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A model of fermion-antifermion scattering, mediated by pseudoscalar neutral bosons, is described by the
corresponding spinorial Bethe-Salpeter equation in the ladder approximation. The decomposition of the
equation into partial waves by means of fusion amplitudes and conventional spherical harmonics is discussed
in detail; various important symmetries of the resulting kernel and Born amplitudes are pointed out. The
resulting set of coupled equations is continued into the complex angular momentum (J) plane, and it is shown
that Fredholm theory is inapplicable for any J'. The equations are solved in a weak coupling, low-energy
limit by an iterative scheme. The resulting solutions exhibit a cut of the square-root type extending along the
real axis to G/2n (G =coupling constant) in the right-hand plane; other cuts and poles prevent the extension
of our solutions into the left-hand J plane. The dominance of the cut is used to extract the large momentum
transfer limit and obtain certain results for the high-energy limit in the cross channel. The total cross
section for fermion-antifermion annihilation is extracted by means of the optical theorem and is found to
exhibit an energy dependence of the form t~a"~& IDntl 'Is, where t is the c.m. energy squared.

1. INTRODUCTION AND SUMMARY

'N the present paper we wish to examine the ana-
~ ~ lyticity in the complex angular momentum (J) of
the Bethe-Salpeter amplitude in the ladder approxi-
mation. ' The case of two scalar particles scattering via
exchange of a scalar particle has been previously
investigated'; w'e shall consider here the scattering of a
spinor particle and its antiparticle (for the sake of
convenience, we shall call them "nucleon" and "anti-
nucleon" of mass rn) exchanging pseudoscalar bosons'
("pion" of mass tt).

Aside from the intrinsic interest in the Regge poles
that might be associated with the "nucleonium" states
and resonances, the analyticity in the complex angular
momentum of the ladder amplitude will tell us about
the high-energy behavior of the nucleon-antinucleon
annihilation into multiple pions in a model schemati-
cally summarized in Fig. 1. To elaborate, the leading
singularity that lies to the rightmost in the complex
J plane will control the high-energy behavior of the
nucleon-antinucleon scattering in the crossed channel
LFig. 1(b)g and the imaginary part of the crossed
amplitude at zero momentum transfer gives the cross
section for the EX annihilation into multiple bosons. e

The partial wave Bethe-Salpeter equation for two
spinor particles is highly singular, so that the method
used in Ref. 2 is no longer applicable. In fact, the
kernel of the integral equation is not square integrable,
and the usual Fredholm theory' has nothing to say
about the nature of the solutions to this equation.
(See Appendix II.) We shall show, however, that, for
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For instance, F. Smithies, Integra/ Equati oes (Cambridge
University Press, Cambridge, England, 1958).

~E, ~&&nt (2E=+s is the total c.m. energy of the
system) and in the weak coupling limit, the iterative
solution converges to the right of the line ReJ=O,
excluding a small region around J=0; the most singular
parts (near the region around J=O) of the iterative
series is summed by the technique developed by
Saw'yer' and continued into the region. Ke find that,
for jEi«nt, the amplitude is analytic in J in the
half-plane ReJ)0 except for a cut along the real J
axis and embedded w'ithin the region.

The high-energy behavior of the scattering amplitude
in the crossed channel is therefore controlled by this
"Regge cut" and goes as (t is the total c.m. energy
squared in the crossed channel)

(—t) /Lln( —t))'"
characteristic of a Regge cut of the square root type."

Bjorken and Ku, and Sawyer' have shown several
examples in which the leading singularities in the
complex J plane are cuts. These cases correspond, more
or less, to the r 2 type potential in nonrelativistic
scattering. In our case, the Regge cut arises from the
spin effect: In the nonrelativistic limit the interaction
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FIo. 1. (a) The ladder
diagrams in the s chan-
nel. (b) The annihila-
tion-recreation scatter-
ing diagrams in the
crossed channel. (c) NN
annihilation into me-
sons.
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FIG. 2. The kinematics of EX scat-
tering in the s channel.

written as
1 5$

-~i, (ahs+""'(a, I)Vs~-~, (a),
(2~)s E

where X~, ) 2, X~', ) 2' denote the helicities of the initial
and anal nucleons, and antinucleons, respectively. The
amplitude N"'"'(q, p) is related to the Bethe-Salpeter
(Bs) amplitude by

we consider includes singular potentials, such as spin-
orbit coupling and tensor forces, which are at least as
singular as the r ' potential.

In the next section we decompose the Bethe-Salpeter
equation into partial waves. The method used is very
similar to that of Gourdin, ' but differs from his in that
we expand the amplitude in the usual spherical har-
monics rather than in the hyperspherical harmonics.
Our method here is closely related to that used in Ref.
2 and provides an unambiguous and direct way of
extending the equation to complex values of J.

In Sec. 3 we decouple the various integral equations
by continuing them in the angular momentum near
J=O. The resulting equations are solved by iteration.
Several differences between our work and that of
Sawyer are pointed out. Section 4 is concerned with
obtaining a relation between the fusion amplitudes of
Gourdin and the helicity amplitudes of Jacob and
Wick. ' "These are, in turn, related to a set of ampli-
tudes on which can be performed the Sommerfeld-
Watson transformation"" In Sec. 5 we relate the
amplitudes of Sec. 4 to a set of invariant amplitudes
suitable for continuing into the crossed channel; and in
Sec. 6 we examine the high-energy behavior in this
channel. We obtain both a differential cross section
for forward scattering, and a total cross section for
nucleon-antinucleon annihilation. The Appendixes con-
tain several useful mathematical formulas and certain
pertinent mathematical results.

