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We investigate the convergence of the many-fermion perturbation series and show, for the case of the
square-well potential, that it is a divergent series. We bound the rate of divergence and show that, by using
appropriate summation procedures, it may be summed to the physically correct sum, provided the density
is low enough.

1. INTRODUCTION

'HERE is a widely held view' that the many-
fermion perturbation theory as currently for-

mulated is "suKciently established on theoretical
grounds. "The purpose of this paper is to question that
view. For the sake of explicitness we will consider a
system of spinless fermions interacting via a square-
well potential. We first establish, in the second section,
that the radius of convergence for the ground-state
energy of the 1V-body system. (at fixed density) tends
to zero as X tends to infinity at least as fast as E &,

where p is any positive number less than 3. This result
implies that the perturbation series is, at best, an
asymptotic one.

In the third section we consider the complete pertur-
bation series and bound every order. We find that it
diverges no faster than a geometrical series times (tt!),
where e is the order of the term. We also give an argu-
ment based on the BCS theory of superconductivity
that, in general, the series diverges at least this fast. In
the final section we consider the problem of assigning
a meaning to the sum of the series and show, provided
the density is low enough (small compared to the jam-
ming density for hard spheres), that it may be summed,
even though divergent, to the lim~ „EN(V), where

E&(V) is the energy per particle for a potential of real,
positive strength V in the X-body problem. We advance
some arguments to support the conjecture that the
methods we present give the physically correct sum in
general when the physical system has no long-range
order.

~Work performed under the auspices of the U. S. Atomic
Energy Commission.

' See, for instance, H. A. Bethe, B. H. Brandow, and A. G.
Petschek, Phys. Rev. 129, 225 (1963).

V, Ocr&a,
0, a&r&a+b,

+~, a+b&r.
(2.1)

2 K. A. Brueckner and C. A. Levinson, Phys. Rev. 97, 1344
(1955).See also H. A. Bethe, ibid. 103, 1353 (1956) for an extensive
list of references.

e J. Goldstone, Proc. Roy. Soc. (London) A239, 267 (1957).
4 L. N. Cooper, Phys. Rev. 122, 1021 (1961),

2. THE DIVERGENCE OF THE PERTURBATION
SERIES

In this section we shall establish that the many-body
perturbation series is, at best, an asymptotic series and
not a convergent one, and estimate approximately the
angular region in which it is asymptotic. The first
important point is, that as the number of particles E
tends to infinity, each order in the Raleigh-Schrodinger
perturbation series for EjlV, energy per particle, tends
to a 6nite limit. This was first asserted by Brueckner'
and later proved by Goldstone. ' The second important
point, which we will discuss below, is that in the limit
as E tends to infinity there occur branch points in the
energy which move to the origin of the complex poten-
tial V plane.

The analysis of Cooper4 for a simple model without
kinetic energy may not be germane as it seems that he
proves that the energy expansion has zero radius (or
inlnite in special cases) of convergence even for two
particles in a box. This result is not appropriate to
ordinary perturbation theory with a kinetic energy
present.

In order to investigate the many-body problem with a
square-well interaction, we shall first investigate the
problem of a particle in a spherical box with a square-
well potential of strength V near the origin. The
potential is
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When V —& —~, the right-hand side of (2.2) tends
to zero, the wave function falls into the region 0&r&a,
and the energy tends to

1Q i--
a=b

A2 ir2

lirn LE(V)—Vj=
gazoo 2m g

(2.5)

a«b

-- 5i

Again approximating tanhx near @= iver by (x—iver) we
find (2.5) valid for large V not near V real and positive.

The difference of these two results for, say, V large
and imaginary implies the existence of at least one
complex conjugate pair of branch points. We may
locate them as follows: It is well known that the branch
points of E(V) occur where (dV/dE) =0.' If we define

251 1/2

s'/'= (V E) a, —
A2

(2.V)
//2m

g'/2=
I

E j5,
E f/'

FzG. 1.Trajectory of the branch point in the ground-state energy
for one particle in a box.

By solving Schrodinger's equation' we may easily
establish that the energy of the lowest state, as a func-
tion of the potential strength, is given by the solution of

then the equation for the critical points of E(V) becomes

P/2 coy(/i/~) 2si/2 —sinh(2si/&) —
$ 3

(2 7)
2/i/& —sin (2P /2) s3 2 cosh2(si/2) g

—(2m )'" 2m
(v—E)

I
~ (v—E)

i a

(2m '" (2nz
(b/~)t»

I
E b

I EI b .
kA' if'' j

subject to (2.2). If (f//a)))1, then the solution is
approximately given by

2P/ —sin {2P/&) = 0

cosh(s'") =0, (2 8)

(2.2)
Icos'(~'") j/I:cosh'(s'")$ ~ (&/~)' (f/u)))1. (2.9)

E(0)=
2m (a+5)'

(2.3)

When V=0, it follows readily from the trigonometric
identity tann+ tan(ir —n) =0 that the ground-state
energy is

A2 7r2 V=
A'

2mu'
—4iir'+

I

—
I

(12.1372&10.3789') . (2.10)
kbj

Hence, in this limit we have the branch points at'
approximately

For the case a=b, E(V) satisfies, by symmetry, the
relationAs V —+~, the left-hand side of (2.2) tends to zero,

the wave function is compressed into the region
//(r(//+f/, and the energy tends to

E(V)—E(—V) = V, (2 11)

A2 ir2

lim E(V)=
P~oo 2m 62

and hence we expect the branch point to be on the
imaginary axis. For V pure imaginary, (2.11) implies

(2 4) /, = —s* and (2.7) reduces to

In fact, if
I (V—E)'/'a

I
is large and we are not near the

poles of the left-hand side of (2.2), then we see by
approximating the right-hand side of (2.2) for tang near
x=~ by (x—m) that E(V) is approximately given by
(2.4) for all V in the neighborhood of inanity, except
near V real and negative. This statement is true when
we start V toward infinity along the positive real axis.

