec ', while p=5.35 g
cm ' and E =19 eV. Though vz increases very rapidly
as re decreases, even for re —23 A we still hav—e /r((4/& .

It might be useful to make some qualitative comments
about the frequency dependence of r~& in Eq. (3.20)
and make a detailed comparison to the relaxation time
r~&x given by Keyes' (he simply assumed all electrons
were in the singlet state),
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A quantitative comparison of. Eq. (3.27) and our
result is easily done and wil. l show what approximations
a,re made in the former. Our basic result (3.20) may
be rewritten as, if ~&(4A,

XZ(D.'")'((D '"')') ~ (3 29)
r

where we have not averaged over (8,&) and have used
the fact that the interference contribution vanishes in

( s"')o, caving onlyg„(D„&")3((D &'&)')n By means
of a little a ge ra we can express Keyes' relaxatio t''on ime

( . ) m a form similar to (3.29). Keyes' anisotro y
factor g(e&,q) defined in Eq. (3.27) is, in terms of
Hasegawa's notation,

@(ei,q)=Z, (ei D, q)

Fxe. 3. A plot of
the reciprocal single
mode relaxation time
versus the fre-
quency for longi-
tudinal modes in As-
doped Ge with nex
=2.0X10" cm '.
The valley-orbi t
splitting was taken
to be 4h =4.15)&10-3
eV and the eHec-
tive donor radius
rp =45K .

lO'-

lp'-

IO-

10
lp'l lpl2

tu (sec ' )~

--Qur Calculation

Keats
Calculation—-Boundary
Scattering

lpl3

=2 (D.'")'.

In addition, we have from Eq. (3.25),

—:(3/(2")+1/"')=-: 2 2 ((D,~'~)')ft'/. ,'.

X((D, ' )')'(1/3.—,').
lolo

lO9-

)fl
]fl.I l

I
I
l

——-Our Colculotian
(re&454)

Keyes Calculatian

( rg ~45A)—-Our Colculotion

( ro&0)

Equation (3.27) can be rewritten, using Eqs.
and (3.31), as

1/., = G, 'f'(, / )~EKE (D.'")'
t' r s

(3 30) Comparing Eq. (3.32) with the correct expression
(3.29), we can see what approximations have been made.
First of all, f' (~/H~)f-'(oi/8&) and tt, '8P in E . (3.29)
have been replaced by f'(oi/v, ) and. 8, ', respectively.

(3 31) This change results in the scattering of a longitudins, l

phonon to be overestimated by a fact f 3
while the s

(3 30)
w i e th e scatter ing of a tran sverse ph on on is sligh t1y
underestimated. This difference for l 'tol a ongltu lna
phonon is clearly shown in Fig. 3 in the case of As.

The second approximation in Eq. (3.32) has to do
with the anisotropy factor, where ~ D„&') 're ((

(3 32) 3 ( ( ' )') u . Since we shall not make any use of it,
the correct anisotropy factor in Eq. (3.29) will not be
worked out explicitly or investigated. As far as averages
go, this change in the anisotropy factor produces little
error. In summary, then, the major difference between
our result for the singlet electron and Keyes' is the
presence of our true resonance factor. Note that at a
true resonance, one has

1/r = (1/r K.r-) (4~/»r)' (3.33)

lo8

l~

IO

io~
lOll iol~

tu(sec l) ~ I

iOt3

FIG. 2. A lot fp of the reciprocal single-mode relaxation time ver-
sus the frequency for longitudinal modes in Sb-do ed G h

cm, The valley-orbit splitting was taken to be 46=

on K . 3.20 of
0. )&10 eV and the effective radius r =45 A Ou

'
b dur curveis asea

onE . 327.
q. . ) o the text for T=O'K and Keyes' curv

'
b ds curve is ase

ate the effe t
q. . ). %'e have also plotted our result for r =0 t

ect of the true resonance from the cutoB factor f(r).
r rp= o separ-

where r ls the correct relaxation time due to the singlet
electrons LEq. (3.20)]. A glance at Fig. 2 and Table II
will show that though the resonance is strong, the
general condition cur))1 holds.

T e effect of the resonance depends th lon e vaue o
n t e case of Sb, the true resonance frequency (dp

to the finite size of the impurity state. Since it occurs
in a frequency range of already high scattering, its
effect will not only be undramatic but it will occur at
very low temperatures (&1'K). In addition, it will
result in a faster cutoff for high frequencies (to»)or jr =o&3)
t an Keyes predicts. For As, in contrast, the true
resonance occurs to the right of ~~ at higher phonon
requencies (&up 4M~). Since boundary and isotope

scattering dominate in this region, our results will
again be similar to Keyes. A donor with 4A somewhere
in between that of As and Sb (i.e., around 2&&10 ' eV.)
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P would be a possibility) would exhibit the effects of
the true resonance at a more convenient temperature.
Of course, overlaid on any qualitative eRects of the
electron-phonon mechanism, the true resonance should
still be there as a very narrow region of high scattering,
at least if it is not damped by the effects of other
impurity states.

v '(C) =rv '(V)+ . '(V)+r" '(V) (4 1)

where w,~ is the relaxation time for the donor electron-
phonon scattering, ~1 is for point defect scattering by
the ever present isotopes of Ge, and r& is for boundary
scattering. By following this procedure, we are empha-
sizing the dependence of K(T) on, the scattering cross
sections and glossing over the more subtle transport
problems involved.

For boundary scattering, we take

IV. APPLICATION TO THE LOW-TEMPERATURE
THERMAL CONDUCTIVITY OF

n-TYPE GERMANIUM

We are now in a position to estimate the inQuence of
our scattering mechanism on the heat conductivity of
lightly doped (44, & 10" cm ') n type-germanium.
Experimentally, most of the interesting effects occur
below the low-temperature maximum. In this region the
dominant scattering mechanisms are boundary scatter-
ing and impurity scattering. We neglect the normal
three-phonon processes. (This last approximation is
usually well justihed in this temperature region, but
in the present case, where there is strong scattering
at one frequency, the normal processes might have a
disproportionate eRect by splitting the weakly scattered
high-frequency phonons into strongly-scattered lower
frequency phonons. ) We follow the usual semi-
phenomenological method of combining the mechanisms
as developed by Klemens' and Callaway. "Combining
reciprocal relaxation times gives for the total relaxation
time rv(q),

due to the mass differences introduced by the presence
of impurity atoms is completely negligible for the low
concentrations of interest. Since an adequate introduc-
tion with references can be found in Sec. U of I, we shall
be brief and simply state that the isotopic relaxation
time ~& is given by4

71 ' ——Ao)4, (4.3)

where the polarization averaged factor A depends in a
known manner on the crystal's parameters and degree
of isotopic disorder. For normal Ge, calculations give
A~2.40X10 "sec'. As shown by Callaway, "this value
is in excellent agreement with experimental work and
we have used this value in our numerical calculations.
Isotope scattering dominates the phonon-phonon
processes well up to the maximum in K(T), at least if
the latter are incorporated in the manner discussed by
Callaway. "

Our major interest, of course, is in the resonance
electron-phonon relaxation time derived in Sec. III
and given in a suitable form by Eq. (3.20). Although
we incorporate boundary and isotope scattering, we
have used the theoretical values of the constants
involved. We have rot used A and L as unknown
parameters to be 6tted by experiment.