2. PARTIAL-WAVE BETHE-SALPETER
EQUATION

We consider the scattering of a nucleon-antinucleon
system in the s channel where the scattering occurs
only through the exchange of neutral pseudoscalar
mesons. We take the ps coupling between the mesons
and nucleons. The momenta of the initial and final
particles are defined as shown in Fig. 2. In the ladder
approximation, " the transition amplitude E may be

M. Gourdin, thesis, Universite de Paris, 1958 (unpublished);
Nuovo Cimento 7, 338 (1958); Ann. Phys. (Paris) 4, 641 (1959).

"M. Jacob and G. C. Wick, Ann. Phys. (N. Y.) 7, 404 (1959).
"M. L. Goldberger, M. T. Grisaru, S. W. MacDowell, and

D. Y. Wong, Phys. Rev. 120, 2250 (1960).
"V.B. Berestetsky, Phys. Letters 3, 175 (1963).
'3 We point out here that we are neglecting annihilation dia-

grams in the s channel. The inclusion of them might well alter
our results, but would also lead to great mathematical difhculties.

+ilk2(q p)
—+ili2(q qp

—())

and 4'"'"'(q) satisfies the BS equa, tion' "
0 1 ' Y 0 ' 1 0

+ili2 (q)
—Q+ili2 (q)

i6'

(2vr)4

y (k+E)+tN

Substituting 4 into the BS equation, we 6nd the
following set of coupled integral equations for S, T, etc. :

S=Ss+E( (ms+k ps E' k') S—2m—kpT-
+2Ek F—2mk G),

T= T~+K( —(ms+kp' —E'+ks)T
+2mkpS 2kpk' G)

V= Va+E((ms+kp' —E'+k') V—2mkpU
—2k(k V)+2EkB 2mkC 2ik—pkX F}—,

U= Uii+It( —(ygs+k s—Es—ks)U+2~kpV
—2k(k U) —2kpkC —2&skX F+2ikpkX G), (5)

&=Be+&((nz'+E' kp'+k')B 2mEC—2Ek V)—, —
C CB+&(—(m'+E' —k ' k')C+2mEB-

2mk V—+2kpk . U),
F= Fs+&( (res'+E' k' kp') F 2mEG— 2—EkS- —

+2k (k F)+2ikpk XV—2itnk XU),
G= G,+Z( —(ms+E —kps+ ks) G+ 2mEF

+2k(k. G) —2mkS+2kpkT —2iEkX V},
"We use the metric gpp= —g,;=1 (s=1, 2, 3), and the y

matrices.

L(k—q)' —p,'$ [(k+E)'—m'$

y (k E)+prI-
Xvs+""'(k)vs , (2)

L(k —E)'—m'g

where 2E=+s=2(p'+no')'" is the total c.m. energy
of the system, and the zeroth component of q, go, is
the so-called relative energy. ' The Born term 0'& is
given by

m N„,(p)v t„(q)
+ii"& "&(q) = —2~jG'— (3)

E (p q)' I"——
Following the method described by Gourdin, ' we

decompose 0' into four 2&(2 Pauli spaces:

,'(S+T)+,'(V-+U) e, -—,'(8+C)+-,'(F+G) e)
-', (&—C)+-,'(F—G). , ', (S+T)+', (V—U) )-—

(4)
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where E stands for the operation

—iG'

(2m)4

set, but rather comes from the set obtained by setting
Q~-i(y) =-o

The breakup of the integral equation into two disjoint
parts is a direct consequence of parity conservation.
Equation (2) is invariant under the parity operation 6':

[(k—q)' —ps j[(k+E)'—m')[(k —E)'—tpP j +(q, qp) ~ iP{+(q,qp) }—=vp+( —a,qp) vp. (8)

Next we decompose the above equations by expand-
ing the various fusion amplitudes in spherical har-
monics.

S= P Sg,~Yg, sr(&, q),

V= Q {Vz, M YJ,J+1,sr+ VO', M YJ,J,M
J,llf

+V~M Y,g-g, s,r}, , ) (6)

where the Ygr, ir are the vector spherical harmonics
discussed by Edmonds. ' The 2' axis is taken to. be the
direction oI the incident momentum. Several relations
which are very useful for performing this reduction are
listed in Appendix I. Furthermore, the boson propa-
gator can be expanded as

(k —q)' —ii'

2'
V/M(IIK) ,&i,sr (&,)Qi(y),

qP L, M

where

y = [k'+ q'+ p' —(kp —qp)')/2kq,

+, =%ii; +
zG2 kdkdkpM;;~(q k)%,~(k)

(2~)'q ' [(k+E)'—nP][(k —E)'—m.']
(&)

where 4, stands for the column matrix SJ TJ, ~ ~ ~,

VJ VJ M'j is a 16)(16 matrix which is written in
block diagonal form in terms of two 8)&8 matrices
M"&, M"'. Corresponding to M&" we have the column
matrix

{Sg, Tg, VgP, UgP, Fg+,Fg,G g+,Gg }
and to 3f(2)

{&z,cz,I'z', Gz', Vz+, Vz, Uz+, Uz }
The elements of the matrices M") and 3I(@ are tabu-
lated in Table I.

One ought to note at this point that the coupled set
of equations represented by Table I is valid for J&1.
In the next section we shall continue the equations in
J down to J close to zero. However, the physical
solution for J=O cannot be obtained from the above

"A. R. Edmonds, Angular 3fomentum in Quantum Mechanics
(Princeton University Press, Princeton, New Jersey, 1957), p. 81.

and Qq(y) is the Legendre function of the second kind.
We 6nd that the resulting set of coupled equations

can be written in the form

Hence, if we write %(q) as a linear combination of
amplitudes which are even and odd under the operation
6', we see that the two parts are decoupled. Substituting
Eq. (6) into Eq. (4) and performing the operation
indicated in Eq. (8), we find that the first eight 4,'s,

SJ, T'J, ~, GJ+, GJ, belong to the states of parity
(—1)~+' (singlet states and triplet states with 7=1.),
while the rest belong to the states of parity (—1)~
(two linear combinations of triplet states with 1.=1+1
for each J).