6 See, for instance, L. I. Schiff, Quantum Mechanics (McGraw-
Hill Book Company, Inc., New York, 1949), Sec. 15.

2s'"—sinh (2s'/')
Re =0.

s'" cosh'(s'")
(2.12)

We compute that the branch points are at the points

z = —6.3&4.6i,
V = (fP/2ma') (a9.2i) . (2.13)

6 See, for instance, H. Kober, Dictionary of Confornsa/ Repre-
sentations (Dover Publications, inc. , New York, 1957), pp. xiii
and 103.
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As b continues to decrease until b/a«1, we find
reciprocally to (2.8) above that the branch points occur
for

Hamiltonian

(2.17)
2s'i' —sinh (2s'i') = 0

cos(t'") =0 (2.14)

which implies that, approximately,

s = —12.1372&10.3789s, t = (-,'sr)',

A2

2ssc

t'a '- (2.15)—12.1372&10.3789i+ (issr) s ~—

so that the branch points recede to plus infinity along
a path parallel to the positive real axis. The trajectory
of this branch point is shown in Fig. 1 as a function of b.

Katz~ has illuminated the nature of these branch
points. They result from the degeneracy of the ground
state and the first excited state. If we cut the complex
plane from these points to infinity, we have by (2.4) and
(2.5) a single-valued function of V with no other branch
points. However, if we join the two branch points by a
cut (encircling both of them can easily be shown to
leave the function unchanged), we find some of the
additional branch points discussed by Katz where the
ground state is degenerate with the second, third,
excited states.

For the higher excited states (angular momentum= 0)
the analysis is similar. For instance, for the case b/a))i
we need the nth root for t in (2.8) for the stth excited
state instead of the first root which we used for the first
state. Hence, (2.10) becomes, approximately,

A2

2fSG

—-', Dn(4sr(rt —j))J&s(rt —j)sr ln(4sr(rt —j))}

j=0, 1, , n 1, (2.16—)

~ A. Katz, Nucl. Phys. 29, 353 (1962).

as long as the correction to —(j+-', )'m' is small. There
are now e pairs of branch points for the eth state. We
previously found one pair for the ground state, or first
state.

To return to the many-body problem, we shall show
that there is at least one (pair) of branch points which
tends to the origin of the V plane as E tends to inlnity
by traversing two paths in the complex plane to a
certain point. The paths we take will never pass further
from the origin than a distance which tends to zero as X
tends to infinity. They will yield two different values
of E(V) for the same V, hence imply the existence of at
least one branch point. The occurrence of a branch
point stops the convergence of the Taylor series at
that point. Let us consider a system defined by the

which is enclosed in a large box of volume 0, such that
p=lV/Q. The function ~(r) is taken to be a square well
of range a and strength V.

Let us follow the energy as a function of V as V
becomes progressively more attractive. We study the
case of Fermi-Dirac statistics. The result here is well
known. ' The system collapses rapidly to a size of
order a. The kinetic energy of the highest state (rt ~ 1Pt')
is proportional' to E'". However, the potential energy
of each particle is approximately A'V as each particle
feels the attraction of every other particle. Thus, for
the collapsed state, we have for each particle a problem
equivalent to one particle in a box with a square-well
potential of strength 'U =Ã V. The parameter b is relapsed
to the total volume 0 and, hence, is proportional to
(Ai/p)'". It becomes very large as 1V goes to infinity. If
we go to an attractive potential of strength V propor-
tional to E i"is+'&', then (for X very large) the poten-
tial energy per particle t proportional to X"+'&lie+'j
will dominate the kinetic energy. Also, we will be to the
left of all the branch points in the complex '0 plane for
the first e=E'" states. The analysis equivalent to that
given above for angular-momentum states different
from zero is similar, and for b/a))1 the branch points
will close on the axis at the various appropriate binding
energies. Returning to zero angular momentum, if we
now approximate tanhx in (2.2) by x—n, ~i for x neare, m-i, we may continue on 'U around the arc of a circle
to the positive real axis, as long as we are careful to
avoid points for which

cos(t't') =0 or 2t'i' —sin(2t'") =0, (2.18)

which can easily be done. At this point, the collapsed
state has been continued to the positive real axis and,
in terms of the energy per article, is of the order of
S(2+'&t'('+'). As the potential energy per particle is still
XV, the wave function must still be concentrated in a
sphere of size a. However, if we continue from the origin
straight out the positive real axis, then we know,
physically, that as V tends to infinity we obtain the
hard-core, Fermi gas. The energy per particle is bounded
for all V, 0(V( ~, at least for densities small com-
pared to closest packing of hard spheres. Thus, we
conclude that we must have encircled at least one
branch point. As our above argument is valid for any
e)0, E(V) must have a radius of convergence of not
more than the order of S '". Hence, in the limit as E
tends to infinity the radius of convergence of E(V) for
the potential we are considering tends to zero. As
Goldstone' has shown formally that each term in the

See, for example, J. M. Blatt and V. F. Weisskopf, Thpopppspp)
Xuctersr Physics (John Wiley tk Sons, Inc. , New York, 1952),
Chap. 3, Sec. 4.
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may be true for Fermi-Dirac statistics as well but we
have proved only the less restrictive U=Ã—'" instead.