Starting from Eq. (3.32) of I and transforming to the
dimensionless variable x= Ap)/kT, —one obtains for the
thermal conductivity

k4LT'
K(T) = Q (I,(T)/vP),

6x'5'
(4 4)

Ii(T)=
p (e*—1)' Ri(x, T)+P)(x,T)

(4.5)

in which the following dimensionless functions are used:

where the temperature-dependent integrals Ii(T) are
defined by

e'x4

rv, ' v,/L, ———(4.2) R((x,T)=1+(AL/vi) (kT/h)4x4, (4 6)

where t denotes the polarization and L is the Casimir
length, "a measure of the diameter of the specimen. For
a sample of square cross section, the theoretical value
is L= 1.12d, where d is the side dimension. L is generally
found from experiment, such values agreeing with the
calculated ones to within a factor of 2 or 3. This is
satisfactory agreement in view of the crudity of the
theory. However, from the low-temperature thermal
conductivity of Goff's purest sample, ' we feel that
L= 1.12d (which we have used in our calculations) is an
excellent approximation for the experimentally correct
value of L.

The theory of phonon scattering by small mass
Quctuations randomly distributed in an otherwise pure
crystal seems to be on a firm footing. The scattering

~ H. 3. G. Casimir, Physica 5, 495 (1938).

IIT4x'((D "')) 1 3
P(xT) —= X +[iT'x' T')'s, v,'j s,ii, ' 2s,ii—,')

with
E 444, (4A)'L

H=—- Tr4= 4d/14—
3'p'm. A4

(4.8)

The cutoff factors s~ and the numerical coe%cients
((Ds"')) are given in Eqs. (3.21) and (3.18b), respec-
tively. An obvious simplification is to omit 1/sivi' in
Eq. (4.7), though we have kept it.

We have had Eq. (4.4) evaluated by electronic
computer for some representative samples used in
Goff's experiments. ' For simplicity, we have taken
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Bs(T)=1 and. Br(T)=0 Lsee discussion after Eq.
(3.20)]. In Figs. 4 and 5 we have plotted the results of
our work for Sb 207 and As 223I, respectively. We have
used the same values of p, E, and 8& as with Eq. (3.28).
For the effective radii, we have somewhat arbitrarily
set rs ———',(a+A) and made use of data collected in
Table I of Ref. 16. This procedure gives re ——43 A for
Sb and rs ——37 A for As. In Fig. 6, we have made a
comparison between our results and that of Keyes for
Sb 207. Since we were interested in the different way
the electron-phonon mechanism shows up in the two
calculations, we have left out isotope scattering in
Fig. 6. We have not plotted the relevant curves for As
since our result is almost identical to Keyes (due to
cancelling of effects).

As we have indicated at the end of Sec. III, except
for the true resonance our results are not very diGerent
from that of Keyes. ' Quantitatively, though, ours are

Frc. S. The experi-
mental and theo-
retical thermal con-
ductivity of As-
doped Ge is shown.
Goff's sample As
223I had n, =2.0
X1016 Cm 3 and rp
=37 L.
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all electrons are in
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a square cross sec-
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superior. We note the satisfactory feature that our
results consistently overestimate the conductivity,
with excellent agreement at low temperatures. Keyes
overestimates the electron-phonon scattering (see Fig.
6) for lower temperatures and underestimates it for
higher temperatures in the case of Sb—a qualitative dis-
crepancy which is quite unsatisfactory. If we included
isotope scattering in evaluating Keyes' expression for
E(T), his curve would underestimate the conductivity
for both high and low temperatures. Since it lacks the
resonance factor and incorrectly averages a sum
involving the velocities 8&, Keyes expression leads to
slightly more scattering for high-energy phonons, as
can be seen in Figs. 2 and 3. As a result, his better Gt
for Sb at high temperatures (in the absence of isotope
scattering) is fortuitous (see Fig. 6).

The thermal-conductivity integral not only smooths
out the effect of a region of maximum scattering, but
also shifts the effective temperature T~ at which it has

its most noticeable effect. The factor e*x'(e~—1)—' has
a maximum for x a little less than 4. One would expect
that a resonance (or more generally a maximum) at
eiri=kTs/k would have its strongest effect at xsr
=kTg/kTsr=4 or Tsr=LTii. It has been found" that
due to an extra factor such as rr in Eq. (4.1), Tii is
divided by @&6. Now, in the problem at hand, we have
a broad region of maximum scattering centered around
te=c/re (as first shown by Keyes) and, in addition, a
sharp resonance at t0=46/h. The first maximum should
have its largest effect for all donors around 1.8'K. This
is verified by the results in Figs. 4 and 5. The true
resonances, on the other hand, should show their effect
directly at Tsr(Sb)=1'K and Tsr(As)=8'K. This is,

lo

FIG. 6. A com-
parison is made
between our and
Keyes' estimate of
the electron-phonon
interaction's effect
on the thermal con-
ductivity of Sb 207
(the same param-
eters were used in
both cases). We have
left out isotope
scattering irt order to
see more clearly the
contribution of the
electron-phon on in-
teraction.
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indeed, the case for Sb as shown by Fig. 6. Our calcu-
lated curve is depressed relative to that of Keyes around
1'K, and consequently, a sharper change in direction
occurs at lower temperatures. This is as expected from
the qualitative discussion of the Introduction. Un-
fortunately, the experimental points do not extend to
this region. It will be noted that our theory for Sb agrees
best with experiment precisely where it should, i.e.,
near the temperature at which the effects discussed are
maximal.

