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Diffraction of Light by Ultrasound in Anharmonic Crystals
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Due to anharmonic effects an initially sinusoidal ultrasonic wave of finite amplitude gradually distorts
as it passes through a crystal. In the present paper we calculate the asymmetry in the diRraction pattern
formed by passing monochromatic light through a cubic crystal perpendicular to the direction of propagation
of such a distorted longitudinal ultrasonic wave. The solution of the nonlinear wave equation for the crystal,
obtained by iteration to first order in the nonlinear terms, is used in the di8raction integral to obtain an
expression for the light amplitude in the diGraction pattern. The first-order intensities are computed for
NaCI. In a typical case, a wave of strain amplitude 2X10 produces a 10% difference in intensity between
the first positive and the first negative orders. These results suggest a method for obtaining the third-order
elastic constants of transparent crystals.

I. INTRODUCTION

'HE distortion of finite amplitude ultrasonic waves
in liquids is well known. ' As an initially sinus-

oidal ultrasonic wave progresses through a liquid its
waveform distorts. The distortion increases both with
increasing sound amplitude and with increasing distance
from the source. Consequently, a diffraction pattern
formed by passing a monochromatic light beam through
the liquid perpendicular to the direction of sound
propagation rejects this distortion by becoming asyrn-
metric. For example, the intensity of the first positive
diffraction maximum is not equal to the intensity of the
first negative maximum. Ke have performed a calcula-
tion which indicates that, as suggested, a similar effect
might be observable in transparent crystals. Further-
more, if the distortion of the waveform in crystals is
assumed to be due to the departures from Hooke's Law„
then the asymmetry in the intensity of the diffraction
pattern can be related to the third-order elastic con-
stants of the solid. Thus, measurements of the third-
order elastic constants for transparent crystals by
optical techniques might be feasible. Since determina-
tions of the third-order elastic constants are with
few exceptions'' nonexistent, this apparently simple
though, perhaps, not very accurate technique might
be useful z

In the present paper an expression for the light ampli-
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tude in the diffraction pattern is derived for longitudinal
waves in cubic crystals. The wave equation with anhar-
monic terms included is solved to lowest order in the
nonlinear terms. Numerical values of the intensities of
diffraction maxima for XaCl are computed as a function
of sound amplitude and the distance of the light beam
from the sound source.

II. THE WAVE EQUATION

Consider the propagation of an ultrasonic plane
traveling wave in crystal rod which has a transducer
attached at x=o. The nonlinear wave equation for
longitudinal waves is a special case of the equation
derived by Seeger and Buck':
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where u is the particle displacement in the x direction.
If the coordinate axis are parallel to the cubic crystal
axis (i.e., the x direction is the [100j direction), then
we have

+11/p y
ct (3cll+ 6+111)/p y

where p is the density of the undeformed crystal and the
C's the elastic constants (Voigt notation).

Since the effect of the nonlinear term in Eq. (1) is

small, an approximate solution can be obtained by
iteration. Let tte be a solution of Eq. (1) with tr= 0. Then
let NI be a solution of
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Thus, an approximate solution of Eq. (1) is u=tto+ur.
This procedure can be repeated any number of times.
If we assume a boundary condition at x=0 correspond-
ing to a sinusoidal driving amplitude, u(0, t) = —A sinQt,
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then the solution of Eq. (1) iterated twice is
O 7zxxxng j

(AE) 'axI(x, t) =A sin (Ex—Qt}— cos2 (Ex—Qt)

A 'E4u'x'
[sin3(Ex —Qt)+ sin(Ex —Qt)j

32c4

(AE)'a'x
+ P, cos3(Ex—Qt) +cos(Ex—Qt) ) . (2)
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g= sin 8'= 8

~Positive
Orders
4 &0

This solution holds for x small enough so that A E'x((1.
Thus, as a result of the nonlinearity higher harmonics of
the fundamental driving frequency appear in the
solution.