We wish to point out that an argument similar to the
above has been advanced previously for the case of
quantum electrodynamics by Dyson. ' He was able to
show by considering e' negative that a phenomenon
similar to the collapsed state occurs where electrons and
positrons gather into separate regions of space and form
a state of energy arbitrarily lower than that of the
vacuum.

FIG. 2. Hugenholtz vertices with statistical weight factors.

expansion E(V)/iV is finite, we conclude that the
expansion is a divergent one.

Our information on the direction in which the closest
singularities approach the origin and, hence, the angle
in which the series is asymptotic, is less definite. How-
ever, if we assume that, even though for 'U of the order
of —1 we are nowhere near the collapsed state, the
angular distribution of the correct many-body branch
points is somewhat like those for the collapsed state

problem, we get a physically fairly reasonable result.
Looking, for low density, at the closest state of widest
angle, we have (n" E'ia, j=0) from (2.16),

lnA
'U~=

~

'm'+Aa—'p'-~'+iB, (2.19)
2ma'4

where A is a constant independent of E. From (2.19) it
is evident that for p small compared to the density for
the closest packing of hard spheres, that the branch
points for V='U/X approach the axis from the negative
real direction. If the second and third terms of (2.19)
are not small compared to the first, then (2.19) is not
valid and no conclusions can be drawn from it. Hence,
at least for p small enough, we find that E(V)//X is

asymptotic in the cut plane

3. THE RATE OF DIVERGENCE OF THE
PERTURBATION SERIES

In this section we shall enumerate the terms con-
tributing to the eth order of perturbation theory and
bound each term for Fermi-Dirac, spinless particles. We
shall then estimate the rate of divergence of the
perturbation series. It could diverge more slowly than
our estimates, due to cancellation between terms, but,
as we have shown in the previous section, it cannot
converge. In order to enumerate all the terms it is
convenient to use a diagram representation of each
term. We adopt the one introduced by Hugenholtz. "
The procedure for writing down terms of the perturba-
tion series from diagrams is outlined by him. In the
expansion for the energy, all connected diagrams with
no external lines, whether or not they violate the Pauli
exclusion principle, ' are to be included. Each Hugen-
holtz diagram corresponds to several terms in the
perturbation expansion (or several Goldstone diagrams'
which are in one-to-one correspondence with perturba-
tion-theory terms). The number is given by Hugenholtz
as 4"/2, where n is the number of vertices and m is the
number of pairs of equivalent lines. A pair of equivalent
lines is two lines joining the same two vertices in the
same direction. According to Hugenholtz's convention,
an occupied state is represented by a line directed to the
left, and a hole by a line directed to the right. The
occurrence of an action by the potential is represented
by a vertex. The potential function v(k) introduced by
Hugenholtz is, for a square well of range a and strength
V,

'(k) = (4~V/k')Lsin(ak) —ak cos(ak) j. (3.1)

In order to count all diagrams in the eth order we will
give a counting rule which is equivalent, but more
convenient for this purpose, to Hugenholtz's. " We
assign a statistical weight factor to each type of vertex

TABLE I. Enumeration of diagrams.

—~(arg V(~. (2.20)
5 6

This does not, of course, necessarily mean E(V) is
analytic in the cut plane.

The case of Bose-Einstein statistics is similar to the
above. However, in the collapsed state all particles
occupy the lowest state so that we find the radius of
convergence to be only of order V=X '. This result

2 4
G 2 4
IJ 0.5 0.25

84
84

1.31

4324
4900

16.9

335 348 34 775 108
454 004 60 987 716

328 8491

' F. J. Dyson, Phys. Rev. 85, 631 (1952).
'o N, M. Hugenholtz) Physlca 23) 481 (1957).
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Qn(w+1, X}=4( )( ~Q( N}, N

N+2 N+2
Q (m+1, Ã}=4( )( )Q(n, X+2}, (3.2}

Q (I+1,N) =max[I, Q(~, N —2)$,
N+1 (N+1)

Qg(v+1, N) =4
~ ~Q(e, N+1),

$N —1
Q~(~+1, N) =2~ Q(~, N-1),

1

Qr(~+1, N) =2 Q(~ N),
2

Qg (m+1, N) = (1—S~,p) Q(e,N),

Tmr, E II. Path weights.

Type
Root mean weight

Total weight factor factor per vertex

I. A +D+I
II. C+II -B+G
III C+II C+II . &
IV. F ~ - B+G- B+G

F ~ ~ og

6N~+2N+1 —Qr, o

16N(N —1) (N+2)2
16(N —1) (N) (N+3)~(N+4)2
16(N +3)~ (N +1)3N
(N+4)&(N+3)&

6 (N+1/6) &

4 (N +3/4) 2

2.S (N+13/6)&
2.S (N+3/2)2
(N+~/2)~

which correctly gives the number of Goldstone diagrams
which are represented by attaching this vertex on the
right to a pre-existing Goldstone diagram. In Fig. 2 we
list all possible vertices, with their weight factors.
Vertex J is defined as the sum of bubbles on all occupied
lines plus bubbles on all hole lines. If this is not done,
diagrams such as shown in Fig. 3 diverge when taken
separately, but when the sum over diagrams with
bubbles in all possible positions is taken, this divergence
is cancelled. We will discuss this point further below.

