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by the electrons during this time can be measured from
the avalanche photographs. Using the observed drift
velocities the corresponding values of E/Po are cal-
culated (Po is the final cloud-chamber pressure cor-
rected to 296'K and, hence, corresponds to the argon
gas density used by other observers). These results
along with results of other observers are shown in Fig. 3,
The present data indicate that in the range of E/Po
values used (7.9 to 10.4 V/cm mm Hg) ke is independent
of E/8 sand has a value of,:3.04X 10' cm'/V sec mm Hg.
Herring' measured drift velocities with E/Ps values up
to 6 V/cm riun of Hg. Herring's data is in excellent
agreement with Nielsen's~ data over Nielsen's range of
E/Pp, i.e., E/P'o values of less than four. Nielsen's data
is usually considered to give the best drift velocity in-

. formation for electrons in pure argon. The present
mobility measurements appear to agree quite well with
this data if its range is extended, although they are
from 10 to 15% higher than the mobilities measured by
Krrett. ' The higher mobilities measured by Riemann'

' P. Herring, Compt. Rend. 217, 75 (1943).' R. A. Nielsen, Phys. Rev. 49, 338 (1936).
8 D; D. Errett, Ph.D. thesis, Purdue University, 1956.
' W. Riemann, Compt. Rend. 217, 75 (1943).

can be understood in the light of Errett's measurements
of the eGect of water vapor on electron mobilities in
argon; Krrett showed a sizable increase in electron
mobilities in argon containing a very small admixture
of water vapor. The fact that the present measurements
made using tank argon fractionally distilled in the vapor
source agree well with results in purified argon is not
surprising. Bortner, Hurst, and Stone, " using tank
argon fractionally distilled, using liquid nitrogen as the
coolant, measured electron mobilities that agreed quite
well with Nielsen's measurements. In the present meas-
urements the nitrogen and oxygen impurities are esti-
mated to be less than 0.1%%u~ which according to the
measurements of Errett would produce an increase in
the mobility measurements over that in the pure gas of
5%%u~ or less in the E/Pp range used.
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The high-temperature thermal conductivity of a disordered semiconductor alloy is derived using the
Klemens-Callaway theory. It is assumed that the reciprocal relaxation times depend on frequency co as ~4

for strain and mass point defects and as co' for normal and umklapp three-phonon anharmonic processes.
The thermal conductivity is expressed in terms of the lattice parameters and mean atomic weights of the
alloy and its constituents. Agreement is obtained between theory and published experimental data on Ge-Si
alloys at temperatures 300—1200'K, and on (Ga,In)As alloys at 300'K, using the value 2.5 for the ratio
of umklapp to normal relaxation times. It is found that the large thermal resistivity of Ge-Si alloys js
predominantly due to mass defect scattering, whereas that: (Ga, In)As alloys is mainly due to strain
scattering.

I. INTRODUCTION

S OLID solution alloys are well suited for studying
the eGects of imperfections on the transport of heat

by lattice waves. The present investigation is concerned
with semiconductor alloys, in particular Ge-Si alloys
and III-V compound alloys, because extensive experi-
mental and theoretical data, relating to the thermal
conductivities of these systems, are already available.
The choice of the temperature range is motivated by
the general interest in these materials for high-tempera-
ture thermoelectric devices.

The simple phenomenological model of thermal con-

~ Work Supported by the U. S. Naval Bureau of Ships.

ductivity, developed by Klemens' ' and Callaway' ', is
used in the present work. An alternative treatment of
thermal conductivity is by the variational method of
Ziman, ~ or modification thereof by Tavernier. '

The high-temperature limit of the theory was applied
' P. G. Klemens, Proc. Roy. . Soc. (London) A208, 1pg (1951)
2 P. G. Klemens, Proc. Phys. Soc. (I.ondon) A68, 1113 (1955).
P. G. Klemens, in Solid State Physics, edited by F. Seitz and