Ke next compute the Born terms 0'g;. These terms,
which depend on the initial helicity states, can be
formed from a consideration of the outer product of
two spinors.

c'i,i,=Ni, (p) 8~:i,(p)

t' p q ( x„, l ( 2Jt,px&„tq
l; (9)

k2 ] &[2J,P((E+ )~x„& 4
" E—

u(p), e(p) satisfy the equations (p.p —m)u(p)= (p p
+m)s(p) =0. Also o.sxi ——2Xxi. For a discussion of the
proper combinations of spinors to be used consult Ref.
10 or 11.The outer product X)„Xq,t can be written as a
sum of Pauli matrices according to the values of ) ~, ) 2.

2) g) 2'A2

1

1) 1

1) 1
—1 —1)

X)t~X )t2~

l(1+I ~)
—,'(ei+ies) e
—,'(ei —dies) e
s(1 p~)— (10)

Then, using the fact that

5$27l
@~igks — 2~sGs P Q (y)

pq im, .

)2t+ Iy 1/2

XI I
&lp(IIp)t'Mp IC'~i~s

i

and the relations given in Appendix I, one can read oG

the terms .of 0'~~'"'. The results are summarized in
Table II.

Again we point out that the J=O Born terms are
obtained by setting Qz i(y) =0, as well as J=O. Since
we shall not need to consider these J=O terms, we drop
any further mention of them. The Born terms as
written can be continued to within an e of J=0.

One should note from Table II that if we form the
singlet and triplet combinations of the eight amplitudes
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TABLE II. The Born term 4'p; for the various initial helicities.

SJM/QJ

2 JM/QJ

VJM /QJ

U JM'/Q J

FJM /QJyl'
IJJM /QJ —1

GJM~/Q J~1

GJM /QJ l

IIJM/QJ

CJM/QJ

PJM'/QJ

GJM'/QJ

I JM /QJyl

VJM /QJ l-
U JM /Q J+1

UJM /QJ —l

iG2(22)' 2j+1
2Eq 47I-

—iG2(22)2 1+1
2pq 4)I.

+iG2(2~)2
2pq 4.

—iG2(2~)2 m J+1 '/'

2Eq p 4~
+iG2(22)' m J

p 4.
+iG2(22)' 2J+I

2pq kr
+iG'(2ll)' m 2J'+1

2' p 42I-

—iG'(2~)' 2~+1 '"
4 ~MO

+iG2(2~)' J
2Eq 4m

1 1
2) 2

+iG'(2'-)
2E 4 ~M 1

+iG2(2ll)2 m J
2Eq p 42I-

+iG'(22)' m 7+1
2Eq p 4)I-

+iG2(2~)2 J 1&2

2pq 4m.

+iG'(22)2 1+1
2pq 4)r

—iG'(2~)' m 2J+1
p 4 4t 1

—iG2(2. )2 2J+1 1~2

2pq 4~

iG2 (2~)2 J 1//2

2Eq 4'
—$G2(2~)2 J+$ lt2

4rl

+1 1
27 2

associated with the space parity (—1)J+', we find the
following grouping of terms:

Singlet: (lllJJ'/''/' VJ/ '/' '/') B—J CJ VJ+ V —.

Trjpiet ' (Q&1/2, 1/2 —ill& 1/2, 1/2) p 0 G 0 U + p
The BS equation (2) is invariant under the spin
exchange operation:

+(~.) ~(+(~0))=——V.+'(—~0)V2. (»)
Ke decompose 8, C, etc. , into parts even under qp

—&

—qp. '8, 'C, etc. , and parts odd under qp
—& —qp. 8,

'C, etc. ; we then apply the operation of Eq. (12) to
Eq. (6) and separate the terms that are even and odd
under Z. The result is

Singlet (odd under Z):
eP eC eV +. oF P oG P 0U

Triplet (even under Z):
ep p eG p eU +. og oC oVJ ) J ) J ) J) J)

Since the Born term is necessarily even under qp ~ —
qp,

"J.M. Jauch and F. Rohrlich, The Theory of Photons and
Electrons (Addison-Wesley Publishing Company, Cambridge,
Massachusetts, 1955), p. 275.

the results in the last paragraph follow also from the
invariance under spin exchange (charge conjugation
X parity). "The implication of spin-exchange invariance
should perhaps be stressed: In the matrix M('), the
amplitudes BJ, CJ, VJ+ are coupled to FJ', GJ, VJ+
through elements that are odd under qp ~ —

qp,

k0 ~ —k0 (Table I). The spin-exchange invariance
does not imply that the odd elements of 3f&') do not
contribute, as Gourdin states, ' but it simply states
that even 8J, CJ, VJ+ are coupled to odd FJ, GJ, VJ+,
and vice versa. The fact that the Born terms are even
does not alter this conclusion, nor does the fact that
odd amplitudes vanish on the mass shell (II0

——0). As
an illustration, consider the iterative scheme starting
w'ith the even Born terms. There will be generated
odd second-order terms which vanish on the mass
shell, but which will contribute to even third-order
terms which do not vanish on the mass shell.

The Born terms and the elements of the kernel M;;
exhibit a number of factors that contain kinematical
branch points at J=O, —~, and —1. However, it is
possible to remove these singular factors from the
integral equations and the Born terms by a suitable
redefinition of amplitudes to Leave only poles at J=0,
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——'„—1, and all negative integers. Hence, these branch
points need not be considered. The proper choice of
amplitudes that are free of kinematical cuts is

Case I: X~A2=» ~ or —» —
2

1 1 1 1

(Sg, TgBg, Cg) = (2J+1)'/'(S' g, T'g)B' g)C'g),

(Fg+,Gg+, Vg+, Ug+) = (J+1)t/'(F'z+ G'z+, V z+, U z+),
(Fz Gz Vz Uz )=(J)t/s(F'z, G's, V'z, U'z ),

/J+»"'
(F"G~' V" U~') = (2J+»'"I

X (F'z', G'J', V'z', U'~') '

Case II: ) ~A2=» —-', or —» —',
J 1/2

(Sg, Tg, Bg,Cg) = (2J+1)' 'I
V+1

X (S'g, T'z, B'z,C'z),

(Fg+ Gg+ Vg+ Ug+) = (J)'"(F'J+ G'g+, V' g+, U' g+),

(Fg, Gg, Vg, U g ) = (J+1)"'(F'g )G'g, V'g, U'g ),
(F P G P V~P U~P) (2J'+1)1/2(F ~P G ~P V ~P U P)

We shall continue to use S, T, etc., while keeping in
mind the possibility of going to the primed set.