Let us introduce a counting function Q(e,N) which
is equal to the number of Goldstone diagrams of order
e with N external occupied-state lines (and hole lines)
on the right and none on the left. The number of terms
in the eth-order expansion of the energy will be related
to Q(n, 0). If we include vertex Ii, we will include some
disconnected diagrams. If we omit vertex Ii we will
omit some connected ones. As we shall see, however, it
is a matter of indifference to the rate of divergence
whether vertex F is included (except for the 6rst vertex)
or not. We may now write recursion relations for the
function Q. The subscript denotes the nature of the last
vertex.

pN
Q~(v+1, N) = 2i Q(e,N),

k2

N+1l N+1
Qgg(v+1, N) =4

i iQ(e, N+1),
2 i 1

)N—1
Qc(I+1, N) =2~ Q(e, iV 1), —

Fxo. 3. A divergent
bubble diagram.

a&
where

~
are the standard binomial coefficients, which,

of course, equal the number of ways of taking u things,
b at a time. Summing the terms in (3.2) we obtain the
relation

Q(++1, N) = D1 4r—20)—Q(, +,N2)' —
+4(N —1)Q(e, N —1)
+ (6N2 —2N+1 —4,o)Q(n, N)
+4(N+1)'NQ(n, N+1)
+(N+2)'(N+1)'Q(e, N+2) j, m)1 (3.3)

Q(j,N)=0, N&2, Q(1,2)=1.

The Kronecker delta 6~ 2, O arises from the exclusion of
disconnected diagrams by not allowing vertex F to
follow a state with zero lines on the right. If we drop
the Q(e, N —2) term, we eliminate vertex F altogether
(except for the first vertex). We illustrate in Table I the
number of GoMstone diagrams and a lower bound to
the number of Hugenholtz diagrams. This bound is
obtained by noting that no more than 4" Goldstone
diagrams may correspond to one Hugenholtz diagram.
Row Ii is the number of Goldstone diagrams with no
external lines that have only one (the 6rst except in
6rst order) F vertex. This number is less than or equal
to the total number of connected diagrams. Row 6 is
the number of Goldstone diagrams with no external
lines which never return to the ground state. This
number is greater than or equal to the total number of
connected diagrams. Row H is a lower bound to the
number of Hugenholtz diagrams. It is Row Ii over 4".
In the first four orders it varies from about & to ~ the
actual number. In order to estimate the number of
diagrams for large e, we use the fact that there are the
same number of lines entering on the left as leaving on
the right; hence, for instance, if N is changed by +1 at
one vertex in the diagram, it must be lowered at some
subsequent vertex. In Table II we give several possible
types of raising and lowering combinations, together
with their weight factors and the root mean factor per
vertex. The weight factor assumes Ã lines of each type
entering from the left. The root mean weight factors
are approximate. In the type designation in Table II
the plus sign is used to lump all contributions of the
designated types of vertex together and . ~ indicates
other parts of the diagram may intervene before the
indicated level reduction occurs. We can see from
Table II that the most heavily weighted paths in (e,N)
space will be the ones in which the largest values of A'
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FxG. 5. Labeled
"free" momentum-
originating vertices.

m+q
n-q ~m+q

+p-.q
C m

P( p~

Pp 1(+P~-P~

momentum k is to insert a vertex contribution of

goes to zero like q ', and we are doing only three-
dimensional integrals, this remark suffices to show that
the integral over the "free" momenta g originated at F
vertices must converge at infinity at least like dq/q'. If
we label a C vertex as shown in Fig. 5, then the vertex
contributes again a factor of s(q). If we consider only
the new line m+q and hole m, then the next denominator
is something non-negative plus q'+2m q. Again the
integral over q converges at infinity at least like dq/q'.
The analysis of A is slightly more complex. Pick any
hole m, then we may write

d'mI v(0) —n(k+m) j, ImI (k p (3.10)
(2')' Pi =m+ ili, Ps =m+ qs . (3.12)

and raise the power of the denominator by unity. On a
hole line, there is the same contribution as (3.10) except
that the over-all sign is now minus and k now stands for
the momentum of the unoccupied state. Hence, sum-
ming over bubbles on all lines, we obtain for the contri-
bution of a J vertex a factor in the integrand of

(2m')'

In this notation qs will be the "free" momentum created
at this vertex. The vertex will contribute a factor
s(qs —qi) and the next denominator to the right will be

something non-negative plus qss+2qs m. As we have
shown above, the exclusion principle keeps this quantity
from vanishing in an unfortunate manner for qa and I
finite, so we may replace the q32 in the volume element
divided by it with a constant for the purpose of bound-
ing the integral over q3. Our task is thus reduced to
bounding

XP P(k'+m) —~(m'+m))/ P (k's —mP), (3 11)
1 i 1

max dqs«s I ~(qs- qi) I,
gg

(3.13)

where j is the number of holes or filled-state lines pre-
sent, k; the filled-state momenta, and m; the hole
momenta. The s(0) terms have cancelled as the number
of holes must equal the number of filled-state lines in
this type of diagram. Since n depends only on the mag-
nitude of its argument, it follows easily that the integrals
of v appearing in (3.11) depend only on Ik;I and Im;I.
Furthermore, since k;s) kz') m s, the denominator may
vanish only when all the momenta lie in the Fermi
surface. But, for that case the numerator also clearly
vanishes. Hence, the contribution of a summed bubble
vertex is bounded by a quantity related to the first
derivative of the integral of v appearing in (3.11).If the
bubble diagrams are not summed, singularities may
arise from, for instance, the e(0) terms. 's

We have seen, from analyzing the diferent types of
apparent singularities that may occur for finite internal
momenta, that they do not contribute any additional
divergence to the perturbation series.