As shown in Fig. 5, the data' for As show a dip near
7'K, just about where we expect the true resonance
scattering to be most effective. Goff's data for other
samples of As-doped Ge also show this anomalous
behavior near 7'K but in not such a striking fashion.
To our consternation, our calculation does not easily
reproduce this feature which should constitute the most
important evidence for the mechanism described in this
paper. A glance at Fig. 3 aids in the understanding of
this dilemma. For As, the true resonance energy lies
at a frequency such that qro is substantially greater
than unity. Thus, the cutoff suppresses the effect of
the resonance in that when it does occur, our mecha-
nism's strength is well below that of boundary and
isotope scattering. The resonance is still there, but has
almost zero width. A more detailed experimental
investigation of this region would be of great interest.

According to Carruthers et al. ,
' experimental work on

p-type material (see part 8 of Sec. V) at temperatures
as low as 0.3'K results in the thermal conductivity
continuing downward in a straight line. Our curve
predicts this for the different case of Sb in Ge down to
about 1'K but not further. As the temperature is
Iowered below this resonance value, the mechanism we
have considered rapidly becomes ineffective. Unless a
new process takes over then, we expect a kink in K(T)
at temperatures below T~=4d/6k. Experiments on the
theoretically tractable case of donors in Ge would be
valuable in clarifying the situation. For As, the broad
scattering peak first discussed by Keyes dominates at
low temperatures since the true resonance can be
important only around 8'K. As a result, the electron-
phonon mechanism reaches its maximum around
1.5—2'K and becomes ineffective at lower temperatures
in a smoother fashion than in the case of Sb. Of course,
the major reason for the difference between the slopes
of E(T) for Sb and As is due to the simple fact that
the electron-phonon mechanism is much more effective
in Sb than in As because of the difference in valley-orbit
splittings.

In general, we obtain too little resistance above the
liquid-helium range. There are several obvious reasons
why this is to be expected: (a) We have totally neglected
the three-phonon processes, which may be important
by themselves and also in connection with our resonant
mechanism. (b) We have not considered the effect of
the increasing number of ionized donor impurities as
the temperature increases (see Goff'). (c) We have, for

f(q) =
(r r- )3/2 (lyly)2

(4.10)

with 1/c=1/ro+1/ro. Taking a smaller value for the
eR'ective radius, of course, simply raises and shifts to
the right the relevant curves in Figs. 2 and 3. The
functional form of f(q) is still the same in that the
steepness of the cutoff is unchanged. We believe that
if the correct wave function were known, f(q) would
be suKciently modifmd that the resonance would not
be suppressed.

While on the subject of corrections to the all im-
portant function f(q), we note that we always have
worked in the isotropic approximation. The conduction
valleys are quite anisotropic and the trial envelope
function given by Eq. (2.2) is considerably closer to
reality than that given by Eq. (2.1). The changes in

f(q) might not be negligible, especially in the critical
region of higher phonon energies.

We should like to make a remark on the transport
of energy by resonantly scattered phonons. As is well

known, "the energy is not carried at the group velocity,
' H. Fritzche, Phys. Rev. 125, 1560 (1962).

32 L. Brillouin, 5'ave Propagation and Group Velocity (Academic
Press Inc. , New York, 1958).

simplicity, assumed that all the electrons are in the
singlet state (this may lead to some non-negligible error
for Sb). (d.) We have forgotten about the true excited
donor states. (e) The "effective-mass" theory breaks
down near the impurity core. These last two points are
of some theoretical interest and merit a few more words.

As we have seen, the sharpness of the cutoff factor
f(q) has rendered our scattering mechanism ineAective
at higher temperatures. It is important to realize that
we have underestimated to some extent the strength
of our electron-phonon mechanism for higher energy
phonons simply because we have not taken into account
any corrections to the effective-mass wave functions.
From Eq. (2.6a), we note f(q) for high q is closely
related to the charge distribution at r=0. Due to this
core effect, the corrected wave function has an envelope
function E(r) which is considerably more concentrated
at the origin. "This implies that P'(r) v ill have larger
high-frequency Fourier components than F'(r).

There are many ways of taking the core corrections
into account. ""While the symmetric singlet state has
a nonzero value at the origin, the three donor functions
of the triplet vanish there. As a result, the uncorrected
effective mass theory should be quite good for the
triplet. To improve on the singlet, the simplest pro-
cedure might be to take a smaller value of ro in the
singlet envelope function. "One finds with

F(r)=(7rro') '~'e ""' for the singlet,
(4.9)F(r)= (7rro') '"e ''"' for the triplet,

where ro is somewhat smaller than the effective mass
radius ro, that the new cutoff factor is
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f&" (q) =— A*&"(k+q)A &'i (k)dk/(2»r)'

Pp(ii (r)]pe4» rdr (4.12)

"N. Shire', Phys. Rev. 128, 2103 {1962).

as assumed in deriving Eq. (4.4), but at some slower
velocity in the resonance region. This effect has been
observed for phonons by Shiren. "The error suffered by
using the wrong velocity is negligible in our problem
since those phonons whose group velocity deviates
appreciably from the energy velocity are too strongly
scattered to contribute very much to the heat current.
That the energy velocity decreases, aids in making their
contribution negligible.

There is the possibility that phonons are scattered
during electronic transitions from one localized state
to another localized state.""According to an estimate
by Keyes, ' the mean-free path of a phonon due to this
process is always greater than 1 cm in the liquid-helium
temperature range for the samples of Goff and Pearl-
man' and, hence, can be neglected. Pyle" notes that
the scattering his theory predicts underestimates the
thermal resistance by a factor of 10. His scattering also
depends critically on the degree of compensation, a
feature which does not seem to be compatible with the
experimental data of Goffo (of course, Pyle's work was
for p-type material).

At higher temperatures, the problem also arises as to
whether the true excited levels (in the effective-mass
approximation) can be neglected. The energies involved
in transitions between the low-lying intervalley-excited
states are not much smaller than the energies involved
in transitions to true excited levels. If 8 is the difference
between the ground state given by the effective-mass
approximation and the first excited state, 6/4t1 is 8.2
for Sb but only 1.1 for As in Ge. In the case of Si (see
part A of Sec. V), the intervalley correction splits the
sixfold degenerate ground state into a singlet, a triplet,
and a doublet. If 6h' is defined as the difference between
the singlet and doublet, then one finds 5/6A'=0(1. 5)
for As, P, and Sb in Si.

