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The problem of high-frequency conductivity of a degenerate semiconductor is investigated by a kinetic
description. The 6nite duration of encounters is taken into account in a self-consistent fashion which properly
includes collective eGects. This treatment is an extension for quantum plasmas of the Dawson-Oberman
method given for classical plasmas.

I. INTRODUCTION ent perturbation theory in the infinite time limit for
the calculations of collisions if the frequency of the
driving field is higher than the collision frequency.

In Sec. II we introduce our model and derive the
basic equations. Section III is devoted to the numerical
calculation of the resistivity and to the discussion of the
results.

ECENTLY Dawson and Oberman" developed a
method for obtaining the absorption of electro-

magnetic waves in classica/ plasmas, taking into account
collective e6ects. They have used an elementary model
for the classical plasma, where the ions are infinitely
heavy and randomly distributed' or in thermal equi-
librium with the electrons. ' Their results are in accord
with a complete treatment given by Oberman, Ron, and
Dawson. '

The purpose of the present. work is to calculate the
absorption of electromagnetic waves in heavily doped
semiconductors. This system is approximately described
by an elementary model, where randomly distributed
fixed ions are embedded in a dense electron gas. ' Our
treatment is a generalization of the Dawson-Oberman
work to a quantum system. For the derivation of the
absorption coefficient one may use more sophisticated
methods, e.g. , Green's function approach, ' which al-
though having the advantage of being rigorous, are
rather elaborate. Ke feel that for the sake of simplicit;y
it is advantageous to derive the absorption coeS.cient
by employing an elementary model thereby obtaining
a simple physical interpretation.

We approach the problem using a quantum-mechani-
cal kinetic equation for the electrons taking into ac-
count their collisions with the ions, without carrying
the usual time-scale restriction inherent in the well-
known transition probability approach to transport
phenomena. ' It is clear that for applied fields changing
rapidly in time, one cannot use the Dirac time-depend-

11. MODEL AND BASIC EQUATIONS

In our model of the degenerate semiconductor, the
appropriate Hamiltonian is

gg2

where the r; and R& are, respectively, the electron and
ion coordinates, e and ns are, respectively, the effective
charge and mass of the electrons while embedded in the
crystal (for a detailed discussion of the physical assump-
tions, see Wolff4). In Eq. (1),p, represents the electron's
momentum and Ze the charge of the ions. The presence
of a prevailing spatially uniform elect.ric field E, oscil-
lating in time at the frequency ~, adds to the
Hamiltonian

IIp —P eE re—* —'—

This field represents an el.eetromagnetic wave in the
limit where the wavelength is much longer than the
Bohr radius of the electrons. We also restrict ourselves
ta frequencies much greater than the collision frequency.

'We now introduce the one-electron density matrix*This work was accomplished under the auspices of the U. S.
Atomic Energy Commission.
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F(r„rt',t) = Qt(r, 't)P(rrt)),

where lt (rt) and ft(rt) are the annihilation and creation
Heisenberg operators for the electrons. For any operator
A we define

(A) =Tr(p.f ), (4)

where p, the many-electron density matrix, is constant
in time. The signer distribution function for the

943



RON AN D N, TZOAR

in terms of F(r~,rr, )electrons7 is given in

t'(, , ) = dr e'&'F(x+r/2, x——,'r, t).
4 (p, t) =- C (9+se

—'"')

sit limit, where the number of electrons

equations for ~ ~x,p, ,t, in t e rest ram with

d p'dq
I 9 9'—

I
'f(p', q', t)

Ze gI p+ee '"'—R~I ', (11)

——ess-'" —)F(*,y, &)

&at m ax ap

where

= —se dr e
—'&'[C (x+r/2) —C (x——,'r)]

e's"F(x,y', t),
dp

(2sr)'

C(xt = —e dx'dyI x—x'I-'F(x', p, t)

+Ze PI x—R, I

—'

(6)