In order to study the possible divergence of a diagram
at infinite values of the internal momenta, we will
consider each type of vertex which is allowed by the
Pauli exclusion principle to originate a momentum
which may be inlnite. These vertices are A, C, and Ii.
First, if we label vertex F as shown in Fig. 5, then the
vertex contributes s(q) and the denominator following
it has a non-negative part plus 2' (q+m —n). As s(q)

'5 For a more general discussion of the cancellation of diver-
gences for Qnite internal momenta, see V. V. Tolmachev, Dokl.
Akad. Nauk S.S.S.R. 141, 582 (1961) Ltranslation: Soviet
Phys. —Doll. 6, 976 (1962)g.

where Qs is the solid angle for qs. A bound for (3.13)
follows easily when we note that

(3.14)

Mi(Ms)", (3.15)

where M~ and M2 are determinable constants. To show
this we may break a general diagram of the form

~1 &2' &n—1 ~nd7
D~ D

(3 16)

down into a number of factors depending on (essen-
tially) single variables only, in the general manner
indicated above. Then each single integration may be
bounded. We get something like

maxLI v„I g Q
ofc

dmdn, (3.17)

where m and n are the two holes which occur in every
diagram. Hence, we have shown so far that the
perturbation series diverges at worst like

Ms(2e)! (SI4)". (3.18)

for a square well.
It now follows easily that, since there are no diver-

gences on any of the integrations and there are at most
v+1 internal 3-dimensional mornenta in a diagram of
eth order, any eth-order Goldstone diagram contributes
at most
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We shall now show that (3.18) can be greatly im-

proved upon. Although the argument is not rigorous,
we believe that it makes the result quite plausible. It is
based on the observation that when many excited states
are filled, the denominators are, on the average, much
larger than when very few excited states are present. If
the range of the various internal momenta is determined
by the convergence properties of the potentials or the
exclusion principle alone, and not by the energy de-
nominators which depend on N, then we may think of
each hole, filled-state line pair as contributing an
average excitation energy. When there are E of these
pairs, the denominator will be, on the average, E times
as large.

We must now determine when the ranges are so
restricted. Clearly, the energy range of every hole
momentum is completely restricted by the Pauli exclu-
sion principle. It therefore remains to check the "free"
momenta. We can do this by the familiar procedure of
counting powers at infinity of each "free" momentum q.
To facilitate this power counting, we may compute
from (3.1)

2

k2)

ABl l lN,/2q Nq

E2J 1 )
(3 21)

=-;N(N —1),
&21 2

and their relative probability will be

the magnitude of the result by (A)'". When there are
several denominators involved, the integration will
effect the multiplication by (A)' t', where A is some kind
of a mean A. If an A vertex occurs when there are E
excited states, then we expect that the "free" momen-
tum created will be annihilated on the average when
there are of the order of E excited states present also.
We also compute roughly the probability (fraction of
diagrams) of the pairs AA, AB, and AE occurring.
These are the only pairs which contain A as the 6rst
member. The number of such pairs is

~(l ~r —~2I)d»2=
qyq2

X [jo(tt(qt+q~)) —jo(tt (qr —q2))] (3 19)

AA = 1/[-,'N(N+1)+1j,
AB =N/[ ,'N (N+1)+-1j,
AE = ,'N (N 1)/[-,'N—(N+—1)+1(.

(3.22)

ds r(~——;)= (m.)'t'
(A+x')- [2r(~)A=-:)

(3.20)

we see that the approximate effect of an integration
determined by the energy denominator is to multiply

~ W. Grobner and N. Hofreiter, Irltegrultufel, Zmeiter Teil,
Bestitrtngte Integrate (Springer-Verlag, Berlin, 1958), No. 131.7.

where x~2 is the cosine of the angle between q~ and g2.
As the quantity in square brackets in (3.19) is bounded
for all q& and q2 by 2, we see that a vertex operator
involving two "free" momenta may simply be divided
equally between them, i.e., one inverse power for each
one. Referring to the above analysis of the "free"
momentum-creating vertices A, C, and F, we see (also
let p~ ——r —qr, with r possibly "free" for vertex A) that
they contribute factors of A, q '; C, q '; and F, '. A
similar analysis of the vertices which may terminate a
"free" momentum shows that they contributed factors
of A, q '; 8, q '; and E, q ', where q is the one "free"
momentum which can be annihilated at the vertex. To
be sure of not overlapping in our counting, we will
consider only the originating and the terminating
vertex for each "free" momentum. If we consider all 9
types of pairs of vertices, we 6nd that all but AA and
AB have at least 3 inverse powers of q, and hence deter-
mine the range of their respective "free" momentum.
The other two pairs have only a factor of q

