
1786 COWARD, GI TTELMAN, LYNCH, AN D R ITSON

Submuon
mass
(m.)

Predicted number
of counts/10"

incident electrons

Half-life of
submuons to
give 4 counts

(10 'P sec)

Predicted
range in lead

(g c ')

TABLE III. The second column lists the predicted counting rates
for production of submuons for a time in which four counts were
actually observed. Column 3 lists the half-lives necessary to reduce
the predicted rates to the observed rate of 4 counts. The total
amount of absorber in the telescope was 179.0 g cm ' of lead. The
ranges listed for 175, 150, and 100 m, particles were calculated
from Barkas. "The other ranges were taken from the dashed curve
of Fig. 3.

CONCLUSIONS

The results of this experiment rule out any but very
short-lived singly charged particles in the mass range
5—175 m, . This result, plus the theoretical results
on the vacuum polarization described in the introduc-
tion make it unlikely that charged particles with rest
mass between that of the electron and muon exist.
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The range of the chain-of-pions interaction is calculated for very high-energy nucleon-nucleon collisions in
an approximation which does not require a complete dynamical description of the process. It is assumed that
the chain-of-pions interaction is a primary process whose amplitude is not derived from that for "low-energy"
processes. The interaction is described by two parameters, the average minimum-momentum transfer Ap
and the average fireball mass mp. Certain results can be expressed in terms of Ap and mp alone and are
generally valid for all "linked-peripheral" models. In particular, if d, p and mp are constant, then the in-
elasticity is constant, the number of fireballs is proportional to In(s/3/I'), where s'" is the total barycentric
energy, and the multiplicity is also proportional to luis/M ). The chain-of-pions interaction in which the
nucleons remain unexcited, S-E final states, is expected to be the most important process for small Zip

because of the considerably larger phase space available for it compared to that for isobar production. Thus,
cV-E final states give rise to the longest range part of the interaction and are estimated to make a larger
contribution to the cross section than states in which even the —,--, pion-nucleon isobar is produced. An addi-
tional result is that the iterated dominant "low-energy" pion-exchange model gives a nucleon-nucleon cross
section of at most several rnb if only low values of the momentum transfer of one of the nucleons or isobars
are allowed. With the approximations used, it is then possible to calculate the long-range part of the elastic
diffraction scattering amplitude in the almost transparent, purely absorbing, optical approximation. We
obtain the Regge behavior in the limit of a large number of fireballs. At incident nucleon laboratory energy
E1,=10'3I, the amplitude has not yet reached the asymptotic limit. For hp'=5m ' and mp=2M, one finds
that the inelasticity is —,', the number of "fireballs" is two, and the range is in close agreement with that
given by the one-pole elastic Regge amplitude with n'=1/3II2. Finally, it is found that the nucleons which
emerge unexcited in the final state lie within a cone whose angular width decreases with energy at a rate
such that the transverse momentum P~ also decreases and Pp ~ (lns) '".This behavior is correlated to the
shrinking of the elastic difI'raction peak but is apparently in disagreement with high-energy events.

I. INTRODUCTION

'N many high-energy nucleon-nucleon collisions it is
~ - observed that the final-state particles have very
small transverse momenta and that the secondary
particles, mainly pions, appear to be produced in one

*Supported in part by a grant from the National Science
Foundation.

or more groups called "fireballs. '" ' It seems reasonable

'P. Ciok, S. Coghen, J. Gierula, R. Holynski, A. Jurak, M.
Miesowicz, T. Saniewska, O. Stanisz, and J. Pernegr, Nuovo
Cimento 8, 166 (1958); and 10, 741 (1958); G. Cocconi, Phys.
Rev. 111, 1699 (1958); and K. Niu, Nuovo Cimento 10, 994
(1958).

A recent review of the data is given by D. H. Perkins, in.
Proceedings of the International Conference on Theoretical Aspects
of Very High-Energy Phenomena (CERN, Geneva, 1961),p. 99.
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to assume that some "peripheral" mechanism links the
groups that are produced and provides a damping
factor in the momentum transferred between them.
One possibility, for example, is that each link consists
of an exchanged virtual pion, leading to a chain-of-pions
process and the damping factor is the pion propagator
or "pole. '" There are other suggestions as to the nature
of the links" but the over-all kinematical picture is
the same.

Goebel' 6rst emphasized that the single-pion-exchange
interaction can be expected to yield a range of inter-
action greater than m ' which is usually associated
with the exchange of a particle of mass m . The in-
creased range arises from the chain-of-pions interaction
contained in the model at higher energies. His conclu-
sion appears to be of a more general nature. Any
"linked-peripheral" process can be expected to give rise
to a range of interaction greater than that given by any
one of its components.

The effect of the increased range in the chain-of-pions
interaction is born out in the work of Amati et al.'
They examine a model in which it is assumed that the
chain-of-pions interaction is a dominant process and
that it can be related to a dominant "low-energy"
single-pion-exchange interaction through an iterative
procedure. With this model they find that the elastic
diffraction scattering amplitude is of the Regge type.
As has been frequently discussed, ' the Regge behavior
of the elastic-scattering amplitude, along with the
reasonable assumptions that the nucleon-nucleon total
cross section is constant at very high energies and that
the interaction is purely absorbtive, imply that the
range and transparency of the nucleon-nucleon inter-
actions are increasing slowly with energy. The rates of
increase are such that the total cross section remains
constant.