Phonon scattering by transitions to true excited
states might be quite important for higher phonon
energies if they have a slower cutoff factor. As we saw
earlier, the ineffectiveness of the electron-phonon
interaction at higher phonon energies was due to the
steepness of the factor (1+Prpqj') ' appearing in the
matrix element for each electronic transition. Referring
to Hasegawa's discussion in Sec. 38 of his paper for
details, one hnds the matrix element describing the
absorption (or emission) of phonon (q, t) with the
electron in the ith valley 4&ii (r) to be

(4"'4i (r), U,„4"i (r))», 4= a«C(q, t)f"i(q)+H.c. , (4.11)

where C(q, t) is some function of q and t Lsee Hasegawa's
(hereafter referred to as H) Eq. (3.31)]and

In the effective-mass approach of Kohn and
I uttinger, '0 one may also approximate the true excited
state @„(r)as linear combinations of the (4 for Ge, 6 for
Si) valley functions q „&"(r). The relevant matrix
element describing the absorption (or emission) of
phonon (q, t) with the electron going from the ith
valley of the ground state to the ith valley of the nth
state is now

(qf„&'~ (r), U.,+~4&(r))= a«C(q, t)f "i(q)+H.c. , (4.13)

where

f„&'i(q)=— A*t'&(k+q)A„"'(k)dk/(2»r)'. (4.14)

Since A&" (k) and A„"&(k) are orthogonal to a first
approximation, we expect that for q~ 0, f„&"(q) ~0
and not 1. As an example, let us consider the transition
between the ground state 15 (fourfold degenerate),
which has

Fis(r) = (~ro') '"e "'"' (4.15)

and the 25 state, which has

Fpe(r) = (32~rp ) t e "t'"o(2—r/rp) . (4.16)

The integrals involved in finding f(q) from Eqs.
(4.14) and (4.12) are elementary, with the result

(a) be smaller due to the increased electronic energy
difference 6, since 1/r ca 1/P;

(b) have a much faster high-energy phonon cutoff
factor, since 1/7 ~ f4(q);

(c) possibly be larger for high-energy phonons
q&1/rp due to factors (rpq) in f(q)

Fortunately, the eRect of (b) cancels out the effect
of (c). Thus, the contribution of the true excited states
(as given by the effective-mass approximation) is
negligible even without considering the effect of (a).
This only refers to the qualitative importance of the
true excited states. It still might be that the true
resonances arising from certain virtual transitions
involving these states might cause observable (though
small) dips in K(T). These would occur around
'l,i4& 8/6k„where 8 is the relevant donor electron energy
difference. Needless to say, in looking for such dips in
the thermal conductivity, one nxust have extremely
accurate data with little "scatter. "

fis, ps(q) = (1/v2) (2/3)'(roq)'(1+[ —,rpqj') '. (4.17)

In general, one has

f(q) ~ (polynomial in roq) X (1+$rpq]') "; e)3. (4.18)

Ke conclude that if we work out the phonon scatter-
ing via virtual electronic excitations between the ground
state and the true excited states, it will, relative to that
found in this paper for intervalley-excited states,
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A. n-Type Si

In Si, the effective-mass ground state is sixfold
degenerate. The intervalley potential splits it into three
states, a singlet, a doublet and a triplet. "Briefly, the
singlet is reduced most (due to its symmetry) in

energy, while the doublet and triplet are, to first order,
unchanged. "Hasegawa's matrix elements" t Eq. 2.5)j
are valid once more, the constants being now taken for
Si. The D„matrices are changed since they are charac-
teristic of the conduction band edge.

I.et us consider various transitions between the
low-lying intervalley-excited states. The probability
amplitude for the donor electron making a triplet
(T)—doublet (D) transition will be proportional to

6

D~r —3 g nD (v&n, (vilt (v& ~ g'(v& (5.1)

where, in Kohn and I uttinger's representation,

nsi'& = (1/g6) (1,1,1,1,1,1),
n»ti"&=-,'(1, 1, —1, —1, 0, 0),
nD, i'&=-', (1, 1, 0, 0, —1, —1),
natl "& = (1/K2) (1, —1, 0, 0, 0, 0),
nT, '&= (1/v2)(0, 0, 1, —1, 0, 0),
nrs '"' ——(1/v2) (0, 0, 0, 0, 1, —1),

(5.2)

Xi&& = (1,0,0);
Z i'& = (0 1 0) .

Zts& = (0,0,1);

Xi4& = (—1, 0, 0) .

%is&= (0, —1, 0).
X"&= (0, 0, —1) .

One can easily see that (5.1) will be identically zero
and, thus, there are no triplet-doublet transitions.
Similarly, one can easily show that D», defined by

6

D —=3 Q n '&n &"&Xi"i X&"' (5.3)

is also zero and, therefore, there are no singlet-triplet
transitions. " The intervalley orbit-lattice interaction,
however, does couple these states. "

In contrast, the singlet-doublet transitions are not
negligible. Since the intervalley splitting 6A' between
these two states is of the order of 10 ' eV for P, As, or
Sb,"" we can assume that the donor electron is

s4 W. Kahn and J. M. Luttinger, Phys. Rev. 98, 915 (1955)."T. G. Castner, Jr., Phys. Rev. Letters, 8, 13 (1962).I J. C. Hensel and G. Feher, Phys. Rev. Letters, 5, 307 (1960).
37 G. Feher, J. C. Hensel, and E. A. Gere, Phys. Rev. I.etters,

5, 309 (1960).

V. SOME GENERALIZATIONS

%e have treated in some detail the case of unstrained.
m-type Ge, concentrating on the thermal conductivity.
We should like to indicate, somewhat more briefly, how
one extends the treatment to other situations of interest.

s (6k')' (I+6.4X10 "t0')'

ro, i 4 4A — 1+1.8X10 "pps
(5.5)

Ke have taken the shear deformation potential E„=11
eV and rp=15 A for n-type Si in deriving Eq. (5.5).
Since, in general, the valley-orbit splitting for Si
(singlet-doublet) is much larger than for Ge (singlet-
triplet), we conclude that the phonon scattering due to
virtual excitation of donor electrons will be negligible
in Si. The cutoff factor for Si, though, is considerably
reduced compared to Ge.

The work of Castner" seems to indicate that the
intervalley umklapp orbit-lattice interaction may play
an important role in scattering phonons, especially at
higher energies (qrp+1) where our intravalley mecha, —

nism becomes ineffective.