' and so the
range of q is possibly controlled by the energy de-
nominators. By considering the integral"

permutation

=(bh" 5-)-' (3.24)

is also suggestive in this regard as there are exactly m!
permutations. Hence, we may divide the weight factors
given in (3.2) by N and multiply by some constant A in
order to calculate the total contributions. When we
calculate the contribution in this way, an analysis
similar to that in (3.3) to (3.6) and Table II shows us
that the eth order in perturbation theory diverges no
faster than

re!(A)- (3.25)

where A is a multiple of A.
The so-called ladder insertions (several successive A

vertices) form a special case. Integration over each
"free" momentum (in the simple ladder diagram) in
the region near the Fermi surface contributes a factor
proportional to ln( —', lm+nl+kp —2lm —nl). For r

For vertex AE the contribution will be 1/N at each
denominator times the number of diagrams. For AA
and AB we must take only 1/(N)'t' for erst denomin-
ator to the right of first A vertex. Thus, averaging over
the possible final vertices, we get a factor of

[-:(N-1)+(N+1)/(N)"j/[-:N(N+1)+» (3.23)

for the first denominator to the right of A. This factor,
however, tends to 1/N as N tends to infinity. The
algebraic identity given by Hugenholtz"



MAN Y —F ERM ION PER I URBATION SERIES 1877

(3.26)

in the limit as Ã goes to infinity. Since we have shown
in the previous section that the radius of convergence
tends to zero as E tends to infinity, probably like X &

with is&a&1, let us guess that (3.26) is, for E finite,
of a form like

A exp( B/PU+CN ~7'l.— (3.27)

It now follows from examining the derivatives at U=O,
that as X tends to infinity, the eth derivative is of the
order of (m)! for some value of 1V. Hence, these terms
alone would, in general, prevent one from obtaining a
better bound than (3.25).

successive such factors, the Anal integration over the
hole momenta I and n gives a result proportional to e!.
However, there are only 2" of these terms, so they
contribute terms at most of order r.'. When a ladder
insertion occurs with m hole lines present, its contribu-
tion is cut to the order of (r!)/m "+'(r))m) as can be seen
from the integral Jo' ' ' Jpg dx, ln"(P x;). The rest
of an eth-order diagram will contribute like a diagram
of order n r, or—as we have seen (rs r)!.—Hence,
summing over all partitions we get P r!(e—r)!, which
is again of order e!.Thus, although the ladder diagrams
contribute more than their proportional amount, they
will not increase the rate of divergence of the series as
a whole. Summing out the ladder insertions with a E
matrix will not render the whole series convergent, as
can be seen by counting up the remaining contributions.

We believe that, although for certain potentials (such
as S-state interaction only, which does not lead to a col-
lapsed state and, hence, yields a convergent series) can-
cellation between terms may occur so as to decrease the
rate of divergence, there is not a better general bound
than (3.25). The derivation of Eq. (3.25) did not depend
strongly on the properties of the potential, but only on

le(q) l
being bounded and going to zero like q

' as q
went to infinity. According to recent work of J. L.
Gammel" the terms selected by the Bardeen-Cooper-
Schrieffer theory of superconductivity are all present
in the perturbation theory for an Ã-body system where
the limit iV ~ ~ is not taken. They are not of order 1,
but higher order in 1/X. The sum of these terms gives
a contribution to the energy (for V small) ofi'

Ex(V) = Q x~ V"
n=O

(4.2)

This series has a radius of convergence of the order ofS, 3&&&1, as was shown in Sec. 2, and, hence, by
analytic continuation defines E&(V) everywhere except
at singular points or on branch cuts. This analytic
continuation is conveniently given by Mittag-Leffler s
method. "Let

~e„V"
E~(V,6)= P-.=o I'(6m+1)

(4.3)

For every 5&0, E&(V,5) is an entire function of V as
E&(V) is analytic at V=O. Also, as shown by Hardy, "
Theorem 135,

limE~(V, 5) =E~(V)
8—+0

(4.4)

uniformly in any closed and bounded region in the
Mittag-Le6ler star of E~(V). The Mittag-Lefner star
is defined by cutting the complex V plane from every
singularity to infinity along rays. As we have pointed
out above, E~(V) is regular for positive real V. There-
fore, the positive real axis is interior to the Mittag-
LefQer star for every X. The meaning which we wish to
assign to the sum of the perturbation series for infinitely
many bodies is

lim E~(V)= lim limE~(V, 6).
+~op +—+oo $—+0

(4 5)

to Hardy, "Carleman has proved that a necessary and
sufFicient condition for

lg(s) I
&~-"lsl", (lsl «o& ), larg sl &l~ (41)

to imply g(s) =0, is that P n„' diverge (for suitably
regular n). H the many-body perturbation is asymptotic
in the angular sector largUl & —i2~, then this theorem
means, since (n!)'~"~e implies P n„' diverges, that
there is at most one function which is regular for real,
positive V and asymptotically equal to the perturbation
series. That the desired solution, for a repulsive square-
well potential, is regular follows directly from a
perturbation-theory calculation of the first derivative
for any real, positive U. We shall now investigate the
determination of this function.

Let the energy per particle in the S-body problem
with a square-well interaction be

4. SUMMABILITY OF THE PERTURBATION SERIES

Let us now consider the problem of assigning a
meaning to the asymptotic perturbation-series expan-
sion for the infinitely-many-body problem. According

'7 J. L. Gammel (private communication). We wish to thank
this author for making this information available to us prior to
publication.

' See, for example, L. N. Cooper, Lecture Notes on the Many-
Body Problem from the First Bergen International School of Physics,
196l, edited by C. Fronsdal (W, A. Benjamin, Inc. , New York,
1962), p. 49.