It has been conjectured that the Regge behavior of
the elastic diffraction amplitude continues to very high
energies. ' Starting from this conjecture, we And that
the "linked-peripheral" production process represents
one of the simplest mechanisms which can account for
the increased range of the interaction and which is
consistent with the data available at present. The spin

3 E. L. Feinberg, in 1Vinth Annna/ International Conference on
FIegh Energy Phys-ics, Ev'ev, 1959 (Academy'of Science, U.S.S.R.,
1960); F. Salzman and G. Salzman, Phys. Rev. 120, 599 (1960).

4 S. Frautschi, M. Gell-Mann, and F. Zachariasen, Phys. Rev.
126, 2204 (.1962); and A. P. Contegouris, S. C. Frautschi, and
H. Wong, ibid. 129, 974 (1963).

5 S. C. Frautschi, Nuovo Cimento 28, 409 (1963).' C. Goebel, in Proceedings of the Mid@est Theoretical Conference
(1961); and in Proceedings of the International Conference on
Theoretical Aspects of Very High-Energy Phenomena (CERN,
Geneva, 1961),p. 353.

D. Amati, S. Fubini, A. Stanghellini, and M. Tonin, Nuovo
Cimento 22, 569 (1961);and D. Amati, S. Fubini, and A. Stang-
hellini, Phys. Letters 1, 29 (1962).

s V. N. Gribov, Zh. Eksperim. i Teor. Fiz. 41, 667 (1961)
(translation: Soviet Phys. —JETP 14, 4'?8 (1962)7; C. Lovelace,
Nuovo Cimento 25, 730 (1962); G. F. Chew and S. Frautschi,
Phys. Rev. Letters 7, 394 (1961); and 8, 41 (1962); and R.
Blankenbecler and M. L. Goldberger, Phys. Rev. 126, 766 (1962).

of the particles can be assumed to make a negligible
contribution. Experimentally' the number of particles
produced is proportional to s'", where s'" is the total
energy in the barycentric system, and the particles are
mainly pions (spin zero). The elastic diffraction data
indicate that important interactions occur in states of
angular momentum a(s lns)'". ' Therefore, the actual
spin of the particles makes a vanishingly small contri-
bution to the total angular momentum of the system
and cannot be the source of the increase in the range
of interaction.

It is of interest to see whether the "linked-peripheral"
production of particles can produce an interaction
range which is consistent with that obtained from the
vacuum Regge pole fit of the elastic Ã-X scattering
data at the accelerator energies. The range of the
interaction is sensitive to the details of the links and
it is calculated here in first approximation for the
chain-of-pions graph. From the point of view of field
theory or "polology" this process is expected to give
the longest range interaction because the pion has the
lightest mass of the strongly interacting particles.
However, the methods used here are based upon
kinematic approximations which are generally valid for
"linked-peripheral" models.

The iterated-dominant "low-energy" pion-exchange
model appears to be too great a simplification of the
nucleon-nucleon interaction to be used to obtain a
reliable estimate of its range. The assumption that the
one-pion-exchange process is dominant at every stage
of the iterative procedure can lead to a large accumu-
lated error. We know now that links other than ex-
changed virtual pions are of interest45 and that there
is also the possibility of a significant number of events
without a fireball structure. ' A calculation based upon
the iterated dominant "low-energy" pion-exchange
model is made in Sec. V which shows that if only low
values of the square of the four momentum transfer of
one of the nucleons or isobars are allowed, then this
model gives a nucleon-nucleon cross section of at most
several mb.

Even if the chain-of-pions interaction (or more
generally any "linked-peripheral" mechanism) is not
the dominant process, it may still make a dominant
contribution to the longest range part of the nucleon-
nucleon interaction. It is also possible that the chain-
of-pions interaction at high energies cannot be related
to "low-energy" interactions through iterations because,
for example, the interference effects may vary with
energy. Therefore, we treat the chain of pions as a
primary interaction. As the amplitudes are no longer
tied to low-energy processes and the dynamical details
of the vertices are not known, we introduce two
parameters, the average minimum-momentum transfer
Ap and the average fireball mass mp. This is sufhcient

B. M. Udgaonkar and M. Gell-Mann, Phys. Rev. Letters 8,
346 (1962).
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assumed that the momentum transfer associated with
each link is small. This has the eBect that the momen-
tum of each of the "bodies" in the final state makes a
small angle with the collision axis in the barycentric
system. We assign each of the Anal state groups a
position in a chain diagram, as shown in Fig. 1, accord-
ing to the magnitude and sign of its three momentum
in the barycentric system. The positive direction is
chosen to be that of the projectile nucleon p, in the
laboratory system.

The total barycentric energy s'" is de6ned by

Fro. 1. A general "linked-peripheral" graph for the production
of e fireballs. Nucleons X and 1V' are incident with four-momenta
p and p', respectively. Two nucleons or isobars emerge, E or N,
with four-momenta P and P', and e 6reballs with four-momenta Q;,i=1, ~ ~ ~, n. Each group is linked to the next by some peripheral
mechanism which restricts the momentum transfer to small values.
The momentum transfer for the ith link is indicated by d; . The
groups included in the brackets marked P; and P, ' form the
supergroups for the ith link, and 5,2= —(p —P;}2.

s= (P+P')'. (2.1)

AP= —(p —P,)', where P,=P+P Q, . (2.2)

We also define

The momentum transfer variable for the ith link, 6,',
is given by

with certain other approximations to determine the
interaction range.