B.P-Type Semiconductors

The original experimental work of Carruthers et ul. ,
'

in which the anomalous features of the low-temperature
thermal conductivity for rs, =1.0" cm ' were found,
was done with p-type Ge and Si. A more recent paper
by Carruthers et al.' gives additional data down to
around 0.3'K. Since the general e6ects are similar to
those found by Goff and Pearlman' at Purdue for
e-type material, presumably the same scattering
mechanism is at work. We suggest that at the low end
of the helium range of temperatures, one should also
be able to explain much of the thermal conductivity
data for p-type material by means of our resonance
phonon scattering. As Keyes pointed out in his paper'
on Ge, though, the structure of the valence band is
quite different from the conduction band and, conse-
quently, the fundamental matrix elements for the
electronic transitions )such a,s in Eq. (2.5)j used for
e-type material cannot be generalized in a trivial
manner. Still, since the "size" of acceptor states is
about the same order of magnitude (=40 A) as that
of donor states and, in addition, the valence band is
strongly affected by strains, -' '"" one would expect that
the mechanism discussed in this paper will be important.
Although we do not plan to give a complete quantitative
analysis, we think it might be useful to discuss in a
little more detail the theoretical picture of acceptor

always initially in the singlet state, and, in addition,
completely neglect the true excited states. Once again,
the phonon relaxation time for m-type Si is given by
Eq. (3.19) with 4A ~ 6A'. As in the case of Ge, one may
verify that (Ds"')a = ss(D8"'+Ds"'}0 from Hasegawa's
Tables III and IV."Averaging over the unit sphere,
we And

((Ds"'))=8/25, 7/25) 5/25 for t=1, 2, 3. (5.4)

On the whole, the donor-electron scattering mechanism
in Si is not as important as in Ge.' One finds for longi-
tudinal modes, assuming that 6A' and 46))A~,
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states and the eBect of strains on the valence band. As
in our discussion of donor states, the mixing of acceptor
states due to the eRect of static strains leads to electronic
transitions via direct phonon processes.

The highest point of the valence band of both Ge
and Si is at k= 0 and is sixfold degenerate, including the
double degeneracy due to spin. Because of the strong
spin-orbit coupling, the degeneracy is partly removed
and we have two levels, a doublet somewhat reduced
in energy corresponding to an atomic state of total
angular momentum AJ, with J=—„and a fourfold
degenerate level at the top of the valence ba,nd corre-
sponding to J=as, all centered at k=0. For Ge, to a
good approximation, one need only consider the fourfold
degenerate state in treating acceptor states. Kohn and
Schecter" have found a typical set of envelope functions
F,(r) for the ground state (fourfold degenerate). As far
as the present authors know, no one has discussed the
lowest order corrections, due to the breakdown of the
eRective-mass formalism near the acceptor ions, which
would lead to the splitting of this state. In comparing
experimental values of the ionization energy and the
best possible effective-mass ionization energy for the
ground state, Kohn finds a difference of around 15%,
i.e., an energy difference of around 10 ' eV. Presumably
the fourfold degenerate state for p-type Ge has split
into two doublets, separated by this amount. This
splitting is of the same order as that which occurred in
e-type material.

As the analysis of p-type Si involves even more
complications and poorly known parameters, we shall
not discuss it except to remark that for our purposes
it should resemble p-type Ge.

In deriving the matrix elements for the electron-
phonon interaction in e-type material, Hasegawa used
the deformation-potential approximation given in
Eq. (1.1) of his paper. For p-type material, the shift
in the band edge (J=—', ) is from symmetry considera-
tions, "
5e= Q U p(Ed"'"o p+ sE i"(J ' sJ')5 p-—-

+-'E-s" (J-J~) (1 5-~)), —(5 6)

where U s is the (cr,P) component of the strain or
deformation tensor, E&" is the energy shift, per unit
dilation, of the band edge;

~

2E„i"
~

is the splitting of
the band edge, due to uniaxial shear strain, per unit
extension along the f001) axis; and ~2E„s"

~
is the

analogous splitting for the L111$ axis. A recent experi-
mental determination4' of the shear deformation
potentials for the valence band in p-type Ge gives

E„~'=3.2 eV and E~2'=6.1 eV. The electron-phonon
interaction for phonon q is given by the qth Fourier
component of the energy shift 5e defined in Eq. (5.6),
namely,

5e,=D, (sQ, q)yD, (sQ, J:J q), (5.7)

Di= (Ed +sEMl sEus ) 1

D2 3+62 7 (5.S)

(k.,J Jsk') =
fI

(P„,J Pi, .) (P,",J&P„.) . (5.10)
(2~)'

To simplify this, we use a little foresight. Eventually we
want matrix elements between acceptor states and to a
first approximation, we shall use a simple hydrogen-type
envelope function F;(r). Since F;(r) is real, any matrix
element involving the orbital angular momentum (an
odd operator) will vanish. We conclude that only the
term in 5 Sp in Eq. (5.10) need be kept. We need
hardly add that the use of a hydrogen-type envelope
function is more doubtful for p-type semiconductors
than for e-type semiconductors. %e use it in order to
obtain a rough estimate of the matrix elements.
Returning to the basic matrix elements Eq. (5.10),
we have then

where Q, is the qth Fourier component of the displace-
ment operator Q(r), i.e., Q, is the displacement of the
lattice at position r due to the strain caused by a
phonon q.

In evaluating the electron-phonon matrix elements
for p-type material, we cannot disregard the spin as we

did in e-type material, for the angular momentum of
the hole IiJ=h(L+S), with 1.=1 and 8=-'„occurs in
the interaction operator of Eq. (5.7). In Sec. 3, part A
of his paper, Hasegawa discusses" the Zeeman energy
of donor electrons in a magnetic field. He finds that for
the doubly degenerate Bloch functions

(Pg, (L+S)gi, )= (lkI+ si,) (2')'8 (k—k'), (5.9)

y~(r) =—(y~(r),y, (r)),
where L and S are the orbital and spin-angular mo-
mentum of the electron, Ii, is the angular momentum
vector in momentum space (H3.6),@I is the 2&(2
identity matrix and sz are 2X2 matrices (H3.3) which,
to first order in the spin-orbit interaction, are equivalent
to usual Pauli matrices divided by 2.

Now in calculating the analog of (H3.29) for
p-type material, the major difference is instead of
(lti,

X&"':Z&'lofti,

) = (2s)s8(k —k')X&'& X&"& we have to
evaluate (pi„J Jpipi, ); a, p=1, 2, 3. These matrix ele-
ments are, more explicitly,

's W. Kohn and D. Schechter, Phys. Rev. 99, 1903 (1955). A
detailed theoretical discussion of acceptor states has recently been
given by D. Schechter, J. Phys. Chem. Solids, 23, 237 (1962).