D. Turnbull (Academic Press Inc. , New York, 1958), Vol. 7.
4 P. G. Klemens, Phys. Rev. 119, 507 (1960).
e J. Callaway, Phys. Rev. 113, 1046 (1959).
J. Callaway and H. C. von l3aeyer, Phys. Rev. -120, 1149

(1960).
r J.M. Ziman, E/eetrons and Phonons (Clarendon Press, Oxford,

England, 1960).
J. Tavernier, thesis, University of Paris, 1960 (unpublished).
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by Klemens4 to the thermal conductivities of Ge-Si
alloys measured by Steele and Rosi.' The thermal
resistance of these materials was shown to be due to
scattering of phonons by mass fluctuations and anhar-
monic phonon-phonon scattering. A recent investiga-
tion' revealed that the previously published values of
thermal conductivities' at 300'K are too large by a
factor of about 1.6. To obtain fit between theory and
the new experimental data it was necessary to assume
that there is appreciably more anharmonic scattering in
the alloys than in the pure components, Ge and Si. It
was suggested"" that this effect is due to five-phonon
processes, resulting from simultaneous three-phonon
anharmonic processes and two-phonon point defect
processes.

There are two kinds of three-phonon processes, N-
processes, in which crystal momentum is conserved, and
U-processes, in which total momentum is changed by a
reciprocal lattice vector. Klemens" suggested that X-
processes, which were neglected in his earlier work, '
contribute substantially to the thermal resistance even
at high temperatures and he estimated that they may
account for the aforementioned discrepancy between
theory and experiment.

Following this suggestion, the high-temperature
theory is extended to include X-processes, using the
formalism of Callaway. ~ An expression is derived for the
thermal resistivity of a disordered alloy in which the
ratio of scattering rates due to X-processes to that due
to U-processes is introduced as an adjustable parameter.
Agreement between theory and experiment for Ge-Si
alloys is obtained over a wide range of compositions and
temperatures using a single value of this parameter. "

The other subject treated is scattering of phonons due
to lattice strains. An alloy whose components have
widely diGering lattice constants usually contains a
large concentration of highly strained regions. These
scatter phonons electively. A simple, heuristic, elastic
continuum treatment of such effects is presented here.
The results are in good agreement with published data
on (Ga, In)As alloys. '4

II. THE VIRTUAL CRYSTAL

The alloys are assumed to be a random mixture of
atoms, with different masses and volumes, arranged in a
lattice. To calculate the thermal conductivity, use is
made of the customary artifice, in which the disordered
lattice is replaced by an ordered virtual crystal and the
disorder is treated as a perturbation. The phonons are
scattered as a result of the disorder perturbation and the

' M. C. Steele and F. D. Rosi, J. AppL Phys. 29, 1517 (1958).' B.Abeles, D. S.Beers, G. D. Cody, and J.P. Dismukes, Phys.
Rev. 125, 44 (1962).

u P. Carruthers, Phys. Rev. 126, 1448 (1962).
'~ P. G. Klemens, Westinghouse Research Report, 929-8904-R3

(1961);P. G. Klemens, G. K. White, and R. J.Tainsh, Phil. Mag.
7, 1323 (1962)."B.Abeles, Bull. Am. Phys. Soc. 8, 14 (1963).' M. S. Abrahams, R. Braunstein, and F. D. Rosi, J. Phys.
Chem. Solids 10, 204 (1959).

8=+x;8 (2)

is a good approximation for the atomic volume, P, of
the alloy. The quantity 8 in Eq. (2) is the cube root of
the atomic volume of componenti of the alloy when it is
in its own lattice. For diamond and zinc-blende lattices
8= a/2, where a is the lattice parameter.

In the case of an alloy of compounds, M; and (8 )s

in Eqs. (1) and (2) are defined as the mean atomic
weight and volume of the component compound i.

Keyes" observed that the elastic constants, c;&, of the
column IV, III-V, and II-VI covalent crystal systems
depend on the atomic volumes only. The relationship is
given by

c;I,54= const, (3)

where the constant assumes a diferent value for each
of the above systems. The assumption is made here
that Eq. (3) is also valid when the atomic volume is
changed by pressure or by alloying.