In Secs. II, III, and IV we obtain general kinematical
results for "linked-peripheral" interactions such as the
inelasticity and the number of fireballs, which can be
expressed in terms of the parameters 60 and mo alone.
Certain of these results are also given by Frautschi'
for the model which he has suggested, but there are
some important differences in the approximations used.
In particular, we are interested in small Ao and in the
case that the nucleons are unexcited.

In Sec. V we determine which chain-of-pions graph
is probably most important.

In Sec. VI the range is calculated in a first approxi-
mation in which it is assumed that the fireballs have a
small fraction of the total energy in the barycentric
system and that the vertex interactions do not have
important spin or angular dependence. With this
approximation it is possible to obtain the long-range
part of the elastic diffraction scattering amplitude in
the almost transparent purely absorbing optical approx-
imation. We find the Regge behavior for the elastic
scattering amplitude in the limit of a large number of
6reballs.

II. NOTATION AND KINEMATICS

Nucleons N and E' are incident with four-momenta

p and p', p'=p"=M2, where 3f is the nucleon mass
and units with A =c= 1 are used. Two nucleons or
nucleon isobars come off in the final state with four-
momenta P and P ) where P Mf p

P Mf p
and

M~ and M~' are the masses of the "isobars. " There are
n fireballs produced with momenta Q; and masses m;,
Q,s=m, 2 for i=1, 2, , n The tota. l momentum of
the fireballs is given by Q=P Q; and the total mass
is m, Q'=m'.

In a "linked-peripheral" production model, it is

P '=P'+2 Q1. (2 3)

(6;2)= (6;2);„+2PirP,ir(1 —cos8,), (2 4)

where (5,2);„is a function of 3P, s, , s,', and s.
In general, if particles of mass m~ and m2 are incident

with four momenta pi and p2 and two groups with
mass s~ and s~ emerge with four momenta P~ and P~,
as shown in Fig. 2, and d'= —(pi —Pi)', then the
equation for the phase space boundary is given by"

(s 1
—m 12) (s2—m22)

+ (1/s) (slm2 $2ml ) ($1 m1 ($2 m2 ))

$1+$2+mt +m2 +LV= LVs

fÃy f02 Sy $2
(2.5)

s2

"F. Salzman and G. Salzman, Phys. Rev. 125, 1703 (1962).

In this notation P~ ——P and P'„+~'——P'. The groups
composing P; and P,' are called the supergroups of the
ith link. The mass of each supergroup s,'" is given by
s; =P,'-.

The components of four-vectors in the barycentric
system (8) are labeled with subscripts 8 and are given
by: P= (&s,Ps), Q, = PV,12, Q,a), Q= PV, Q ),
= (s;&,P;&) and similarly for the primed variables. The
Tnagnitudes of the three vectors are designated by

f ye[ =pn, f Q;a/ =Q,a, «c.
For each supergroup P, we define a scattering angle

0, by the equation

yii P;s=ppP, ~ coso;.

Equation (2.2) can be written as
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g
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As can be seen the approximate boundary equation for
case (1) cannot be obtained from that for case (2) in
the limit s2 —+ M'.

In order to make a comparison between (1) and (2),
we let s2 in Eq. (2.9) be equal to M3)2', the mass of
the 2--,' pion-nucleon resonance and the minimum
isobar mass of interest. For small 6/M, Eqs. (2.8)
and (2.9) become

si —M'=sh/M,
FIG. 2. A general "two-center peripheral" process. Particles ml

and m& are incident with four-momenta p& and p2, respectively,
and two groups of particles emerge, sI and s2, with four-momenta
P& and P2 The mo.mentum transfer dP ia given by n'= —iP, —P&)'
and the energy variable s= (pl+ p&)~.

and

(2) si —M'=1. 4S(D/ M)', s2=M3f2'.

(2.10)

where s= (pi+p2)'. This equation gives the minimum
value of lV for given s, m&', m2', s&, s& or alternatively,
the maximum value of si or s2 for fixed values of the
other parameters.

Equation (2.5) can be put into a more convenient
form for our purposes by solving it in terms of the
expression si —mP+LV. It then becomes

Thus, there can be considerably larger values of s& for
given 6 for (1), in which the nucleon emerges unexcited,
than that for (2), in which just the lowest isobar is
excited. Alternatively, for given s and s&, the minimum
values of 6 for the two cases, 6& and 62, are considerably
diferent and 61((62. This is due to the fact that the
smallest values of (6')„„„occurfor the least excitation
at the two vertices.

2 (m.,'+ m, ') (m ' —m, ')')'~'

s $2

A useful approximation of Eq. (2.6) is

s2 —m22+6'
(s,—mp+6') = (s—nap —rn2')

2m22

s mp+m, '
Si siP+LV= ($2 'iÃi +6 ) 1

2ns22 S

(2.6)

III. APPROXIMATIONS AND INELASTICITY

The independent variables that are usually used to
describe a process of the type shown in Fig. 1 are the
two sets: (1) the energies of the supergroups {s,},and
(2) the momentum transfers {AP}. However, we
assume that the quantities (6,2)„„„defined in Eq. (2.4)
are equal to some average value Ap',

(A,2),„;.= 602 for i 1, 2=, n+1,

and that the mass of each fireball is equal to some
average mass mp',

15; =sgp foi 2= 1 2

4~ 2+2 1l2

X —1+ 1+
(s,—m, '+d')')

for mP+mP&s/4. (2.7)

We now let mP=mP=M'. Equation (2.7) has two
limiting cases of interest:
(1) s2 ——M' (one nucleon emerges unexcited)

si —M'+LB = s—1—
M 2'

for 4M'/s«1 and 6'/4M'«1; alld

(2 8)

(2) si, s~) M' (excitation at each vertex)

sly
s —M'+5' =—

si —M'+ dP 4''6' 1.

for 4M'/s«1, and (2,9)
(sg —M'+ dP)' 2

Since the values of (AP)„„„are fixed, we have in fact
fixed the values of the set {s,}.The energies s, can be
obtained by repeated application of the boundary
equation given in Eq. (2.6) for specified Mf Mf s,
Ap and szp .