"W. H. Kleiner and L. M. Roth, Phys. Rev. Letters 2, 334
(1959).

J.J.Hall, Phys. Rev. 128, 68 (1962).

(P~,J-JA'~ )=

=(.)-(.) (2 )'3(k—k'),

=-,'~.op(2s)'8(k —k'),

-(its%'4~ )(A"Alt'),
(2m)s

(5.11)
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where o. (n= x, y, s) are the three Pauli spin matrices.
Combining Eqs. (5.11) and (5.7), we find, in place of

(H3.29), the basic result

(p„be &+~s rp„,)

=~its(Dt & (e~)-V-+Ds( Z (et)-o-ape p/4) }

taJ

O

lley 2@4

ipn Bond

&( (2s.)'b (k—k' —tt) for +sign.

= as&* (same term as above with q~ —q)

for —sign. (5.12)

To go any further requires a knowledge of how the
fourfold degenerate effective mass ground is split into
two doublets (double degeneracy always remains in
the absence of a magnetic iield) and the appropriate
doublet acceptor wave functions in terms of the func-
tions C, (r)=F, (r)fs(r). Instead of (H3.31) we have,
of course,

Doublet(2, 3)
Sing let (4

-l4—

State

oublet (2,3)

ng let(43

-Triplet
V

Singlet

g let(l)

(@,(r),bess" 'C'2(r)) =~s«(

where l . } is identical to the factor enclosed in { .}
in Eq. (5.12) and f(q) is the usual cutoff factor given
in Eq. (2.6b).

One can already see that qualitatively the scattering
of phonons via virtual excitation of "holes" in p-type
material will be similar to that found in Secs. III and
IV of this paper for e-type material. Since the magni-
tude of D2 is smaller than E„, the eBect may be smaller.
This might be counterbalanced by a possibly smaller
energy splitting in p-type material. The fact that E (T)
continues to decrease' as T4 down to around 0.3'K in
"Ge 7" (doped with 2)& 10" indium atoms cm ')
suggests that indeed the relevant ground-state splitting
in indium is closer to 10 4 eV than to 10 ' eV.
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Pro. 7. The eGect of uniaxial stress in the [111]direction on the
lowest four donor states in Sb-doped Ge. This is based on Refs.
10 and 31. 9'e have also included the Grst "effective-mass"
excited state and the energy shifts of the four conduction valleys.

As Fritzche reviews in Sec. II, part 8 of his paper, "
a, uniaxial stress along [111]destroys the degeneracy
of the four conduction-band valleys. 4' The shift of the
first valley along [1111 is by deformation potential
theory, —3e, similarly the other three valleys along
[1 1 —1], [1 —1 1] and [1 —1 —1] are raised by an
amount e, with

C. Phonon Scattering in Strained n-Type
Semiconductors

e= —', E„S44X
=3.11X10 4x eV, (5.14)

YVe will now outline the effect of uniaxial strains on
our resonant donor electron-phonon scattering mecha-
nism. A semiquantitative analysis was given by Keyes
and Sladek' in attempting to explain their data on the
piezothermal conductivity of m-type Ge.

This generalization is elementary if we assume that
to lowest order the only effect of the uniaxial strain is to
modify the relative valley contributions, i.e., to modify
the numerical coefficients mrs" in Eq. (2.1). A detailed
theory of the effect of strain, which takes into account
that the envelope functions are not all identical and,
in addition, are altered by the strain in diferent ways,
has been given by Fritzsche" in a recent paper, extend-
ing the original work of Price. ' Impurity conduction
via- hopping between donors is very sensitive to these
corrections but, for our purposes, slight changes in the
radius of the shallow impurity states are not important
to a erst approximation,

(1/v2) a,
(v) ~Qg

.(1/v2) b,

(1/Q6) b, (1/Q6) b, (1/Q6) b l

1/v2, —1/v2, 0
1/g6, 1/g6, —2/g6—(1/v'6)~, —(1/C6)~, —(1V'6)~.

(5.15)

where d represents the donor index (rows), s represents
the valley index (columns) and a—= (1+c{a'))"',

4' H. 1'ritzche, Phys. Rev. 119, 1899 (1960).

where the stress X=—10sx dyn cm ' (positive for com-
pression and negative for extension). In Fig. 7, we have
sketched the effect of the stress on the energies of the
four donor levels, as first calculated by Price (see Fig. 5
of Ref. 10), for Sb-doped Ge. As-doped Ge would be
identical only the energy differences would be about
seven times larger. Solving for the o;g("' coefficients,
Fritzche finds
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b=—(1—c(x'))'», with

c(z') —=—,'(2~' —1)(x"-—~'+1)-'» x'=—4e/4g. (5.16)

Using (5.15) instead of (2.3), it is a straightforward
task to repeat the calculations discussed in Secs. II and
III of this paper. The thermal conductivity should
steadily approach that of pure Cje as a uniaxial com-
pression along the L111$axis is increased. On the other
hand, for uniaxial extension, the donor electron-phonon
resistance approaches some fixed nonzero value. Plots
of L1+c(x')1'» versus x' are very useful in predicting
the effect of uniaxial strains. We may remark that the
dilational part of the stress does not enter in the matrix
elements. (In Ref. 31, the signs of n4&") are wrong. )

Some recent work by Keyes and Sladek~ on the
piezo-thermal conductivity of n-type Ge is of interest.
One can obtain considerable insight into the expected
differences between the unstrained and strained samples
simply by looking at how the valley-orbit energies 6;
change, for one expects the scattering strength to be
1/b,s. One Sb-doped sample (n,„=2)&10"cm ') was
put under a stress of =—1.2)&10' dyn cm ' along the
$111j axis. A glance at Fig. 7 will immediately show
that the scattering will be decreased only slightly, at
least from this rough argument. In contrast, the scatter-
ing should be considerably decreased if the same sample
was compressed by the same amount. In the latter case,
the lowest two energy levels steadily separate as the
strain increases. This sort of argument may be refined,
of course, but detailed comparison with experiment
requires arduous, though straightforward, calculations.
For large enough compressions, one may use the fact
that all electrons are effectively in one valley to simplify
the work.