Steigmeier" determined the unknown Debye tem-
peratures of the III-V compounds using the elastic
constants computed from Eq. (3).Since 0 8'~'c;&'I'M ",
Eq. (3) leads to the relation

0M"8s"=P,

where 8 is nearly constant within a given covalent
crystal system.

The anharmonicity constant y is defined by

y = —d (1n())/d (ln8s). (5)

Substituting Eq. (4) in Eq. (5) yields &=sr. The volume
dependence of 8, given by Eq. (4), has been verified for
germanium by Daniels, '~ who derived the value of
y=0.49 from the measured volume dependence of the
elastic constants. For silicon, however, the value of y
derived in this manner, "is 0.25.

No explicit calculations of phonon-phonon scattering

"R.W. Keyes, J. Appl. Phys. 33, 3371 (1962).
E. F. Steigmeier, Appl. Phys. Letters 3, 6 (1963).

"W. B. Daniels, Phys. Rev. Letters 8, 3 (1962).

anharmonicity of the virtual crystal. In this section are
discussed the parameters of the virtual crystal, the
eGects of disorder are treated in Sec. III.

The parameters of the virtual crystal are derived
using the following physical argument. Heat is carried
primarily by the acoustical phonons of the nondispersed
(large group velocity) part of the spectrum. These
phonons are related to the elastic continuum properties
of the alloy. Therefore, the virtual crystal must have
the density and elastic constants of the alloy. Thus, the
atomic weight M of the virtual crystal is given by

M=gx, M;,

where M; and x; are the atomic weight and frac-
tional concentration of the component i of the alloy,
respectively.

In most cases Vegard's law,
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Bt/Bs=cc,

cv is the phonon frequency and 8& and 82 are indepen-
dent of ~ and the ratio 0. is independent of T. All
higher order phonon processes are neglected. Further-
more, it is assumed that the phonons have the isotropic
nondispersed Debye velocity z=kA '(6n') 'tsg&.

Leibfried and Schlornann using a variational method, "
derived an expression for the lattice thermal resistivity
8"„due to three phonon anharmonic scattering,

W =101r'3 '4 'tshsk 'm 'yr'TM '3 'e ' (9)

where Tis the absolute temperature, m is the unit atomic
mass and the quantity p& is of the order of 2, and is
related to the anharmonicity of the lattice. Although
this formula is based on a highly idealized model, it
gives the correct dependence' "of the thermal resistivity
on the parameters T, 3I, 8 and 8. A similar formula was
derived by Dugdale and McDonald" using a dimen-
sional argument. The assumption is made here that
Eq. (9) is valid for the virtual crystal as well.

III. DISORDER SCATTERING

The disorder of the lattice is taken into account as
follows. An atom of the virtual crystal is replaced by an
atom of the alloy. This atom acts as a virtual impurity
and scatters phonons. In general, the virtual impurity
atom differs from the atoms of the virtual crystal in
its mass, in its size and in the coupling forces to its
neighbors. Furthermore, as a result of anharmonicity
the coupling forces are modified by the 'misfit' strain
field in the neighborhood of the impurity. For a general
treatment of the subject see the review paper by
Carruthers. "

Klemens treated the case of point-defect scattering
by an impurity in a simple cubic lattice with only
nearest neighbor forces acting. The relaxation time
7 I „. ' for this process, given by Klemens, ' is

rp '= coeval'. /4trzs (10)
' G. Leibfried and E. Schlomann, Nachr. Akad. Wiss. Gottin-

gen, Math. Physik Kl. IIa 4, 71 (1954). In a previous paper
(Ref. 19), it was stated erroneously that Leibfried and Schlomann
neglected normal processes. In fact, the above authors assumed
implicitly that N processes dominate over U' processes, since
they chose the displaced Planck distribution function as their
trial function."D. S. Beers, G. D. Cody, and B.Abeles, in Proceedings of the
International Conference on the Physics of Senticondlctors, Exeter,
IP6Z {The Institute of Physics and the Physical Society, London,
1962), p. 41.