It is also assumed that the total energy carried oH

by the fireballs in the barycentric system, 8'&, is small
compared to s'~' and that the momentum of each
fireball is small compared to that of the nucleon
"isobars. " If we define the inelasticity I as

I= Wfi/s)",

then experimentally' many events are observed withI(1
For given final nucleon states, the inelasticity of a

process is a function of Ap alone. To see this, we note
that

I= 1 —(Efi+Efi')/s"

where Jig and Eq' are the barycentric energies of the
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nucleon isobars I' and I", respectively, and are given by N, N

s'/'
E&'g —— 1—

2

s'
1—

2

s»' —3ly'

s

s„+)—Mr'2))

(3.1)

Q 2g
,
EP

P

FIG. 3. The same
process as shown in Fig.
1; however, the n fire-
balls are here treated as
one group with four-
momentum Q and rest
mass m, m'=Q.

In order to 6nd the energies s»' and s„+», it is helpful to
look at the graph of Fig. 3 which shows in greater
detail the parts of Fig. 1 which are of interest. The
energies s»' and s„+» can be obtained by breaking the
graph at the first and last link, respectively, comparing
it with the general two-group graph of Fig. 2, and then
making the proper substitutions in the general equation
for the boundary given in Eq. (2.7). Because of the
large difference in the phase space depending on
whether nucleons E or isobars E* are emitted, we
examine the following three special cases: (1) final
states in which both nucleons emerge unexcited, called
N Nfinal stat-es; (2) final states in which a nucleon
and one isobar emerge, N N* final stat-es; and (3)
states in which two isobars emerge, X*-S*final states.

(1) N NFinal St-ates

from Eq. (2.8) with the substitutions si ~ si' and
6 —+ ihip. When this result is substituted into Eq. (3.4),
one finds

(3.5)

For App«2)22, we see by comparing Eqs. (3.3) and (3.5)
that 8'&'=m'. Thus, for this symmetrical case, the
total mass of the fireballs is at rest in the barycentric
system.

(2) N ¹Final-States

Using a procedure analogous to that used in the
previous case, we find

4M'6p' »/2

X —1+ 1+-
ps —~+~ )) (3 6)

Ao Ao )EB= 1——1— !,for (si' —M')))Ao' (3.2)
2 M 2M) To 6nd lV&, we note that the energy E& is given in

Eq. (3.2) and the energy EB' can be obtained by
substituting Eq. (2.7) (with s2 ——Mrp) for si into Eq.
(3.1). We then find for EB'

It follows from the symmetry of the phase space, i.e.,
(&i )min= Ao' and Mi'= Mr'=M, that EB'=EB. There-
fore, the total energy of the fireballs in the barycentric
system is given by

6() Ap )
WB s'" 2EB s))2 —— 1———— —

M 2M)

The energy si' can be obtained from the approxi- Dp( 6& (M&2 M'+Ao'—
mation given in Eq. (2.8) by making the substitutions 222 +2i1o =~
si ~ si' and 6 —+ Ap. Substituting this expression for
si' into Eq. (3.1), we find

In order to find the total mass of the 6reball system
m, we see that the s»' part of the graph of Fig. 3 itself
can be related to the general graph of Fig. 2 by the
following substitutions:

lV~ 6p' m»' —+ —6p' s2 m —+3P
s —+ s», and s» —+ m2.

Making these substitutions in the approximation for
the boundary given by Eq. (2.8), we find

Ap
2222+ 2ao2= (S)'—M2+ao2) —! 1——,(3.4)

provided !
Dp' —M'! &si'/4, (6 '+M')'«si" and 2, '

(&4M'. The expression for s»' can be obtained as before

43PA p' )/2 —)
X —1+ 1+ !, (3.7)

(M 2 M2+g 2)2
~~

where we have assumed s))M', 6' and s»))M~'. This
gives for WB=s'"—(EB+EB),

s»/2

8'g =
2 M

(MP i1P+6,')—+I
2M ~ 2M2

4M'Ap' »/2-

X —1+ 1+
(MP—M'+ l4') ') (3.8)

For the nonsymmetrical case, M~+Mr', we find that
WB+2)2 and the total fireball mass is not at rest in the
barycentric system.
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(Mfs —M'+ imp')
8" =S'/2

l 4~2+ 2 1/2-

x —1+I 1+
ys —~+~:)) (3.9)

(3) ¹N*Final States

We shall assume that Mf=M~', so that we again
have a symmetric case. Then E&=E&' and is given by
Eq. (3.7). We find for W&, Fn. 4. The group

of e 6reballs of Figs.
1 and 3 shown in
greater detail.