3. COMPLEX ANGULAR MOMENTUM

The integral equation (7) can be extended to complex
values of J by simply adopting the usual definition of
Q~ for complex J. It must again be stressed that the
equation thus extended is not the physical one for J=0.
Attempts at applying the method of Ref. 2 are met
w'ith frustration, owing to the fact that the kernel is
not square integrable (see Appendix II); while succes-
sive iterated kernels exist, their traces do not. It has
been sometimes asserted" that no solution exists to
this equation because of this singular nature of the
kernel. Obviously this is an erroneous conclusion. What
is true, however, is that the kernel is not square inte-

k'+ q'+ p' —kp' —qp'+2kpqy

r2kq

/'k'+ q'+ p' —kp' —qp' —2koqp)—Q~-tl )I,
2kq

which, by the approximation we shall shortly introduce,
is proportional to J, and hence less singular. Thus, the
even character of the Born terms will be preserved in
each iteration.

We are, thus, left with the set of equations:

grable and, therefore, the Fredholm alternative need
not hold'; that is to say that, considered as a function
of the coupling constant, the poles of the T matrix
may not have a correspondence with the existence of a
bound-state solution.

However, it is not too dificult to see that for
I
E

I
(M

and ReJ&0, the successive Born approximations are
well defined, and for sufficiently small coupling constant
the series is convergent, "except for the fact that as J
is continued to near zero, certain of the terms become
singular and integrals diverge. These are the elements
containing Q~ t(y) which goes as J ' as J~O. As
was done by Saw'yer under similar circumstances, we
shall sum the most singular term in every order of
perturbation theory into a closed form. As an inspection
of Tables I and II shows, the most singular amplitudes
at J=O are VJ=, UJ=, Gz, and I'"& which may be
coupled among themselves. The other elements are
coupled to the above singular ones through nonsingular
elements of the kernel, and will be neglected.

Throughout the following analysis, we assume the
weak coupling limit. A further simplification results
from neglecting all remaining elements of 3f,, which
are explicitly odd in ko. This is justified by noting that
all the Born terms are even in qo, so that the only
factor preventing the complete vanishing of these terms
will be proportional to

iG'
VsM = VB~M +

(27r)'q

iG'
UJM —UBgM +

(2pr)'q

iG'
FJM —FBgM +

(2m.)'q

iG'

kdkdkp (ns'+ kp' —E'+ ks/2 1+1)Qz—t (y) VzM

I
tps'+k' —(kp+E)']Lm'+k' —(kp —E)']

kdkdkp( —m' —kp'+E'+k'/2J+1)Q J t(y) UJM

Lm'+k' —(k +E)']/tt/s'+k' (k —E)']-
kdkdkp((nz'+E' kp' k'/2J+1)Q j—tFJ—M 2mEQJ 't—GJM }— —

I //s'+k' (kp+E)—']I m'+ks (kp —E)—']
kdkdk, ( ('+E' ko'+k'/—2J+1)Q —G +2 EQ

(14)

GJM GBgM +
(27r)pq

I
~2+ k2 (k +E)2]l ~2+k2 (k E)2]

'7 As an illustration, consider the integral equation

4 (x) =xp+ @(v), —o&/S& —l .
X "dy
7l p P+S

The nth iterated kernel exists, but its trace does not. A class of eigensolutions (solutions to the homogeneous equation) is constx"
(0&p.& —l) with the eigenvalue A=sin~a. The solution is xs pinup/(X —sine//). The pole in X depends on the inhomogeneous
term and there is no one-to-one correspondence between the pole in ) of the solution and eigenvalues.' We are being mathematically cavalier at this point. The "epsilonics" could have been worked out, but the result would
Dot have berg. relevant physically nor particularly illuminating matherrIatically.
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b its leading obtainke the replacement of Qz i y i

of . ,See awyerterm in inverse powers o y.
cation of this and succeeding steps. ) rtki' ' 'dkg i dkip' ' 'dkN ip-J(2ir)' p p

(y) = (2y) ' 'r (J)/r (J'+-', ) .

(V, Uii, FIi,Gs) =oG'Q~-i(y)
py

'

J b zero wherever possi e,
' .e we find that

h .. h...(2 ) cannot be set eqe ual to in e
is uadratic in k or p olp g

inte rais in the iteration proce ure

shows that the integra i
l' G to IiJver the terms coup ingthose cases. However,

on k and Qq i mayot uadratically dependent on k, an J &

e l J '. In that case we see thatbe taken equal to simply J . n a
ower of Js contribute one less inverse power othe cross terms contri u e

ill be neglected.ct terms, and hence wi ethan the direct e

led in this approxi-, U Ii and GJ are decoup e in iVJ ) &J ) J )

mation.
e written in the formThe Born terms may be wri en i

—J

(
—+k, +—+k„—2q,k, !