III. DIFFRACTION OF LIGHT

The interaction of ultrasonic waves with light in a
crystal involves the relation between the dielectric con-
stant and the strain. The elasto-optical coe%cients
P;,ki are defined by'

I' z(". 1. Experimental arrangement for observing the diffraction
e6ect discussed. The crystal C has a transducer T bonded to it at
x =0. A beam 8 of monochromatic light passes through the crystal
producing a diRraction pattern D.

where p is the width of the light beam, y(x) the index
of refraction, I the thickness of the crystal, xo the posi-
tion of the light beam along the x axis, and l the sine of
the angle between the direction of the incident beam and
the direction of observation.

The effect of the ultrasonic wave is contained in p(x):

t)Kj Pitktrtkl 1 p (x) =ps+ d p (x) =ps+ 6e (x)/ 2 e'ts . (6)

where gp~ is the strain and 8;; is the dielectric imperme-
ability tensor, which is related to the dielectric constant
e;, by e;,,B,k = t'i;k. (The summation convention that re-
peated indices be summed from 1 to 3 is implied. ) Let e

be the dielectric constant of the unstrained crystal. For
the case of cubic crystals e is isotropic and, thus,

~'68@, and

Now De(x) is obtained by substituting the solution (2)
into Eq. (4) (keeping only terms of order A'E') and
using the result in Eq. (3):

A'E'a
t) css(x) = —e'p„ii AE cosEx+ Ex sin2Ex
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The strain tensor is related to the displacement by

(3)
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4 2c'

1 BN, cist& c)Stk ctttk

n, ,= ++-
2 axt ax; ax, ax, f

A rigorous discussion of the propagation of electro-
magnetic radiation through a medium with a varying
dielectric constant can be given in terms of Maxwell's
Equations. ' However, a simpler procedure based on the
diffraction integral" has been shown to yield the same
results for small orders in the diBraction pattern. 4' ""
The amplitude of diffracted light of wavelength X is
proportional to (see Fig. 1)
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s J. F. Nye, Physical ProPerties of Crystals (Oxford University
Press, New York, 1957), pp. 243—255.' M. Born and E. Wolf, Principles of Optics (Pergamon Press
Inc. , New York, 1959), pp. 590—596.
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X (xp+p/2)

Ep ~(ee—o, s)

exp' t$+kiL cos(—
E

+ksL) sin2$+ksL cos2$ d$, (8)

where

j=Ex, k= 2'/), ki ——-', (ke"'pssiiAE),

ks ——ki(AEa/4c'), ks= ki(-,'AE) (1—a/2c') .

Using the identities

ef z. in r P J (s)etnr
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The time dependence has been omitted since the
velocity of light is about 5 orders of magnitude larger
than the velocity of sound.

If the result Eq. (7) is substituted into Eq. (6) and
this result in turn is substituted into the diffraction
integral Kq. (3), we have
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Eq. (8) can be rewritten

00
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X
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(10)

where n(/, m, qt, q) = (k/K)/+m+212+2q. The diffraction
maxima occur when n(/, m, n, q)=0. In this case the
second term vanishes. The expression for the light
amplitude at the diGraction maxima is

E,z= g 6"+qJ„(krL)J„(ksLExo)J,(ksL). (11)
sL, R, q=oo

The zeroth-order maximum occurs when /= 0 and m+226
+2q=0 and has amplitude

Em~i'&= Q (—1)"6 qJ2~2q(krL)

XJ (ksLExo) Jq(ksL) . (12)

The &1st orders occur for /= &K/k and m+2n+2q&1
=0, and the corresponding amplitude is

8, i+'l= P '+'—(—1)"J~ „,(k L)

XJ„(ksLExo)J,(ksL) . (13)

Since p/2«xo except when the light beam is very close
to the source of sound (x=0), and since Ja(ksL)) is a
slowly varying function of $ (ksL is small), the integral
can be approximated by expanding about the point
$=Exs..

J„(ksL$)=J„(ksLExo)+2ksL($ —Exs)
X[J. ,(k,LKx,)—J.„(k,I.E*,))+" .

The integration in Eq. (9) is then easily performed, and
we have

IV. NUMERICAL RESULTS

The intensity of light at various diGraction maxima
can be calculated from Eq. (11). (Intensity=

i
E „ i'.)