2
mn-)

n-I

h lA
2

We obtain for the fireball mass m,

Mg' ifP+6 ')'—
m'+26 '=s

2M2

I/2- 2

x —1+ 1+
2 Ms+ g 2)2

(3.10)

'I AHLK I. Inelasticity.

and for Ap2«m2 we find again that 8'~ =m.
The inelasticity, I=W&/s"' can be obtained for the

three cases directly from Eqs. (3.3), (3.8), and (3.9),
and is seen to depend only upon Ap and the masses of
the isobar states involved. Thus, if Ap is constant with
energy, then I is constant also.

In Table I we list the value of I for the three cases

My Ap and mp . To do this, the pertinent part of the
graph of Fig. 3, consisting of the e 6reballs that are
emitted and the two links by which they are connected
to the nucleon "isobar" lines, is shown enlarged in
Fig. 4. We see that we can reduce this graph to that of
the general two-group system considered in Sec. II
with the following identifications: The end links corre-
spond to incident "particles" of mass —Ap2, the bary-
centric energy is set equal to m; and the fireballs are
divided into two groups, the lower group consisting of
only the eth fireball with mass mp, and the upper group
of the remaining e—1 fireballs with a total mass m„~.
The numbering, which is unimportant, is the same as
that given in Fig. 1. If we now compare Fig. 4 with the
general graph shown in Fig. 2, we see that the approxi-
mate general boundary equation given in Eq. (2.7) can
be used with the following substitutions:

Process
(final states)

N —N
N —N3/2
N3/2 —N3l2

I
ap' =M'/9

0.28
0.20
0.12

a,2=2lf2

0.50
0.48
0.46

mg' m2' —+ —6p' s —+ m' lV —+ 6p

$2~mp ) and Si~m~

The resulting equation for m„~2 is

m'+2hp' )is+2~p'=
mp'+ 2hp')

(4 1)

considered with E*=E3/2, the —,
'——,

' pion-nucleon isobar
and for two values of Aps, Ap'=M'/9 and M'. For
hps=M'/9, I=0.28 for JlI IiT 6nal states a-nd drops to
0.12 for E3/2-E3/2 final states. For Ap' ——M', I=0.5 for
all three cases. It is interesting to note that it is possible
to have inelasticities well in the physical range with
values of Ap'«M' if the two nucleons emerge unexcited.

Small Ap2 does not imply small 6,'. It is still necessary
to know the angular dependence of the supergroups in
order to estimate the average value of 6 2. Of course,
small Ap' allows for the possibility of small 6 . In any
case, we see that the condition that I be small places
a restriction on the parametel Ap which for values
hp2«M2 depends strongly upon whether the nucleon
is excited or unexcited.

IV. NUMBER OF FIREBALLS

In order to calculate the range of a "linked-periph-
eral" interaction it is necessary to know the number, n,
of fireballs emitted as a function of the variables s, Mf,

provided

4hp'& m'/2 and
26p2 1

m '+2~p'

If the number of fireballs is two, n=2, then the
system m i consists of one fireball. In Eq. (4.1) we
set m„~2=mp' and m'=m2', where m2 is the rest energy
of the system of two fireballs, and find for m2',

m '+25 '= (m '+26 ')'/6 ' (4.2)

m '+2ho'= (m '+26 ')s/(6o')' (4 3)

Equation (4.3) is easily generalized to the case of ti
fireballs. If we set m'=m„', the rest energy of the
system of e fireballs, we find

(m 2+2+ 2) (m 2+2+ 2)n/(g 2)n i—(4.4)

If m=3, the system m & consists of two fireballs and
in Eq. (4.1) we setm„ is=mssandm'=mss. Substituting
Eq. (4.2) for mss into Eq. (4.1), we find for mps
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N' g N

{a)

~= P,

f

l

I

4R. p2

{b)

Solving Eq. (4.4) for 22, we obtain

ln[(m2+ 26p2)/App]

in[(222p +25p )/Ap' ]
where the subscript e on m has been dropped. The
final step is to relate m' to s. The relevant formula for
iU Nfinal s-tates is given by Eq. (3.5), for N 1P by-
Eq. (3.6) and for N* 1V* by E-q. (3.10). For the case
of interest, )V-E final states, we have

ln[(s/M') (1—Dp/2M)-']

ln[(nzp2+ 2ap2)/Ap2]
(4.5)

In all three cases, we find that if m 0 and 60 are constant
with energy then 22 ~in(s/M2).

FIG. 5. Graphs for Ã —N collisions in the single-pion-exchange
model. The graphs differ only in that in (a) a nucleon E emerges
from the lower vertex and in (b) the —',—2 pion-nucleon isobar,
F3/2, emerges.

&( p„sio .. v"'( sr)d(si'i2), (5.1)

where
1 for 2ro exchange
2 for 2r+ exchange

p„ is the magnitude of the initial momentum for pion-
nucleon scattering at the barycentric energy s&'~' and
is given by

(P 2+M2)1/2 —(s +M2 2g 2)/(2$ I/2) (5 2)

and ,o. i"p'( s)iis the total pr'-N cross section at
energy si. The upper limit (si),„of the integral for
given LV is given by Eq. (2.8) and can be approximated
by

and rest energy s~'~', where s~=I'j', and the E or E3/2
emerges with four-momentum I'~, where I'2'=3P or s2,
respectively. Of course, the four-vectors have diferent
components in the two cases because of the diferent
masses.