(mo m'

2—k 2

X '~ k '+k '+ (k o k o) )
(1+kio+ kio')'

Xkx royal kx io+—+km io' —
o

(2 )8 2G2)N 1 rpp z

2 J2w

00 dx,(1+x;)

o (x,)'t'(1+x;)"')

ub
' ' P= '=,=t (1+x)We next make the suubstitutionk. =x;, ;p =y,=,

and put q on eth mass shell. Then we n a

oG' p'+q' —qo'+p'
(1+xi)(1—ti)

x S]X Lx+xi+ti(1+xi) J

etc. may contain J-dependent factors. These

rlier and therefore, they are o nodefined earlier; an
of the type discussedThe e uations are now o equence. T e q

sketch in the solution.w er and we shall only s e c i
h re depending on thees of e uations ere

f the kernel.k'and kp'in the numerator o e erelative sign of k an
k' k ' have theV and IiJ ) where, p aConsider first ~ J
'bution to theSince the dominant contri u iong ~

d V d'ff"' fro P 'nl
s comes from large an p, e

factors are not gt si nificant, an
nt. Therefore, asi n of the coupling constan .in the g

V ives one for wig
Wick's rotation o

neglecting cl E' ompared to ~' in the kerne ) an e i
V= V'/q,

XLx,+x,+t, (1+x,)+t,(1+x,)
—2 (titp(1+xi) (1+xp))'t'j ~

Xx~,'[x~,+x+t~ i(1+xio i)]

VI
(2w)' r —2G') ~ 1

J(2 )'i 2'

&e dt(1 t)
—x—i

p ~oz

p t&(1+t)' m] p

X&x~,(x+xi)—'(1+x,)'-'(x,yxo)-'(1+xp)'-' .

'= ' m'. The integrals are well behaved
m' 'b t' n wiH come fromominant contri u ion

; l ge. Th fo, , (1
the terms where it is aequal to zero in e

Then we obtain the result that"

I

(2m.)'J
dkdko(m'+ k' —ko')

(m'+ k'+ kp')'
X(1+x' i)' '(xx i+*x —~. (19)

Saw er to be equal toThe x; integral is given y a y

X
q'+ k'+ti'+ (qo —ko)—

V'~..i. (16)

rs odd in kp, set p,' equal to zero, andIf we neglect facto
make a scale transformation (k,kp ——nz

s is the maind in succeeding equation
i r e

'
h of Sawyer (Ref. 6),r e uations and t ose odifference between our eq

and it is a very critical one.
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The t integral, however, is found to be zero. Hence,
we find that Jig and Ug do not contribute in the
singular limit considered here due to cancellation
between the k and kp integrations.

For U& we have the equation

G' 1 (kp2+0' —rrt')
dkdkp

(2sr)' J (kp'+k'+rrt')'
U N

q2+$2+tt2+ (ftp qp)2

(p, p)=G~3r (-p, -p)
sit /J

=p(2sr)'
l

— G(J)bpr, p,
Zpp &4~

t'. (2~)4t J+1 itP (25)
G~~ (+p, ~p)= G(J)&sr.gi,

p' k 4sr

(2s-)4 t'J+1y 't'
Us pr (& p +p) = p

I I
U(J)Apl, yi.

pp I 4~)
U/

All other amplitudes are considered to be equal to zero.

—G' ~" Up p'~'
Ug = —8xi

J'(2')'i q rite

(21V—3)! ( ao dt )N I—
x

Q!(Q—2)!2pttv i& 'E
p t1(1+t)i

(21)

where U'=U/q. Performing the same opera. tions for
U~' as for U~', we find

4. HELICITY AMPLITUDES

%e use here the helicity transition amplitudes
defined by Goldberger et a$."The connection between
the fusion amplitudes and the helicity states can be
obtained from the cross sections calculated with each
of them. The result is

(~i'~2'lll~i~2)= Ui (q)vp+'"'va'-i (q) (26)
2(2sr)'

where the final momentum q= p(sin8, 0,cos8). After a
The t integral in this case is equal to ~. Therefore, we
have the result that

pUp p') ~

Utv= —8sr'

q rrt'i

(
G' ~!

" (2X—3)!
xJ —

l
. (22)

J'(2')'i 2't "(x—2)!x!

The corresponding series may be summed to give

(-; —;lyly,x,&

p E rtt
g) ill QXli2+ CXIXR

(4~)'- p p

g+ . (p+x&i2 gpxixs+rrtGxzxp)

(27)

ppU ) pp
J' — ) G2 i

1/p-

U;=—
q &srtp & 4~'i

Sm'iUp
U(J). (23)

l pq i lx2+rrtg) li2 gcili2
(4sr)p

(e i pe I) . (piliixg+gGxixg ritpxixs)]

The equation for Gz divers from that for U & only
by the sign of 6', and the corresponding sign of GJp .
Hence, we have

where we have taken e'~ and e'~ to be two unit vectors
orthogonal to j. Following Goldberger, "we define

8~PeG pP ~-
( GP)itP

G;=
q rtt' 4 4sri

A=(p- p l~l p- p&=—E.(2J+1)e"~» (~), (28)

Putting in Gp and Up for the four possible cases, we
finally find the following solutions to our equations'":

20 UJ, FJ, GJ=, and VJ both in the Born amplitude and in
general are what Gell-Mann calls "nonsense terms" at J=O
)Proceedings of 196Z Anngal International Conference on High-
Energy Physics at CER1V (CERN, Geneva, 1962)g.

1
@ =(l —l i&1

—-' l&=—Z.(2J+1)e 'd '(&),
2

$5= (p p l pl p
—p&= —Ps(2J+1)ypsd, p~(e) .