We consider, for example, longitudinal waves in the
[100j direction in NaC1. Direct measurements of the
third-order elastic constants of NaCI have not been
made. However, Hearmon' has computed three linear
combinations of third-order elastic constants from meas-
urements of the variation of the ordinary elastic con-
stants with hydrostatic pressure. "Thus, for NaC1, he
finds that 6C111+4C112=—'100X10" dyn cm '. If the
ratio of Ciii to C~i2 in Nacl is assumed to be the same
as in Ge, ' then the value of Ci~i can be estimated as
Cy] y

= —8.8X10" dyn cm '. The values of the other
constants for NaC1 needed in Eqs. (8') are '4 "

p2211= 0.178 i

C11=4.8/X10u dyn cm '

thus, a/cs= —7.87,
tt=+0=1.54.

Let us choose the following reasonable values for k,
E, andL:

k=22r/X=106 cm ' E=2 /qAr=126 cm ' L=2 cm.

In the range of interest the strain amplitude AE is
approximately 3X10 '. Hence, one obtains k3L 10 ',
and in the summation over q in Eq. (11)all terms except
the zero-order one are negligible. Using Eq. (13) we
have computed the intensity of the erst positive and
first negative maxima as a function of amplitude AE,
Fig. 2, and as a function of distance from the source
xp) Flg. 3.

For directions of propagation in a cubic crystal other
than [100$, one simply performs a rotation of axis in
both the wave equation and in the relation between the
dielectric constant and the strain. The wave equation
for longitudinal waves in the [110jor the [111jdirec-
tion is the same as Eq. (1).The definitions of c' and a,
however, are changed as follows: For propagation in the
[110jdirection we have

c'= (Crr+C12+ 2C44)/2 p )

42= (3/ P) (Cll+C12+ C44+C111+C112+C166)i

and for the [111$direction,

c'= (1/3p) (C11+2C12+4C44),

(1/P) (C11+2C12+4C44)

+ (2/3P) (Clll+2C112+C144+2C166+ sC123+ sC466) .

"D.Lazarus, Phys. Rev. 76, 545 (1949).
'4 R. S. Krishnan, Progress ie Crystal/ Physics (S. Viswanathan,

Madras, 1958), Vol. I, p. 128.
"Reference 14, p. 80. We use the room-temperature value

for C11.
16 AnMrecan Inststqste of Pkysqcs Handbook (McGraw-Hill Book

Company, Inc. , New York, 1959), pp. 6—23.
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The strain optic constants in the rotated coordinate
system are derived from

Pijsl +ia+jP&38&lyPaPIr p

where the element a;; is the cosine of the angle between
the primed x; axis and the unprimed x; axis. For the
t 110]direction this yields
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FIG. 3. The intensities of the first positive and negative maxima
The expression for the light amplitude, however, retains are plotted as a function of x0, the distance between the light beam
the same form. and the source of sound, for two values of the strain amplitude.
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V. SUGGESTED EXPERIMENT

To measure the third-order elastic constants with an
experimental arrangement such as shown schematically
in Fig. 1, a sound wave of suKcient amplitude must be
propagated through the crystal. The sound should be
suKciently intense to produce a strain amplitude AE
of about 2X10 ' or more. The strain amplitude can
easily be measured as follows: If the light beam is
passed through the crystal near the transducer (2:8=0),
then the ratio of either the erst positive or 6rst negative
diffraction maximum (in this case they are equal)
to the central, zero order, maximum is given by
LA(&1L)/&o(kiL)]2. This determines kl L, and, since
the other constants in the definition (8') of ki are known,
the strain amplitude AE can be computed.

When a suflicient amplitude is available, plots such
as Fig. 2(a) or (b) and Fig. 3 can be obtained experi-
mentally and fitted by Eq. (13) using the arguments of
of J and J„as adjustable parameters. This is particu-
larly easy for Fig. 3. The intercept at @0=0 determines
k~1., and the slope determines k2LK. These two param-
eters in turn determine the two unknowns, the strain
amplitude AIC and the combination of third order of
elastic constants.

D. I. Solef and E. F. Kelly of the Westinghouse
Research Laboratories are investigating experimentally
the diGraction of light by ultrasound in NaC1 and KCl.
So far, the experimental picture seems to be roughly
what one would expect from our calculations. However,
quantitative comparisons have not yet been possible.
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