'0 7. S. Dugdale and D. K. C. MacDonald, Phys. Rev. 19, 832
(1953)."P.Carruthers, Rev. Mod. Phys. 33, 92 (1961).

have been made so far. It is assumed that three-phonon
X- and U-processes can be characterized by relaxation
times r~ and ~p given by ' '

(6)

where

»,/3= L(3 5)/3l. /(1—+.),
tc= (1+v)G,/2G(1 —2v),

(12)

(13)

G and v are the bulk modulus and Poisson ratio of the
matrix, respectively, and G; is the bulk modulus of the
impurity sphere.

In a real crystal, the Poisson ratio v is anisotropic and
does not have a uniquely defined average value. "For the
purpose of the present work the value v= ct2/(ctt+ctQ),
corresponding to the isotropic case, is used. Since this
quantity is nearly the same for Ge, Si, and the III-V
compounds its average value v=0.3 is used. From Eqs.
(12) to (14) it follows that G,/G=1 and the quantity
p/(1+tc) =0.62. This value is used hereon.

Rayleigh'4 has treated the scattering of sound waves
in a gas by spherical obstacles. Ziman" used a simple
physical argument to extend the Rayleigh formula to
the case of the isotropic elastic continuum. The ex-
pression he obtained differs from Eq. (11) in that the
strain term, proportional to A3;/3, vanishes and in a
slightly different coeKcient of the term i)G,/G. The
strain term vanishes for the isotropic continuum because
the displacement field around the impurity sphere has
a vanishing dilation. To obtain finite strain scattering

~ For a review on elastic continuum defects see J. D. Eshelby,
in Soled State Physics, edited by F. Seitz and D. Turnbull (Aca-
demic Press Inc. , ¹wYork, 1956), Vol. 3, p. 107.

H. B. Huntington, in Solid State Physics, edited by F. Seitz
and D. Turnbull (Academic Press Inc., New York, 1958), VoL 7,
p. 316.

'4 Lord Rayleigh, Theory of Sognd (Macmillan and Company
Ltd. , London, 1929), 2nd ed. , Vol. 2, p. 284."Ref. 7, p. 222.

where

I';= x;L(DM;/M)'
+2((AG'/G) —2X3»(A&'/~))'3 (11)

characterizes the scattering cross section of the impurity
atom i, 5; is the radius of the impurity atom in the host
lattice, G, is an average sti8ness constant of the near-
est neighbor bonds from impurity to host lattice, G
is the corresponding quantity for the host atoms,
AG;=G;—G, 65,=8;—6, hM;=M; —M and y is an
average anharmonicity of the bonds.

The scattering can also be treated in terms of the
elastic continuum "sphere-in-hole" model. "This formu-
lation has the advantage of leading to a more natural
definition of G; and 8; than that used in the impurity
model of Klemens.

The argument runs as follows: A sphere with radius
6 representing the virtual crystal atom is cut in the
virtual crystal matrix. A sphere with radius 8 and mass
M; representing the impurity atom is introduced.
Matrix and impurity are treated as continuous isotropic
media which are constrained to touch along a sphere of
intermediary radius 6;. The radius of the impurity in
its own lattice, 6;, and its radius in the host lattice,
8;, are related by the expression"
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FIG. 2. Thermal resistivities of Ge-Si alloys as function of com-
position, at 300, 500, and 900'K. The solid curves were computed
from Eqs. (18), (22), (26), and (27) with a=2.5, P =1.52X10 s

deg cm'~', 71=1.77 and ~=39. The experimental points are taken
from the works of JoBe and Joffe (Ref. 29), Steele and Rosi
(Ref. 9) and Abeles et al. (Ref. 30).