(7)

f(pqt = 0, , g=F( +se '"'
q ic—omse '"', t). (12)

ow assume that the right-hand si e of

librium solution of that equation,

) = [exp&(p'/2 —p)+1'j ',f (P

he inverse temperature in e gyener units and
'

l f th o i ter cting elec-t is the chemi p'cal otentia o e
hat the discrete nature

g t dth t th elec-
words weassumet a

of the lolls caus
he re ion of frequencies un

~ ~ ~d(h odtions is largely inerti-tia-dominate e c
and P, the smallThe equations for anmainly reactive . e

departure from equilibrium are
field of the electrons and t. .d the 6eldthe self-consistent e oIs

due to the ions an is a
and (7) were o tatne d under the as-

correlations inthe electron-e ectronsumption that e

systematically ne-han e eGects, are syeluding t eir exc g
of this neg ect asglected. The validity o

h l t -l to o l-
eneral treatments o e s.

fact that the e ec ron-
l to eff t of o dn e contribute ony o e

order, w i eh l we restrict ourselves to e
order only.

'
n of the coupled Eqs. (6) andf cilitate the solution o t ecoTo facl

Vi win transformations:(7) we perform the fonowing r

y= x—ae
—'"',

q=p+iumee '"'

I

——f(p, q, t) =- —se fs(q')
&at m ap

«e '" "'B(P+-'r)—
lt (9—

s
—-'r, (14)

and

dp'dqI 9 e'I 'f(p', q, t—)

Ze+Ip+ee —*"'—R(I
—.

dp exp(sk. 9)f(p),f( )=

of a functionIf we denote t eh Fourier transform

f(e) by
1

(16)

where
e= (e/nuu') E.

s. 14) and (15), we obtainand Fourier-analyze Eqs. a

Equations (6) and (7) become

(8 q 8
I

—+——f(p, q, t)
&at m ap

(
——q k f(k,q, t)
193 ss

s(k, t)[f—s(q+-,'k) —fs(q —k/2)], (17

-"[C(p+ /2, t) —C(p —/2, t)l= —ie dr e ''l'.
I

e*&"f(y q' t), (10)
(2s.)'

4me
lt (k, t) =—

dq f (k,q, t)

'k R —se-'"') j (18)+ +exp s ~
—se

(2s.)'k' ~

(1960) [translation: Soviet Phys. —Usp.

' it is de6ned by the limit ~ —+ 0,Since the conductivity is
we shaH expand the secon term on t erig
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(See Ref. 1, Appendix A for the justification of this
expansion. ) With this linearization we can decompose
the solutions of Eqs. (17) and (18) into two parts cor-
responding to the two source terms on the right-hand
side of Eq. (19):

f(k,q, t) =f, (k,q)+ f(k,q,po)e
—'"',

P(k, i) =P, (k)+P(k, po) e—'".
The solution for the static part is

(20)

of Eq. (18):

g exp[ik (Rg —ae-'"')j=P e*" &[1—ik ee—'"'] (19)
l

~o„=(4pre'ri/m)'ip is the plasma frequency, and

I(io) = dk k'
8(k,0) 8(k,po)

Equations (26), (27), and (28) are our final results
for the high-frequency and long-wavelength conduc-
tivity for a degenerate semiconductor.

III. ASYMPTOTIC VALUES AND
NUMERICAL CALCULATION

In this section we are concerned with explicit evalu-
ation of the resistivity given by

R(po) = Re1/o (co)

4me2Z 1
0"(k) = P elk R)

k' (2pr)' h(k, 0)
(21) 1 8;(k,~o)

dkk', (29)
6n' me~„s co [8,(k,co)7'+[8;(k,po)7'

and for the dynamic part

4xe2Z ik s
P(k, po) = eik~RI,

k' (2pr)' h (k,co)

where 8(k,co) is the dielectric function given by

where b„and 8; stand for the real and imaginary parts
of 8(k,co). In the following calculation we approximate

(22) 8(k,co) by its zero-temperature value (see, e.g., Glick and
Ferrells). R(co) is explicitly evaluated in the Appendix
for the limits po/a~&1 and po/pop))1, where pop is the
Fermi frequency, and given by

4me2

8(k,po) =1-
02 (2pr)'

dl f.(1+k/2) —f.(p—lk)
. (23)

p k/m —~o—i3
Gl/po p((1,

(30)R(p~) = (2pr/cop)nr, ln —1
fnr, r,((1

Following Dawson and Oberman' we obtain the aver-
age Geld on the ions due to the electrons:

and
R(co) = (Spr/3)ar co p"'co "' co/co p))1. (31)

(E(~))-=
(2pr)'

k
dk—k s

k2

1 —Q e '" & ' R') (24)
h (k,0) 8(k,co) A' '~

where ( ) stands for the ensemble average over the
ion positions. In our case where the ions are randomly
distributed, the averaging over the ion positions in
Eq. (24) gives one.