2
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n ula

2'= —-- U(J—)+ G(J)—
2 2J+1 L" p (29)

—U (J)—-G (J)
2 2Jj1 L' p

2'tr [J(J+1)]'~2 2t2J
2 2J+1 p

er set of transition amplitudesKe define another se o
'n let states ordin to transitions between sing e s a

b thamong the various triplet states y e

J JOJ= iJ- 2J, iJ= 3J- 4,
J2oJ= 3J 4

f22~=242,J
(30)

J can be calculated in terms of the fusion

results are, putting in Eq.

m' J
y, ~ = —i2r—— G(J),

2pE 2J+1

n "asanintegralover thea g rWatson transformatio,
The contour may be opene up imomentum.

t n singularities
r and ushed to wit in an e

p t take into accoun an
artial-wave amplitudes; these wi

J which by inspection of Eqsingularities ot the p;, w tc y
re seen to be cuts running from —

m

g
to the original contour andnd the so i ine is

out that the contour, before

t these amplitudes since=0 contributions to ese a
1 d t th t o t I au ts are not va i aour derived resu ts a

k t the large snluch as we ultimate y g e1 are oing to loo a e
ec. 5 the contribution of t ese

h
'

dependent ot s. The'J
1

ince the are in epen
domain of y y ane1 ticit in the comp ex p ane

'

with ReJ&0, except or a cu
ea a is e tendi g to

rthest to the right, wi give e
Ifth d' t tcontribution to the high s behavior. e

aild

( &2 &4 l
fr=&(&t—42) f2=P-I,

FxG. 3. Integration contours in the
complex J plane for the f~

a%a

2 5 4

~1+, 1
+

7

sine

(31)
2 o~ ——e~+—fp~, etc. ,

ll l

ss the cut is represented y
the leading behavior ot the f;
integrals

e z~, have a convenient partial-wavewhere s=cos8. The z, ave a
expansion ision in terms of Legendre polynomia s. 4jp

E 0"~ 2J+1—P, (—s)~f,&,
sinwJ

fr= Z(2J+1)fo'—P~(s),
2p z=o 4ip

P.( )~f ', —
sinmJ

f2= Z(2J+1)frr~—Pz(s,
2p J=o

fs= Q(fr'—Ls z s —
22 z""P '()]'—f 'P "())

2p &=& J(J+1)

(f22 Ls J s —
r z"' P '()]' f 'P "())

2p &=r J(J+1)

(32)

J(J+1) Slllqp J4ip

gf J
E~" 2J+1 [——sP'g (—s)]'

J(J+1)4ip sine J
ts ~~2 2J+1 P g(—s)

4 p [J(J+1)]'~2»n~J

E~i' 2J+1 [—sP—'g( —s)]'
22 7

2= ——2 fr2~P'z s .
2p ~=t [J(J+1)]'~2

hen the I'J indicate differentiation.p'
may now be written, by means o e

ro ortional to [sP'q]' is retained in f2Only the term p opo
since the leading term o J isand

1 the asymptotic depend-
th artial-wave amphtudes

r of s and we desire on y e
ence. The discontinuities in t e par ia-
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are found to be

t) f8s=0,

where

m' J
hf llew=

—22r — f(J),
Ep 2J+1

E J+1
f(J),

p 2J+1

t) f,~=0,

zrz [J(J+1)]'/'
6flzs —22r——— f(J),

2J+1

A tedious calculation leads to the following relations:

1 [ gl+ 2 (E2+p2)g2 (E2+p2)2g

—4E'p'a5]-,' (1+cos9),

42rE(te2= [E al 2E', —a2+E a3—p a4]8 (1—cose) 2

42rEete3 —[—g1+2 (p ~p )a,—(E'+p') 'a,
+4E'p'a5]-'(1+cos0), (38)

(34) 4zrEetf4 [ E'——al—+2E'az E'a3—p'a4—]-,'(1—coso),

4zrErtf5 [Eal ——2E'az—+ E (E'+P') a ]-', (sine) .

lf one expresses the et); in terms of the f;, and uses
the fact that fl and f8 are zero, one can easily solve for
the a; in terms of the f;. We neglect one compared to z,
and E compared to one to simplify matters. (p'= —1)

f(J)—(p2/2282) J (Q2/4~2 J2)1/'2

i=0 =0 )

ZZ/88 G12 (—t/Zf/2) Gl2 a ZZ/88

A, f4 A, ——
4p' Dn( —t/ 8/)z]

'8/4p' 2t

Then, letting P~(—z) = (—z)', P's( z) =J(—z)—

[—zP's( —z)]'(—z)]'= J'(—z)s—', and using the result
of Appendix III, we get the results

e =—( /2E')(f, + +,28'f, ~—,
s

2

e,= ( /2r")(f, + +48'f,), —

= ( /2~") (4E'f f / f—)—
a4= 2zr(f4 fz/z), —

a5= (~/2E')—(f4 fzlz)—

(39)

—25$2

2f

(35)
Putting in the values of the f,, we obtain (z '=2p'/t
and s=4E')

where 2~ has been taken equal to one. Hereafter, since
no confusion can arise, we will assume all energies to
be measured in terms of the nucleon mass, and take
m2= 1.

S. INVARIANT AMPLITUDES

In the case of nucleon-antinucleon scattering one
can show on the basis of parity, charge conjugation,
and time reversal invariance that five amplitudes are
sufficient to describe the scattering process. We define
a transition matrix T~; in such a way that'

.—Q 1 (81)//8 2(p)flII ~ 8 N8 1(p)z) 2 (p)
=4 E(X,'X,'[@IX,X,), (36)

where

~a/1; 8e alt)azt)t)e+ a2[7a8 ' It())82+()a87/)e ' P]
+a37a8 '

1~ 7 pe
' P+ a47a8 57)825

+a57ae5728 'it7Pa ' P7ae5 1 (3 t)

where P= 1 (p+p') and K= —,(0+k'). By computing
T~; explicitly for the five helicity combinations involved
in the et), , we may relate the a, to the et); in the center-
of-mass system. The spinors used earlier in relating the
fusion amplitude to the etc, are to be used again here.

al ———(zzr/st)A, a,= —(zzr/st)A,

az ——(zzr/st) A, a4 ———(zzr/t) A,
a.-= (Zzr/St)A.

6. HIGH-ENERGY BEHAVIOR IN THE
CROSSED CHANNEL

We are now able to calculate the high-energy contri-
bution of the annihilation-creation process to the
differential cross section in the forward direction
(small s).