Equations (18), (22), (26), (27), and (28) express the
lattice thermal conductivity of an alloy and its com-
ponents in terms of their atomic weights, their lattice
constants, the temperature, and the three adjustable
parameters: The ratio 0. of 'E' to 'U' scattering rates,
the anharmonicity parameter, 7& and the strain param-
eter, e. These parameters, as well as the parameter P
appearing in Eq. (4), are nearly constant within a
particular covalent crystal system and do not vary
appreciably from system to system. The above equa-
tions are an extension of the one of %eyes" which re-
lates the lattice thermal conductivities of covalent
crystals to their atomic weights, their lattice parameters
and their melting points.

the values of Steele and Rosi are smaller by a factor of
1.6. This discrepancy may be due to a photon contribu-
tion to the thermal conductivity in their' high electrical
resistance samples. The measurements on Ge-Si alloys
by:Toxen" are not included because they were made at
low temperatures.

The theoretical curves for S' in Fig. 2 were computed
using Eqs. (18), (22), (27), and published" values of 5.
The value of P was determined by substituting in Eq.
(4) the Debye temperaturesrs of Ge and Si, computed
from the elastic constants. The resulting values of P,
for Ge and Si, differ by less than 1% and their mean
value P=1.52X10 ' deg cmst' was used. The value of
c=39, estimated on the basis of the impurity model of
Klemens, was used in Eq. (18). The resulting strain
contribution to P is only about 10% of the mass con-
tribution. The values of 7& and 0. were determined by
fitting the theoretical curve to the measured thermal
resistivities. The best 6t is obtained for &~=1.77 and
0,=2.5.

The thermal resistivities of (Ga, In) As and In(As, P)
alloys were measured by Abrahams et aL" and Bowers
et al'. ,33 respectively. These systems are particularly
interesting, because, on the basis of differences in lattice
parameters one expects strain scattering to be appreci-
ably stronger in (Ga, In)As than in In(As, P).

The theoretical curve for (Ga, In)As, plotted in Fig.
3, was determined in a manner similar to that of the
Ge-Si alloys. The lattice parameters were calculated
from Eq. (2). The values of P, computed from Eq. (4)
using the Debye temperatures of" GaAs and" InAs
differ by 8% and their mean value P=1.33X10 s deg
cm"' was used. The value of n=2.5, determined on
Ge-Si alloys, was assumed. This assumption is justified
by the argument that the quantity n is determined by a

V. Ge-Si ALLOYS AND III-V COMPOUNDS ALLOYS

The high-temperature thermal resistivities of Ge-Si
alloys, published by three diferent groups of workers,
are plotted in Fig. 2. Included are the room-temperature
measurements of Joffe and Joffe,"and Steele and Rosi'
and measurements at 300, 500, and 900'K by Abeles,
Beers, and Cody. "The results of Joffe and Joffe" are
in good agreement with those of the third group, but

20-
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"R.W. Keyes, Phys. Rev. 115, 564 (1959).
"A. V. Joffe and A. F. JoGe, Izv. Akad. Nauk SSSR Ser. Fiz.

20, 65 (1956).
~ Included in Fig. 2 are measurements on specimens T-1810,

GS-8, JPD-7, and S-1142 (Ref. 10), specimen GS-68 (Ref. 19)
and specimen GS-9, containing 78/& Ge and 22% Si (unpublished).
The specimens designated (see Refs. 10 and 19) DS-4, D-75,
D-171, a,nd JPD-12 are not included in Fig. 2 because the erst
three samples had appreciable conduction of heat by photons and
in the third, heavily doped sample, phonons were scattered by
electrons. The remaining specimens were doped suKciently to
eliminate photon conduction but not doped suKciently to give
rise to appreciable phonon-electron scattering. The increase in
8 due to phonon electron scattering in these specimens is
believed to be less than 10'Pp. The thermal resistivities were
corrected for a small electronic contribution to the thermal con-
ductivity which amounted to a few percent.