The cross section for the diagram of Fig. 5(a) in
which a nucleon E emerges and a pion of charge 7 is
exchanged, doa '/dA', is given in the pole approximation
by the Chew and Low formula"

do~' 42rf 2 M'

d+2 (2%)2 p2$ (+2+222 2)2222 2

V. DOMINANT CHAIN-OF-PIONS INTERACTION (si), = ($6/M) (1—6/2M), (5.3)

We now consider specifically the "linked-peripheral"
interaction consisting of a chain-of-pions. The part of
the phase space given by the smallest values of 6 for
each link is expected to give rise to the longest range
part of the interaction and to be the one in which the
chain-of-pions graph is most likely the dominant
process. In Sec. III it is shown that it is possible to
obtain physically interesting values of the inelasticity
for small 60', 60'((M', if the nucleons emerge unexcited
in the final state. However, the vertex interaction for
isobar excitation, in particular that for the formation
of the E3/2 state, is stronger than the m. -3~-N vertex.
It is, therefore, a priori possible that N2~2 final states
make a considerably larger contribution to the cross
section and are of greater importance in determining
the range of the interaction than the unexcited nucleon
states.

In this section, we estimate the relative importance
of final states in which E or Ã3/2 emerge by evaluating
the cross section for both graphs of Fig. 5 in the single-
pion-exchange approximation. The two graphs of Fig. 5
differ only in that in (a) an iU emerges and in (b) an
E3/2 emerges from the lower vertex. The upper vertex
is taken to be the total vr-E interaction. The notation
is as follows: nucleons E and E' are incident with
four-mornenta p and p'; the group of particles which

emerges from the upper vertex has four-momentum I'~

for (sr),„,„)&M2, dP. For sufficiently large s, the major
contribution to the integral comes from large s~ and
we assume

tot ~ & tot

where 0. N"' is an average constant pion-nucleon cross
section. For large s and si we can also take p=s'i2/2
and p„=sr'i2/2. Making the indicated approximations,
summing over the two-pion charge sta, te (one neutral
and one charged), and doing the si integration with the
use of Eq. (5.3) for the upper limit, we obtain

ia™x0'(1—6/2M)2 d(62)
(5.4)

(+2+222 2)2 222
2

where (LP)„„.„ is a cutoff needed to limit the LV inte-
gration to small values. The approximation for the
upper limit of the si integration, Eq. (5.3), is valid for
(22)...&M2.

The cross section for the dia, grain of Fig. 5 (b) is given
by the formula for single-pion exchange in the two-
center model in which the lower vertex group„ I'~, is
restricted to the V3/2 state. For the exchange of a pion
of charge r, the cross section becomes, in the pole

"G. F. t "hew and F. E. Low, Phys. Rev. 113, 1640 (1959).
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approximation, '"

d&N31 2

rfA2 4%8p2$ (A2+rpis 2)2
8($1 )p8y$10 ~ r N ($1)

d($'")p, ,$.o. , g"—($.). , (5.5)

where o —.~ ($s) is the cross section for a pion of
charge —v incident upon nucleon E' at the barycentric
energy s2'", and s2'I' is restricted to lie in the energy
range of the ~-~ pion-nucleon resonance, 7.7m &s2'"
&9.4m . In order to simplify the integral we make an
isobar approximation for the X~,i2 vertex by setting

Ag(2=

9.4w, ir

d ($,'")p, ,$,o'~'($, ), (5.6)

where 0'" is the cross section for the J=-,', T= —,
' pion-

nucleon state. We then set I'2 ——&3~2' ——1.72M' in Eq.
(2.7) for the upper limit of the $i integration. Summing
over the three-charge states of the virtual pion, making
the high-energy approximations used in the previous
case, and doing the si integration, we obtain

1 As)s &a'& " (0 723P+A.')'
0Ng2 07rN dlV-

47t.3 4M4 . (6'+m. ')'

4~2g2 1(2-2

X —1+ 1+
(0.72M'+6')')

(5.7)

TABLE II. Cross sections for the graphs of E"ig, 5.

(& )max

10m'
20m~

(a)

0 f(j~ ~tot
0.33(r~~'"

(b)
0¹/a

0.0250 Ntot

0.045um~tot

where we have assumed s))3P and s~))M2, 62. We
have neglected the contribution to the A2 integral from
the lower s1 limit.

For fixed (6'),„both the 1V and cVs~s cross sections
in the pole approximation are constant in the high-
energy limit. Direct evaluation of A», with o' ($&)

taken to be the total z+-p cross section yields As~&

=21.2M' Using f'=008 and taking (6') &&0.72M'
we find from Eqs. (5.5) and (5.7) that o~„,= (1/5)oq.
The small value of fTN„, compared to (TN is due to the
fact that the phase space for $3, 2 final states is con-
siderably less than that for S because of the difference
in mass. Evaluating o-N and O-N„., for two values of
(As), ,„, i.e. , (5')„.„=10m ' a,nd 20nz ', we find the
results shown in Table II. We see that the total cross
section for E final states is larger than that for X~,i2
for both values of (6')

It should be pointed out that because the equation
for the phase space is so sensitive to the mass, the
isobar approximation used in evaluating 0.N„, is not too
reliable and the values obtained should be viewed only
as estimates. In addition, the pole approximation for
trsi'($s) neglects the important dependence on dP arising
from the absorbtion of the virtual p-state meson and,
thus, AS~2 and ON (2 are underestimated. However, the
result which we are primarily interested in is that
X-final states can be expected to compete favorably
with the E3~2 states.