80 1

dn (22r)' t

where a sum over initial and average over final spin
states is implied. This gives, by a standard trace
calculation,

da- t
( I

all'+4[ az['+
I
a ['+

I
«I'+s2[a5['

dn 16(2~)2

+2(al a2+a2 al)+ (al a8+a8 al)+2(az a8+a3 a2)} ~

or, using Eq. (40) and putting in A from Kq. (35),

do/dQ=G(t)(g/a) '/32(lnt)'. (41)

This cross section, while interesting in the manner in
which it exhibits the effect of the Regge cut, has little
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meaning in itself since the meson exchange diagrams
would be expected to dominate at high energies.
However, we can obtain the total cross section for
nucleon-antinucleon annihilation at high energies by
the use of the optical theorem. Specifically, we 6nd by
a comparison of Nth-order terms that

o„=—2s'(-,' P ImR'(s=0)),

validity, since the approximation" used in Sec. 3 holds
good only for 6nite boson mass p, . In quantum electro-
dynamics, the electron positron annihilation into e
photons is dominated by the process in which two
energetic photons and n —2 soft photons are produced. "
The approximation made in Sec. 3 is valid only for
p, /0, and precludes the soft-photon contributions in
the limit p, ~ 0.

where R'(s=0) is the R matrix in the t channel in the
forward direction (s=0) with ) r

——Xt', 4=As'. R' is
given by
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By means of another simple trace calculation we find

P R'(s=0) = [ar+2as+as+u4$.
)l,I).9 (2s)'

s Gl/s e iG/s(]) 0/s~—
P R'(s=0) =

2n f Dnt —Ar)s/s
(43)

Under our convention in the use of factors of i, the
ImE referred to above is actually half the discontinuity
of E across the cut going from 3=0 to ~. The contri-
bution from the denominator is neglected since it is
down by a factor of I lntj '. Hence, we have the results

Putting in the values of the a; from Eq. (40), and
letting —1=e ' we see that

g ' ~zz//r

( J )1/2

+I
I

&zz ter, (A1)
2J+ 1j

)J+1 1/2

y &zz+r~= —
I ~z~,

J ) 1/2

g
' ~zz 13r'-

2J+Ii

(A2)

APPENDIX I

A. Relations with Vector Spherical Harmonics

I.et /I be a unit vector in the f), g direction, and we
have"

~ J+1
Yz z+r sr

&2J+1

1 -6-3~2
Im Q R= —= — (/)o/s~

4xt lnt

~- 6 -3~2

(])6/sw —1

8 lnt

( J )1/2

QX ~zz+.rsr =~I
I

+zzsr,
i2J+1//

// J+1 ~'/s
qx&zz r/u=sl

I
&zzs/,

(44) (2J+1)

(A3)

We have shown an example of the occurrence of a
"Regge cut" in field theory in this paper. The argument
presented is valid only in the weak coupling limit, and
it is quite possible that in a strong coupling, the leading
singularity in the J plane is a pole in the model con-
sidered. In fact, even the weak coupling results might
be considerably altered by considering diagrams with
crossed meson lines or nucleon annihilation in addition
to the ladder diagrams used. Interference effects could
lead to a cancellation of the cut and leave a Regge pole
as the rightmost singularity. However, the mathematics
is then prohibitive.

We have considered quantum electrodynamics with
photons of finite mass. The result is very similar to
the ps —ps theory considered here"; in the limit as the
photon mass goes to zero, our result, however, loses its

"A. R, Swift and B. W. Lee (unpublished).

—( J )1/2
/IX&zzsr=s I I

&zz+r//r
&2J+1i

J+1 )1/2

+
I

&zz—ter (A4)
2J+1)

~ The approximation
I'(1+1)

Qz (y) ~ ~ /s —(2y)
I'(~+8)

where
y =pk'+k" +ps+ (ko—k'0)'j/2kk'

is valid for large y. It becomes a bad one when y —& 1. This
happens only when k=k' —+ 00 for p&0; but happens for all
values of k=k' for p, =0.

"S. N. Gupta, Phys. Rev. 98, 1502 (1955); D. R. Yennie,
S. C. Frautschi, and H. Suura, Ann, Phys. (N.Y.) 13, 3'l9 (1961);
J. Joseph, Phys. Rev. 103, 481 (1956); K. G. Mahanthappa,
thesis, Harvard University, 1961 (unpublished).

~ A. Akhiezer and V. B.Berestetsky, Quantum Electrodynamics
(Technical Information Service Extension, Oak Ridge, Tennessee,
1953), Part I, p. 32.
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B. Further Relations with Vector
Spherical Harmonics

Choosing eo, el, and e2 to belong to an external
coordinate system, we easily obtain the following
relations from the basic definition of the YJzpz'.

so that

(c'i 2—C'2) Yazd
t'2J+1~ '"

=Q Czi(J, M; M q,
—q)! ! d2z, pedi, '(—1)'

5 4~ i

L+1 1 1/2

eo~Lo= Yz+1 z.p
2L+1)

/2J+1 '/'
= (—1) v2Czi(J, 1;01)dipz ! (A10)

I I/2

The last step is a consequence of the addition theorem"
L—1 LO)

(2L+1 for the d ~ functions and the orthonormality of the
Clebsch-Gordan coefficients.

(L 1—
+Y, z,+ I ! I'z, z, . (A7)

2L+1)

C. The d„„~(e) Functions

Using Eq. (A2) and the relation Iz~2z(t/, @=0)
= [(2J+1)/42r]'/'dpzp~(8) we see immediately that

YJ J ip= (J/42r) / dpp (tt),

/pt
' Ygz 11= (J/42r) dip (t/) .