In the expression one would get for the reciprocal
lifetime 1/r, of phonon q, the true resonances would
occur as before. However, instead of one resonance
factor, one would find

where b~=—E2,3
—E4 and 82=—Ej—E4. In previous sections

we noted that the temperature T~ at which a resonance
would be most noticeable is given by T~&pT&, where
kT~—=8;. This implies that we should get some depres-
sion in the thermal conductivity of the sample of Keyes
and Sladek somewhere around 1'K due to 5~ transitions
and around 3.7'K due to 62 transitions. In our discussion
so far, we have assumed that the donor electrons are
always in the lowest donor level (4). It has appreciable
probability of being in the doublet (donor states 2 and
3). As a result, we can have a new resonant transition
between the doublet and the upper singlet (level 1), the
energy difference being 8s=—E&—Es,s. This is =2(4h)
or 1.2&(10 ' eV for the strained sample of interest.
The depression arising from this resonance would be
expected somewhere around 2'K. It is extremely

tempting to identify these 52 and 6& resonances with the
noticeable depression in the enhanced conductivity of
Keyes and Sladek's sample around 2.5'K.

F(q, 1)= f~(~(q, 1)/2 ~(q', 1)), (5.19)

~ C. Herring, Phys. Rev. 96, 1163 (1954).
4' For a more extensive review article on phonon drag, see C.

Herring, Halbleiter und Phosphore, edited by M. Schon and H.
Welker (Frederick Vieweg und Sohn, Braunschweig, Germany,
1958), p. 184.

D. Phonon-Drag

In Sec. IV, we concentrated on the lattice thermal
conductivity of doped semiconductors as a means of
studying the eGect of our resonant electron-phonon
mechanism. In some ways, the lattice contribution to
the thermoelectric power Q„provides a more interesting
example. We do not plan to discuss Q„versus T in any
detail in this paper but simply indicate the extra
features which should arise if our mechanism is at work
in n-type Ge.

Physically speaking, Q„results from the drag on the
thermal electrons exerted by the phonons which are
traveling under an applied thermal gradient. In the
basic papers4' ~ by Herring, the phonon drag in semi-
conductors is treated both qualitatively and quanti-
tatively and we refer to this lucid work for further
information. In a semiquantitative way, he shows that

Q.=2 ~PF (q, &)rr(q, &)/~T,
q, t

where p is the thermal electron mobility, 7z (q) is the
total relaxation time of phonon q due to the various
scattering processes, and F (q) is the fraction of the total
momentum given up by the electrons which is delivered
to phonon q. Perhaps the key factor in (5.18) is F(q),
which is a strongly peaked function for q of the order
of the thermal electron wavevector. This means that
only the low-energy phonons are of any importance in
phonon drag. As a result, one usually includes normal
phonon-phonon and boundary scattering in r&(q);
impurity scattering generally aAects phonons of high q
and, hence, is disregarded. However, our resonant bound
electron-phonon mechanism is important for low q pho-
nons. While the correct form of rr(q) is quite compli-
cated, the feature we wish to emphasize is that 1/rr(q)
is strongly peaked for certain values of phonon mo-
menturn, which we shall denote by gg, as a result of
the resonant scattering mechanism. We wish to explore
some of the qualitative consequences of this on Q„
within the general framework of Herring's formulation
of the problem. Our goal is modest —namely, to find the
temperature at which our resonant scattering mecha-
nism will have its strongest effect, giving rise to a
noticeable depression in Q„.

We now proceed to study the factor F(q, t) in Eq.
(5.18). In terms of the crystal momentum fed into the
mode (q, t) per second, denoted by E(q, t), one has
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where f, is the fraction of crystal momentum lost by
the thermal electrons and given to the low-energy
phonons of polarization t. Herring has evalua, ted
R(tf, l), using the thermal electron distribution (given
by classical statistics) and an electron relaxa, tion time
r, (E)~ E'". For simplicity, a single-valley semi-
conductor with a spherical energy surface was assumed,
and, thus, only longitudinal phonons interact with the
thermal electrons. In Fig. 5 of Ref. 42, the function
R(q, l) is drawn as a function of q for several values of
r. For pure phonon scattering (r= ——,'), R(q, l) is
peaked at qsr (T)= (2mb T/It' )'" where m is the effective
mass of the electron. However, we note that there is
more "weight" to the right of q~ than to the left.

We wish to 6nd the temperature T~ at which

P, R(q)rr(q) has a minimum. One might think that
this would occur when qg

——qsr(T), where qg and qsr
were defined earlier. Because of the extra weight on
the right side of R(q, l), though, one expects that q~ is
larger, say around 2qsr(T). In principle, all one needs
to do is to find the minimum value of P, R(q)rr(q) as
a function of qg. Until the arduous calcula. tions are
made, we can only say that

where

Q„=ftvPrr(q)/yT,

q=b(2mkT/ts')'" 1&b&2.

(5.20)

(5,21)

This, in turn, implies that Q„should be depressed at a
temperature given by

Tsf kTJt, /(b 25Ãto~s ) ~ (5.22)

The constant b can be considered as a sort of asymmetry
factor since it depends on the form of R(q, l) around
qsr(T).

Now, unfortunately, Ge is a many-valley, highly
anisotropic semiconductor, while the preceding analysis
assumed a one-valley isotropic model. One must
recalcula, te R(q, l) making use of the longitudinal
effective mass m~= 1.58mp, and the transverse effective
mass m~=0.08mp, where mp is the free electron mass.
The calculations are formidable and we shall simply
quote Herring's statement that one expects the new R
to be some sort of average of the old E curves with
diGerent horizontal scales. One certainly expects Eq.
(5.22) to hold again but with an "effective mass" m*
replacing m. XVe do not see any simple way of deter-
mining what m* will be, except that m~&m*&m~.
In any event, the basic result is that T~=const T~2,
where the constant depends only on the semiconductor
while T~ depends on the donor as well. If one had
several doped samples of one semiconductor, each with
a different donor, the above functional relation could be
checked. Note that in this more general case, we still
only consider longitudinal phonons (and thus use 8& in
(5.22)j since they are most strongly scattered by our
resonance mechanism.

The next task is to estimate the value of Tg. For
As-doped Ge (see Fig. 3), we have a broad region of
maximum scattering around &u=0t/re plus a true
resonance at a much higher frequency to=46/A. The
former corresponds to a resonance temperature of
around Tg=12'K and the latter to T~=48'K. We
note they are well separated and, in addition, the true
resonance occurs in a region of strong phonon-phonon
scattering and, hence, will have little effect. In the case
of Sb-doped Ge (see Fig. 2), the true resonance occurs
at a frequency only slightly less than to=v&/r& and,
consequently, the two peaks Inerge. Although there is
more weight on the right-hand side of the merged peak
at 6.6'K, we shall take this value as our effective reso-
nance temperature Trt. From Eq. (5.22), we conclude
that the expected depression in Q~ will be at a lower tem-
perature for Sb compared to As, T~(As)/Tir(Sb) &3.2.