We have in effect evaluated the iterated dominant
chain-of-pions model of Amati et al. , in the pole approxi-
mation. In their model, the upper m--X "vertex" of
each graph in Fig. 5, which we have treated phenome-
nologically, consists entirely of chain-of-pions inter-
actions. By taking the total ~-E cross section to be
=20 mb for the upper vertex, we are calculating an
upper bound to the cross section coming from all
chain-of-pion graphs in which an S or an E3~2 is
emitted at the lower vertex as shown in Fig. 5. We
find the upper bound is =4 mb for momentum transfers
at the S and cV3~2 vertices &10m '. If the x-iV inter-
action is not predominantly chain-of-pions interactions,
then the actual contribution from chain-of-pions graphs
to the E-E cross section is considerably less.

In the model of Amati et al. , graphs in which an N
or $3~2 are emitted at a given vertex should give
practically the whole iV-V inelastic cross section which
at very high energies is estimated to be =40 mb. This
result can be shown in the following manner. One
considers in addition all graphs in which the higher
nucleon isobars are emitted from the fixed vertex. By
a direct evaluation, the same as that done for the Ã
and %3~2 cases, it can be shown that these graphs are
unimportant. " If now the excitation energy at the
fixed vertex increases further, then one comes to the
energies at which the 7r-E interaction is presumably
dominated by the one-pion-exchange process and these
graphs are already included in those for the E and
/3~2 cases.

The cross section for the chain-of-pions graphs
obtained in the iterated approximation is very small.
As mentioned in the Introduction we are adopting the
point of view that the chain of pions is not a dominant
process except in the longest range part of the inter-
action. In addition, we are considering it as a primary
interaction which may not be simply related to lower
energy interactions.

"F.Salzrnan (unpublished). One can proceed in this way and
include a "core" part of the x-Ã interaction at the lower vertex,
which can be "peripheral" but not reducible to a single-pion-
exchange interaction. This, then, covers all the "peripheral"
interaction in which at least one link is given by a single-pion-
exchange process and avoids the overcounting problem contained
in the two-center model approach. One finds that there must be
a substantial contribution from the "core" part of the interaction
if the single-pion-exchange "two-center" model is to explain a
dominant part of the very high-energy E-E cross section.
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VI. RANGE OF CHAIN-OF-PIONS INTERACTION

To obtain the range of the chain-of-pions interaction
we refer again to the graph of Fig. 1 in which now all
the links are assumed to be virtually exchanged pions.
We take (6;2)„„„=ho'for i=1, 2, , n+1 and Q;2
=mo' for i= j., 2, , e. As we have seen, for given s,
60~, and mo' the supergroup energies si and s are 6xed.
The remaining independent variables are 6,'. Each 6
can be expressed in terms of 60' and the angle of the
vector P, with respect to p in the rest system of the
vector P,+i for i =1, 2, , n+1, where the vector
P„+2 is given by P„+2——P+ Q+ P' = p+ p'. However, for
the limiting case Q;B«PB, the barycentric system (8) is
particularly simple to use.

The inelastic amplitude, fc'", is proportional to the
product P of the n+1 pion propagators

suf6ciently small, the transverse momentum of each
supergroup can be approximated by that due to the
nucleon,

&'a0i= ~a@ .

This approximation is not inconsistent with the experi-
mental observation that the secondary pions have an
average transverse momentum 0.4—0.5 BeV/c. ' The
transverse momenta of the 6reball particles can be all
due to their own relative motion in the fireball rest
system and the total transverse momentum of each
fireball itself is negligible in the barycentric system
(8). Finally, we also make the approximation

0i=0~.

Inserting these approximations into Eq. (6.3), we obtain

in ~P
~+I

f 1I1~P—
j=l nt 2++ 2 If the vertex interactions do not depend significantly

on the variables 6 for 6,' small, then the main angular
dependence of the amplitude fc'" for small 0~ is given
by Eq. (6.5). The range is closely related to the expo-
nential falloff of the amplitude. For n+ 1&3, the
magnitude of the exponent will be &1 for (1—cos0B)/
(rj2/2) &1/(n+1). Since this is the range of values of
interest, we expand the logarithm and obtain

where all the spin dependence is neglected. Substituting
for DP the expression given in Eq. (2.4), we obtain

n+1
P = g 1/(2pBP, B)(1/(1+-,'rj —COS0,)),

i=1

where

(6 1)
=A expt —(n+1) lnL1+ (1—cos0~)/(g'/2))) . (6.5)

where

1—cos0;
P=A exp —P ln 1+—

2n"

1
A =

~ Q exp (—P, ln (rj,2/2) ) .
5 ' 2pBP,B

(6 3)

We now assume that Q;B«PB and QB«PB so that

PjB PB+Q Q jB PB y

j=l

np =g'= (jn.'+AO2)/pBPB.
(6.4)

For small 0;, the expression 1—cos0i in the exponent
of Eq. (6.3) is =HP/2 and can be related to the trans-
verse momentum of the ith supergroup, given by
P;B sin0, =P;B0,. If we let p, be the angle between QjB
and pB and 0B the angle between PB and pB, then the
transverse momentum of each supergroup for small 0~
and p, is given by

P,B0,=PB6r+ Q QjBy, ,

where the transverse momentum of the nucleon is
PB0jj and that of the jth fireball is QjBpj. For QjBpj'

n*'= (~-'+ ~0')//(pBP'B), (6.2)

and we have set (6 ); =60'. Equation (6.2) is
rewritten as

fo'" ccA exp( —$2(n+1)/~t'j(1 —cos0~)). (6.6)

The amplitude fz'" depends only on the nucleon
variable in the approximation that the fireballs have
small total and negligible transverse momenta in the
barycentric system. The problem then corresponds
formally to that of a "two-body" inelastic state. If the
Regge behavior of the elastic amplitude continues t:o
very high energies and the total cross section remains
constant, then the nucleon-nucleon interaction can be
treated in the almost transparent purely absorbing
optical approximation. In this approximation, if the
amplitude for a dominant "two-body" inelastic channel
is given by that of Eq. (6.6), then the elastic diffraction
amplitude, fc'I which is required by the unitarity
relation, is"

fc" expL —((n+1)/n') (1—«s0)3, (6 &)

where 0 is the elastic scattering angle in the barycentric
system.