(AS)

(A9)

Furthermore, we can express e'1—ie'2, as defined just
below Eq. (27), in the form

C 1
—SC 2=%2 Qp dip (8)C

(L+2 1/2

(ei+2'C2) I'z, p
= —

I Yz+1 z,
&2Ly1

(L 1 1/2

+Yz.z, i—! Yz,—1 z.i (A6)
(2L+1

(L+2 ~'/2

(e, 2C2) ~zp—= I L+l L—1
i2L+1) dkidk2dk p,dk p, !E!'= dklodk2o dk ldk2

Ot) 0

k12k22
X-

[k12+kgp2+2/22)2[k22+ k222+m2)2

t'ki'+k2'+ (kip —kpp)'+ p,
'

X Qz!
2klk2

By inspection, one can easily see that the most divergent
part of the integral w'ill come from the region where kl
and k2 are both large; otherwise Qz(y) will provide
sufficient damping to insure the convergence of the
integral. m2 can be set equal to one by a scale transfor-
mation on the k; and k;o,. p2 can be neglected. If we
make the change of variables, k;p=t, (1+x,)'/' and
k,~=@;,we 6nd the result that the integral becomes

APPENDIX II

Integrability of the Bethe-Salpeter Kernel

Taking a representative kernel from our integral
equations to be proportional to k' and Qz(y), we
consider the following integral

dr&dt2

(1+t 2)2(1+t 2)2

1+xi '" 1+x2)'/2 x x
dXld$2

x, x, ) (1+x,)2 (1+x,)2

2 (xix2)'/'

xz+x2+ti'(1+xi)+t/(1+x2) —2tzt2(1+xi)'/'(1+x2)'/'~ ~'

)
X Qz !

AllA2

(1+t 2)2(1+t 2)2

$]dS]

[1+xij[1+lixi)

In the limit of large x, , we can let x,=1+x,. Then, if
@2=)xl, we obtain the integral in the form

diverge logarithmically. Thus, we see that our kernel
is not square integrable, independent on the value of J;
therefore, there is no region of the complex J plane in
which Fredholm theory w'ould be applicable.

APPENDIX III

Ke calculate the asymptotic value of the integral
arising in Eq. (35) in the following fashion. Consider

The xl integral can easily be done and is found to "Ref. 15, p. 61..
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the integral

I= Cx e~'(a'+x')"'

Then w'e find

(2a~ "' fasr q"'
I=

]
—

)
tEy e&(ab y)—'t'= ]

—
)

e',
&b'& &2b')

where a((1, b —+ oo. Let y= bx, and (a+x)'"= (2a)'". where in the last step we let ab —+ oo.
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Divergence and Summability of the Many-Fermion Perturbation Series*

GEORGE A. BAKER, JR.
Los Alamos Scietttiftc Laboratory, Unioersity of California, Los A/amos, llreto Mexico

(Received 1 April 1963)

We investigate the convergence of the many-fermion perturbation series and show, for the case of the
square-well potential, that it is a divergent series. We bound the rate of divergence and show that, by using
appropriate summation procedures, it may be summed to the physically correct sum, provided the density
is low enough.

1. INTRODUCTION

'HERE is a widely held view' that the many-
fermion perturbation theory as currently for-

mulated is "suKciently established on theoretical
grounds. "The purpose of this paper is to question that
view. For the sake of explicitness we will consider a
system of spinless fermions interacting via a square-
well potential. We first establish, in the second section,
that the radius of convergence for the ground-state
energy of the 1V-body system. (at fixed density) tends
to zero as X tends to infinity at least as fast as E &,

where p is any positive number less than 3. This result
implies that the perturbation series is, at best, an
asymptotic one.

In the third section we consider the complete pertur-
bation series and bound every order. We find that it
diverges no faster than a geometrical series times (tt!),
where e is the order of the term. We also give an argu-
ment based on the BCS theory of superconductivity
that, in general, the series diverges at least this fast. In
the final section we consider the problem of assigning
a meaning to the sum of the series and show, provided
the density is low enough (small compared to the jam-
ming density for hard spheres), that it may be summed,
even though divergent, to the lim~ „EN(V), where

E&(V) is the energy per particle for a potential of real,
positive strength V in the X-body problem. We advance
some arguments to support the conjecture that the
methods we present give the physically correct sum in
general when the physical system has no long-range
order.

~Work performed under the auspices of the U. S. Atomic
Energy Commission.

' See, for instance, H. A. Bethe, B. H. Brandow, and A. G.
Petschek, Phys. Rev. 129, 225 (1963).

V, Ocr&a,
0, a&r&a+b,

+~, a+b&r.
(2.1)

2 K. A. Brueckner and C. A. Levinson, Phys. Rev. 97, 1344
(1955).See also H. A. Bethe, ibid. 103, 1353 (1956) for an extensive
list of references.

e J. Goldstone, Proc. Roy. Soc. (London) A239, 267 (1957).
4 L. ¹ Cooper, Phys. Rev. 122, 1021 (1961),

2. THE DIVERGENCE OF THE PERTURBATION
SERIES

In this section we shall establish that the many-body
perturbation series is, at best, an asymptotic series and
not a convergent one, and estimate approximately the
angular region in which it is asymptotic. The first
important point is, that as the number of particles E
tends to infinity, each order in the Raleigh-Schrodinger
perturbation series for EjlV, energy per particle, tends
to a 6nite limit. This was first asserted by Brueckner'
and later proved by Goldstone. ' The second important
point, which we will discuss below, is that in the limit
as E tends to infinity there occur branch points in the
energy which move to the origin of the complex poten-
tial V plane.

The analysis of Cooper4 for a simple model without
kinetic energy may not be germane as it seems that he
proves that the energy expansion has zero radius (or
inlnite in special cases) of convergence even for two
particles in a box. This result is not appropriate to
ordinary perturbation theory with a kinetic energy
present.

In order to investigate the many-body problem with a
square-well interaction, we shall first investigate the
problem of a particle in a spherical box with a square-
well potential of strength V near the origin. The
potential is