We can use Go6's measurements'44 of the thermo-
electric power to test the above predictions. The
essential 6rst step is to identify the expected dips.
Taking b=2 and m*=0.22ms (the "density of states"
effective mass) one finds T~(As)=43'K using Eq.
(5.22). Undoubtedly m* will be larger and, thus& all we
can say is that the resonance dips should make their
appearance below or around 40'K. Now there seems to
be striking evidence of a depression in As 233I, As 233II,
and As 226 at 15'K. All the other samples are consistent
with a depression at this temperature, but a general
scatter of data or lack of points makes it dificult to say
anything more. Using this experimental value of
Tsr(As), we predhct that Tsr(Sb)&4s7'K. Experimen-
tally, the only definite dips in Q„ for Sb are at 5'K
(especially noticeable in GaSb 168, GaSb 170, GaSb 183,
and SbGa 204). Depressions in the region around 10'K
are probably due to experimental technique.

To judge the validity of the preceding analysis w'oukI

require a more detailed investigation. Experimentally,
it would of great interest to see if p-doped Ge has a
depression at a much higher temperature, as we would
predict. A study of strained samples would be useful
since the predicted depressions in Q~ should move as the
relevant values of T~ (corresponding to the true
resonances) change, i.e., as the applied stress changes.

For the sake of a clear exposition of the main ideas
involved, we have left two remarks for the end. First
of all, Eq. (5.22) was derived mainly on the assumption
of the existence of a resonant scattering mechanism for
the longitudinal phonons. Actually, the particular
interaction we are interested in arises from the shearing
strains on the bound electrons due to the phonons, and
therefore, contrary to what we implied, cannot occur in
an ore-mlley, single-sheeted semiconductor. The second
point is that we have not considered that part of Q„due
to the transverse phonons, which also interact with the
thermal electrons in a many-valley semiconductor such

~ J. F. Goft and N. Pearlrnsn, Purdue University Quarterly
Reports, 1959 and 1960 (unpublished).
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as Ge. As we mentioned above, our resonant mechanism
scatters longitudinal phonons more strongly than
transverse phonons and, hence, the depression in Q„ is
smaller for the latter. In addition, the "transverse
phonon" depression will occur at a higher temperature

than that found for longitudinal phonons t mainly due
to the substitution of v, for t7P in (5.22)]. Since
phonon-phonon scattering is dominant at these tem-
peratures, the bound electron-transverse phonon inter-
action is negligible for a second reason.
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Theory of Kohn Anomalies in the Phonon Spectra of Metals
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An expression is derived for the change in frequency of the lattice vibrations in a metal caused by the
interaction of the phonons with the conduction electrons. The various factors aGecting the magnitude of
these Kohn anomalies are considered, and a connection is made with the value of the electrical resistivity
of the pure metal. The valence of the metal is found to be the most important factor determining whether
such anomalies should be observable. The results of the calculations are applied to Pb, and give good
agreement with experiment.

Dt'rRODUn'rom
' T has been pointed out by Kohn' that the interact. ion

- of the conduction electrons in a metal with each
other and with the vibrations of the crystal lattice
should cause anomalies in the phonon spectra of metals.
In particular, it has been suggested that the group ve-

locity of phonons of wave number q will exhibit a
logarithmic singularity whenever

q=2kr+g,

where kr is the wave number of an electron at the Fermi
surface, and g is a vector of the reciprocal lattice. There
is, at the time of writing of this paper, some controversy
as to whether these anomalies should be observable
experimentally. While evidence for such behavior has
been found by Brockhouse et at.' in their investigation
of the lattice vibrations of lead, Harrison' has suggested
that this rejects the form of the electron dispersion
relations rather than being directly due to the electron-
phonon interaction in the way envisaged by Kohn. It is
the purpose of the present work to calculate the expected
magnitude of the Kohn anomalies in various metals
in a more quantitative way than has hitherto been
attempted.

A previous calculation of the magnitude of this effect
is due to Woll and Kohn4 who adopted a semiclassical

approach to the problem of calculating the vibration
frequencies of a lattice of point charges in a sea of
interacting electrons. Their method is a simplification

*Magnavox Research Fellow.
' W. Kohn, Phys. Rev. Letters 2, 393 (1959).
~B. N. Brockhouse, K. R. Rao, and A. D. B. Woods, Phys.

Rev. Letters 7, 93 (1961);B.N. Brockhouse, T. Arase, G. Caglioti,
K. R. Rao, and A. D. B. Woods, Phys. Rev. 128, 1099 (1962),

~ W. A. Harrison, Phys. Rev. 129, 2512 (1963).' E, J. Woll, Jr. , and W. Kohn, Phys. Rev. 126, 1693 (1962).

of Nakajima's' quantum-mechanical calculation and is
essentially a Hartree method which considers only terms
of first order in both the electron-electron and electron-
lattice interactions. However, while it is very satisfying
to be able to calculate the required quantities from first
principles, one cannot have complete conMence in a
calculation that neglects electron correlation. A more
serious criticism arises when it is pointed out that the
result givenby these authors contains terms that involve
the product of parameters describing both electron-
electron and electron-lattice interactions. Because the
Hamiltonian is diagonalized only to first order in each,
the validity of such terms is clearly in doubt, and in
fact does, as we shall see, lead to contradictions.

The eRect of the intera, ction of the electrons is to
attenuate the Kohn anomalies. In the Hartree approxi-
mation, this attenuation is quite large; this is, however,
an overestimate of the signi6cance of these interactions,
and is considerably reduced by the eRect of the lattice
potential on the electron wave functions,

We can separate the amplitude of the Kohn anomalies
into two parts: The first part is due to the second-order
corrections to the phonon energies caused by the elec-
tron-phonon interaction; the second part, which we
describe by an attenuation coefficient, n, arises from the
presence of in6nities in the derivative of the matrix
element for the interaction itself. No attempt is made in
this paper to calculate o., although some of the factors
affecting its magnitude will be discussed. The calculation
of the direct eRects of the interaction is a matter for
greater confidence, for here we may have recourse to
experiment. The electrical resistivity of pure metals is

S. Nakajirna, Busseiron Kenkyu, 65, 116 (1953). More ac-
cessible are the summaries of his work given by G. V. Chester,
Phil. Mag. Suppl. 10, 357 (1961) and in Ref. 10.