From the equation of motion of the electrons, in
the ion's rest frame we obtain

—i~oj = (e'e/m) [E+(E(co)),7, (25)

(26)

where

where j is the average current density. Here we use the
fact that the force acting on the ions, due to the elec-
trons, is equal and opposite to the force which is exerted
on the electrons due to the ions, and that this force is
invariant under the frame transformation.

From Eqs. (24) and (25) we obtain

167r 5 )p&p 1 [(io/io )p —17'i'
R, (pp) = —

)

—nr,
3 12) pop (~/~.)'

(32)

One should notice that Rp(&u) has its maximum at
co =+2cop, and that for this value of p. ,k&&k p, and there-
fore, the approximation for

3 2~pl' k8„=1-
co' 5 co„) kpl

is consistent. However, for co))cop, R„(~)behaves like
1/co, which is an overestimate of the contribution from
the pole. One shouM therefore place a cutoff frequency
on ~. We have no easy way to calculate this cutoff and
we merely choose it to be at co, =2.Scan„.

The rest of Eq. (29) has been computed on an IBM-
7094 for a degenerate semiconductor and is displayed

Here r, = rp/ap, where r p is the mean radius per particle
and ap=h'/me' is the Bohr radius; n=(4/9pr)'Is and
$&1 is a numerical factor (see Appendix). In order to
evaluate Eq. (29), one must consider separately the
contribution from the pole arising when both 8; and
h„are zero. The estimate of the pole contribution is
obtained in the Appendix and is given by

0'p= zG)p /4prQ) . (27) P A. J. Glick and R, A, Ferrell, Ann, Phys. (N. Y.) 2, 339 (1960).
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In the high- frequency limit, i.e., o&/o&r))1 we approx&-
mate 8„to be 8,= j. and need to consider only the con-
tribution from h,rr(qQ)(&1. Thus, we obtain

16m 1
R'"& (o&) =R (o»)cur) = lim — dqq'8;(qQ)"»"~ cop 0

Fzo. 1. Plot of the function (16rr) ~~+(co/cu~).

in I'ig. 1. %e have chosen the effective electron mass
and charge to be m/100 and e/(10)'I', respectively (see,
e.g. , Ref. 4), and the electron density (for convenience)
1.03&(10' electrons/cma.

The resistivity R(o&) show a bump of order 15%%uq just
above the plasma frequency. This enhancement of the
ressstsvi y is ut due to the generation of a longitu ina

p aslasma oscillation and it arises from t e pole of t e in-

tegrand. For classical plasmas, Dawson and Obermann'
have found the same eGect; however, numerically it
is a very small effect.

ACKNOWLEDGMENTS

We would like to thank Dr. C. Oberman, Dr. J.
Dawson, and Dr. P. A. WolG for helpful discussion, and
to Miss V. Rogers of the Khippany Laboratories for
the numerical computation.

APPENDIX

16m 1 er,= lim —-
"»"~ cog 0 8

kf(n+t) ~~6.&] d Q

)q- q

(A4)

This is our final result for Rt" & (o&) given in Eq. (30).
For the calculation of Rto&(o&)=lim„« rR(o&), we

write

16&r 1 ' h;r (qQ)
R'(o&) = lim — dq q'"«"r o&r Q o [b,(q0)]'

We wish now to evaluate R(o&) for the limits o&/o&r))1,
o&/o&r«1 and 6nd also the contribution from the plasma
pole to R(&o).