0
0
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Pro. 3. Thermal resistivities of (Ga, In)As alloys as function of
composition at 300'K. The solid curve was computed from Eqs.
(18), (22), (26), and (27) with n=2.5, P=1.33X10 8 deg cm'~',
v1 ——1.75 and a=45. The experimental points are from the work
of Abrahams, Braunstein, and Rosi. (Ref. 14), with the exception
of the GaAs value which is taken from J. Blanc, R. H. Bube, and
L. R. Weisberg LPhys. Rev. Letters 9, 252 (1962)).

s' A. M. Toxen, Phys. Rev. 122, 450 (1961).
~ E.R. Johnson and S. M. Chri. stian, Phys. Rev. 95, 560 (1954).
33 R. Bowers, J.E. Bauerle, and A. J. Cornish, J.Appl. Phys. 30,

1050 (1959).
~ D. Gerlich (to be published).
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ratio of areas of 'X' and 'U' scattering surfaces and thus
is essentially a geometric property of the Brillouin zone.
It is reasonable to assume that III-V compounds with
mass ratios close to unity have similarly shaped phonon
spectra as Ge and Si and, therefore, should have similar
values of n. The quantities 7&, and e were used as adjust-
able parameters to obtain the best Gt between theory
and experiment. The curve in Fig. 3 was computed for
p~ ——1.75, &=45. In contrast to the case of Ge-Si alloys,
here the strain contribution to I' is about three times as
large as the mass Quctuation contribution. The agree-
ment between the phenomonological value, &=45, and
that computed from the model of Klemens, &=39, is
surprisingly good.

The same numerical values of o,, P, Vt, and e were used
for In(As, P) as for (Ga,In)As. The computed curves
and experimental results are compared in Fig. 4. In
this case the strain contribution to I' is about one half
that of the mass fluctuation contribution. The agree-
ment becomes worse the richer the alloy is in InP, This
may be related to the fact that InP has a mass ratio of
3.7 and probably has a vibrational spectrum differing
from the semiconductors with mass ratio close to unity.

VI. DISCUSSION

The model used in this work is essentially that of an
isotropic elastic continuum. The only use made of the
discreteness of the lattice is in the assumption of anhar-
monic U-processes. The fact that an elastic continuum
model explains fairly well the lattice thermal conduc-
tivity is not surprising since heat is carried primarily by
the phonons of the nondispersed part of the vibrational
spectrum.
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FIG. 4. Thermal resistivities of In(As, P) alloys as function of
composition at 300 and 500'K. The solid curves were computed
from Eqs. (18), (22), (26), and (2'/) using the same values of the
parameters a, P, v&, and e as for (In, Ga)As alloys. The experi-
mental points are from the work of Bowers, Bauerle, and Cornish
(Ref. 33).

One can narrow down the identity of the phonons
carrying the heat to the longitudinal acoustic (LA).
Of the six phonon branches in germanium and silicon, "
the LA. phonons are least dispersed, have the highest
group velocity and are nearly isotropic. One expects
similar behavior for the phonons of the III-V com-
pounds. Because of this property, the number of three-
phonon Ã- and U-processes in which LA phonons can
participate is much smaller than the corresponding
number for the optical (0) phonons and the highly
dispersed and anisotropic transverse acoustical (TA)
phonons. Thus, there is a group of phonons, mainly LA,
with a long mean-free path, which carry most of the
heat energy. The rest of the phonons, mainly 0 and
TA phonons, have a short mean-free path and act as a
heat reservoir for the LA phonons.

The assumptions made here for the relaxation times
7N can be justified for the case of strong point-defect
scattering. Point defects scatter selectively TA pho-
nons and all short-wave phonons so that only long-
wave LA phonons contribute to heat conduction. Her-
ring" has shown that for long-wave LA phonons Eq. (6)
applies. Moreover, if E scattering is stronger than U
scattering, then the thermal resistance of the disordered
alloy is not sensitive to the choice of 7p, for then point-
defect scattering combined with three phonon F process
is more effective in destroying phonon momentum than
three phonon U processes.

Five-phonon processes and anharmonic three-phonon
processes result in the same temperature dependence of
thermal conductivity"" so that they cannot be sepa-
rated easily. In the present work, five-phonon processes
were neglected.

In view of the simplifying assumptions made, the
good, ', agreement obtained between theory and experi-
ment~may be somewhat fortuitous. In particular,
the assumption implicit in Eq. (17) requires further
examination.
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