We would like to interchange the order of limits in (4.5)
to lim~ 0 lim~ . For this interchange to be correct, it
is sufhcient to show that limN is uniform for 8 small
enough. To this end let us introduce

~ ()= Z —~ (1—s)
—',

=o F(1+8m) "
(4.6)

' G. H. Hardy, Divergent Series (Oxford University Press,
New York, 1956), Chap. VIII.
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FIG. 6. N-dependent integration contour.

1 (VS dg
E~(V,S)= y,

~

—~E (u)—,
2~i 4) (4.7)

where the contour is a circle about the origin outside V
and inside the radius of convergence of E~. Again,
using Cauchy's theorem, we may deform the contour
until it looks as in Fig. 6, and move V out along the
positive, real axis. This procedure gives us the analytic
continuation to any real and positive U. The angle P is
picked so as to avoid all singularities of E,q(u). Let us
choose ~8&21'. Then, for 1'& ~arg(V/I)

~
(~,

Now for V less than the radius of convergence we have
by Cauchy's theorem for regular functions of a complex
variable

h" (t,b) =
27ri

Av
tEN(w —1 g)

'N

(4.12)

This result can be seen by remembering that the
perturbation expansion for the E-body problem in a
box can be obtained from that for the infinitely-many-
body problem by replacing the integrals with sums with
certain terms deleted. The replacement of integrals by
sums does not change the order of magnitude of a
convergent integral. The deletions have little effect
until I (the order) is of the order of magnitude of 1V,
where their effect is to reduce the rate of increase from
that given by Eq. (3.25) to that given by Eq. (4.11).

Because of the uniform bound like (3.25), we see that
the series for Ez(V,8) converges absolutely and uni-
forrnly for all V if 6)1.If P is greater than 2i~, then we
have E&(V,B) an analytic function of 8 for all 5&0, and
we can analytically continue it from 8) 1 where we may
calculate directly from its series expansion to 8=0 where
that expansion diverges.

As we saw in Sec. 2, if the density is suKciently low
(small compared to the jamming density for hard
spheres), we may reasonably expect to exclude all
singular points from the right-half, complex V plane,
including the imaginary axis. If this situation prevails,
we may introduce

1 t'Vq 1

u (N) I—V
(4.8) oe! I'(1=+8m)

1 (V) du
E(U, ') = . S'I —IE( )—

2~i &N i I (4 9)

where the contour is that of Fig. 7. By the properties
of P'(x), E(V,5) tends to E(V) uniforinly for V in any
closed and bounded set interior to the contour. Thus,

as V/u tends to infinity. Hence, p&(V/u) is bounded on
the contour of Fig. 6. We may now shrink the circular
arc part of the contour to the origin. Since E~(N) is
bounded, Eq. (4.8) holds and the length of the arc goes
to zero, the contribution from this part of the contour
goes to zero. Hence, the contour in Fig. 6 may be
replaced by that in Fig. 7, which is independent of X.
Now E&(u) tends to a finite limit at every point of this
contour, and hence it does so uniformly. Therefore, we

get that E&(V,6) tends uniformly for all ~8&2/ to

Since E~(U,8) approximately equals" E&(U) as U —+~
in

~
arg s

~ &f(p) ~m8, where f—(p) is now the minimum
angle made by a line joining the origin and a singularity
of E"(V), and the positive real axis, and since from
Sec. 2 we expect, for low enough density, the branch
of Ez(V) obtained by continuation for Re(U))0 to
tend to a finite limit, we see that the integral definition
(4.12) implies h&(t, b) is bounded by Me" for any e)0.
We take e)0 to miss the pole at m =0. As long as
f(p)) ~/2, the E~(w ',5), as we have seen above, tend

uniformly in Was X~" to E(w ',5) on the imaginary
axis, and since (4.12) converges absolutely
t-E(w ',5) ~ w ' as w —+~ j, h&(3,8) also tends uniformly
to a limit h(t, 8) as E—+~. From the series expansion
(4.12) we see that h(~, 8) is entire. Hence we can, from

E(V)=limE(V, 8) =lim lim E"(U,b). (4.10)
6—+0 8—+0 N~~

Also E(V,8) is an analytic function of 8 for 0&8&2//~.
There is a uniform bound in E of the type (3.25) for

the E-body perturbation series, in addition to the eth
coefBcient being bounded by

A (81V&)". (4.11) FIG. 7. N-independent integration contour.
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the series expansion, directly compute by the Laplace
transform theorems '0

In the limit of vanishing p we can work out explicitly
the various functions in (4.14). According to Huang
and Yang" the energy per particle to first order in p is

limE~(V, 5)= lim
g~cc N-+op

e 'It~(Vt, 8)dk,

(4.13)

EMa' tanhL(VMa'/hatt')'/'] (kra)'
1—

(VMa2/gg2)1/2 (3~)
(4.15)

E(V,5) = e 'h(Vt, b)dt. Solving (4.12) for /'t, we obtain

Our bound for /tt(Vt, 8) insures that (4.13) converges
absolutely for any finite V and uniformly in 6, as 8 —+ 0.
We may, therefore, interchange integration and the
limit 8 —+0. We recognize that taking the limit 8 —+0
applied to h(Vt, b) merely effects the analytic continua-
tion to all points in the Mittag-LeSer star. We will
therefore take the limit as b ~ 0 and mean by h(x) the
analytic continuation of its power-series definition.
Hence, if iP(p)) —', m, then

(4.14)

E(V) = e 'h(t V)Ct-

which is the Sorel sum" of the energy series. That
f(p))—,'~ is necessary follows by letting r= tV in (4.14).
This change of variables shows that E(V) may be
continued (since V may be arbitrarily large when real)
throughout the whole region Re(U))0. E(V) for V

purely imaginary can be defined by taking the limit
as Re(V) —+ 0+.