We rewrite Eq. (2

f(q) =
2g

1—q' 1+q
ln

1—q

(A6)

16m 1
R(co) =

cop 0

where

16m 1 ' dqIr Jar, 1)—'
ar;

o&r 4 o q ~ 2m q')
R "&(o&)=

The integral in Eq. (A5) is very dificult to evaluate.
8, (qQ) However since f(q)(1, we now evaluate Rto&(o&) to e

(A1)
[h (qQ) j'+[6'(qQ)7

and

nr. 1 P.
h;(qQ) = —Q= 8;r (qQ); —(1—

q
4 q' 4q

fQ
1—

l

—
q

= BP(qQ);

0
I1—

ql (—(1+q
4q

=0 elsewhere,

rh 1&&&2 as can be found from more elaboratew ere a
1.Thecalculations in the case of interest where nr, y 2x(( . e

integral in Eq. (A7) can be evaluated analytically and
we obtain

2~ -
I 2~ ~ I' 2~ p-'-

l
1+-

l

—1+l 1+
Par.) far,

fo«r (&» (A8)
2' ( 2m' )
o&r - 5 per ~)
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which is our Anal. result as it is given by Eq. (30). approximate 8„by
Ke 6nally wish to calculate the contribution from

the pole. Here we write 8 (q~)
12 rex) '

(A10)
5

The integration in Eq. (A9) is straightforward and we
obtain

1 8;(qa&)
E 6) = 167f'—

= —16m'— dq q'8[8„(qro)J.
(A11)

y() g g
L8, (q(o) J'+$8;(qre) 1' f 5 )"' 1 re„)'L(re/a&~)' —1)'~'

E.„(rv)= 4n'i —
i

l12) rep 2(up) (a)/(v~)"-

(A9) 16' tr 5 )'" 1 P(re/ce )'—1$'"
0)

3 i12) a)p (co/ro, )'
In order to evaluate the integral in Eq. (A9), we shall which is our final result given in Eq. (32).
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A perturbation theory is developed to second order for the energy of a system of weakly interacting
atoms. For a large uniform system the expression is correctly proportional to the number of atoms N. The
result is given as the sum of electrostatic and Van der Waals terms plus exchange eGects. The exchange
energy is described first in the pair approximation, followed by corrections due to electron exchange among
three or more atoms in both the first and second orders of the perturbation series. The second-order exchange
term is due to the eBect on exchange produced by the first-order perturbation on the wave function caused
by Van der Waals forces.

The zeroth-order term is the energy of the isolated atoms so that in the ground state all other terms are
successive corrections to the smaller binding energy.

In the case where the unperturbed atoms have an angular momentum, use of degenerate perturbation
theory leads to a spin-wave type of solution, with coupling between the atoms.

A LTHOUGH the perturbation treatment developed
here has some general features, the specific formu-

lation is for the case of electrons in a''nonmetallic solid,
where the solid is not dense and the individual atoms
are well separated. This case does not';lend itself well to
treatment with the usual many-body theory based in
zeroth order upon noninteracting electrons.

In the limit of zero density the electrons on diferent
atoms are distinguishable, being associated with the
various atomic sites, and the problem is to calculate the
binding energy as the density is increased and inter-
atomic exchange of electrons begins to occur.

One obvious choice for an unperturbed Hamiltonian is

IIo=g h;(R,),

which describes a collection of X, noninteracting atoms,
with k;(R,) the Hamiltonian of the ith atom having

*Most of the work reported here was done while the author
was at the Atomic Energy Research Establishment (Theoretical
Physics Division) Harwell, England.

nuclear coordinates R;. The eigenfunctions of He are

4 =A, (R) 4;(R. )

and the eigenvalues

(3)

where P;,(Rr) is centered about Ri and is an eigen-
function of h&(Rr) (antisymmetric in the space and spin
coordinates of those electrons about Ri) with eigen-
value ~;,. Here we have arbitrarily assigned particular
electrons to particular atoms and f(R,) indicates
P(R, ; 1,2 ) where the electrons 1, 2. are assigned
to the atom at Ri.

The +g form a complete orthogonal set and, therefore,
it might seem that the set 0%'J would be convenient for
the expansion of an antisymmetric function of all elec-
troris, where

o',=g„(+)P„
the sum being over all permutations E„ofelectronic
space and spin coordinates, and the sign being given by
the parity. However, the 0',%'g are no longer eigen-