It should be remarked that, for more general poten-
tials, Carleman's theorem, Eq. (4.1), tells us that the
condition for determining a unique sum is that the
closed right half-plane be free of singularities, ie the

Neighborhood of the orjgirt rather than the whole right
half-plane. We obtained the whole right half-plane for
the repulsive square-well potential because of the
behavior of E(V) in the neighborhood of V=+ ~. In
the case of more general potentials, Eq. (4.14) will sum

E(V) only in the so-called "Borel polygon of sumrna-

bility. ""This polygon will not include all real, positive
V if there are singularities in the open right half-plane.
However, as long as it sums the series in the neighbor-
hood of at least one point, it is sufhcient, by analytic
continuation, to determine, at least in principle, the
function everywhere except at singularities, on branch
cuts, or beyond natural barriers. It should also be noted
that even for the square-well potential, Eq. (4.14)
without the variable change may not converge in the
whole right half-plane, but will for all real and positive
V.

~0 See, for example, B.Van der Pol and H. Bremmer, Operational
Categtas Based on the Two Ssded Lap/ace 1ntegr-al (Cambridge
University Press, New York, 1959).

3~ ~ n p

Xexp( 4M—a's//A'(2rt+ 1)'sr']), (4.16)

which goes to a constant (without oscillation) as g —+ oo .
In the limit as p ~ 0 we have a "large" convergent part,
Eq. (4.15), plus a "small" asymptotic part. Hence, one
would expect that approximations based on summing a
subsequence of diagrams (for instance, Brueckner's' ")
would form reasonable approximations for very low

density, but will very likely begin to fail as the density
increases. Also, such an approximation may be valid for
larger density and weak potentials. Although summing
a subsequence of diagrams and expanding in terms of,
say, Brueckner's'" E matrix does not convert a di-
vergent series into a convergent one, if the density is
very low or E is very weak, a serviceable approximation
may perhaps be obtained by taking only low order in E.

We see that (4.14) correctly gives the energy per
particle for the infinitely-many-body problem so long as
the closed right half-plane (except the origin) is free of
singularities. As singularities move into the right half-

plane, we no longer obtain the correct energy. What
happens is that in going along the imaginary axis in

(4.12) we get on the wrong branch of E~. The energy
obtained in (4.14) will, however, by the variational
principle, always be an upper bound to the true energy,
since the corresponding wave function can be obtained
by performing a Borel summation on the wave matrix. "
This result can be shown by use of Carleman's theorem
PEq. (4.1)j and a modified version of Goldstone's'
proof that the perturbation expansion satisfies the
Schrodinger equation.

An example of what can happen (for a different
potential) when the condition f(p)) —,sr is violated is
afforded by the BCS theory of superconductivity. "
Even though, as Katz~ has shown, the singularities of
the X-body problem are branch points at which the
energy is continuous, in the limit as X—&~ they can
conspire to give an essential singularity of the form"

(4.17)

The corresponding h(x) is

(4.18)

2' K. Huang and C. N. Yang, Phys. Rev. 105, 767 (195/).
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which is rot an analytic function of x. It is perhaps
illuminating to consider how this circumstance could
have arisen, since (4.12) and (4.13) with subscripts E
are exact. I.et us consider

N nv

where the ~f„are the series-expansion coefficients of
(3.27). When 8&&1, f~(U, 8) is a close approximation
to (3.27). When 8=1, h(x) given in (4.18) is the limit
as E—+~ of f~(V, 1). This function still bears a slight
resemblance to (3.27). When 6)1, one can easily show
that f&(V,8) tends to a limit for every value of V which
can be as closely approximated by the series (4.19) with
f„replacing ~f as one pleases. Since all f„=0, this
means f~(V,B) —+ 0 for all V if 8) 1. Yet

lim lim
N~~ Sr~O

0

Vm~n8

= limA exp) 8/(V+CE —&)j=Ae ' . (4.20)
@moo

What happens is that f~(U,b) has a large peak at a
distance from the origin of order E& so, although
f~(V,5) —+0, the integral does not. Hence, when the
series is not asymptotic in

~
arg s

~

& 2m. , the interchange
of the integration and the limit as S goes to infinity in
(4.13) is not valid.

Physically, where do these effects arise) Since, for
low enough density, we solve correctly the repulsive
square-well problem, they do not always arise as a
result of the solution procedures alone. The effects come
from situations where the eGect on every power of V
tends to zero as S tends to infinity, but not uniformly
so. Consequently, they do not involve any finite number
of excited states. Significant effects occur when the
number of excited states is of the order of X&'. This sort
of phenomena is usually related to the onset of long-
range order in the physical system. We feel that the
perturbation procedures described herein are applicable
to many-body systems, so long as there is no condensa-
tion, collapsed state (U&0), superconductivity, super-
Ruidity, phase transition, etc. For the infinitely repulsive,
square-well potential problem there is probably an
order-disorder transition" to a crystalline structure at a
density somewhat below the jamming density for
randomly arranged spheres. '3 This transition probably
sets the limit of validity for the procedure given in
(4.14), although one may continue to calculate a
metastable state beyond that point.
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