The lV-3T elastic amplitude in the dominant vacuum
Regge pole hypothesis is given by

fB"c:expL —(2PB'n' lns/so) (1—cos0)j, (6.8)

where so=2M', the trajectory a(t) has been approxi-
mated by o. (t) = 1+tn' and t= —2PB'(1 —cos0) for
elastic scattering. A fit of this expression to the E-A"
elastic data in the 3—30-BeV incident-nucleon labora-
tory energy range gives n'=1/3P.

"F.Salzman (to be published).
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The range R which corresponds to this amplitude is
given by"

E= (28)"'/pgg.

Using this expression, we find the range Eg of the
amplitude fii" of Eq. (6.8) to be

R~ ——(2/M) Lln(s/2M') j't' (6.9)

where we have taken n'=1/M', and the range Ec of
the amplitude fc" of Eq. (6.7) to be

2(++1)L1—(Ap/M) (1—Ap/2M)g '"

(m.'+a, )

where
1nL (s/M') (1—Dp/2M)'g

in)(mp'+2hp')/(Dp') j

(6.10)

In obtaining (6.10) we have substituted for i7P the
expression given in Eq. (6.4) and we have set P~
=paL1 —(Dp/M) (1—Dp/2M) j which is obtained from
Eq. (3.2) for s"'))M.

A comparison of E~ and Rg can be made for given
values of s, Ao', and mo'. The quantity 60' is not known
experimentally; but, with 60'= 5m ', we see from
Table I that for N-N final states the inelasticity
I=0.3 which is within the range of values observed
experimentally. This value of I is somewhat high in
terms of the approximations used which are satis6ed
for I«1. Nevertheless, since all the data are lumped
together, it is more interesting at this time to see what
results one obtains with a value of 1 that is representa-
tive of a large number of the reported events. The
incident-nucleon laboratory energy EJ. is taken to be
&10'3E so that it is reasonable to use the almost
transparent, purely absorbing, optical approximation
for the nucleon-nucleon interaction.

In Table III, R~ and Eg are compared for El.= 10'3l,
60 =5m~', and for three values of @so'. mo'= m, '
=2/3M', where m, is the mass of the p meson (the

TABLE III. Ranges Rz and Rz. The chain-of-pions
range Rg is calculated with b,02=5m~'.

If e&)1, and 50 and mo do not vary significantly
with energy, then g '~P~' and e ~in(s/MP). In this
case, the elastic diGraction scattering amplitude, fc',
obtained from the chain-of-pions process is of the
Regge form given by Eq. (6.8) in the limit of large n.

The amplitudes of Eqs. (6.7) and (6.8) are of the form

f~ expL —8(1—cose) g.

lowest mass of interest), 2M', and 4M'. Also shown,
are the number, n, of fireballs produced as given by
Eq. (4.5). Experimentally, at E1.=10'M, the average
fireball mass is =2M and the average number produced
is =2. In all three cases the range Rg is larger than Eg.
For the fireball mass mo' ——4M' we 6nd v=2 and also
the best fit to Eg.

The number of 6reballs in all three cases considered
in Table III is small which means that at this energy
the corresponding elastic amplitudes have not yet
reached the asymptotic Regge form. For this reason
we include in Table III the asymptotic expression for
the range obtained in the limit s/M', N))1. The best
limiting value in comparison to the expression for E~
given in Eq. (6.9) is that for an average fireball mass
~0=M. Of course, all three values given in Table III
are fairly close and the slope of the vacuum trajectory
n is subject to a fair amount of uncertainty, so that it
is perhaps not worthwhile making a detailed quantita-
tive comparison. However, it appears most reasonable
to conclude that the two ranges are compatible.

Finally, it is of interest to consider the transverse
momentum P~ of the nucleons as given in this picture.
)The transverse momenta of the fireballs cannot be
calculated because they have been taken to be negligibly
small. j From the inelastic amplitude of Eq. (6.6) we

see that the important values of 0~ are given by

8~&i1/(e+ 1)'",
so that

Pr=Ps9pr&D1 Ap/M)(m p+—App)/(v+1)J'~p, (6.11)

where we have substituted for q the expression given
in Eq. (6.4) and we have used the approximation that
P~=pii(1 —Ap/M). For Ap' Set ' ——and v=2 we find

Pz &0.16 BeV/c.

The nucleon transverse momentum is much smaller
than the average, which is 0.4 BeV/c. Experimentally,
there is evidence that the heavy particles have trans-
verse momenta 1—2 BeV/c.

Equation (6.11) shows that the transverse momen-

tum Pr of the nucleon goes to zero as (1/e)'~' or
Lln(s/M') j '" for large e and s. If this is also true for
each fireball, then the approximations leading to
Eq. (6.5) may still be reasonable.

VII. DISCUSSION AND CONCLUSION

The results which can be expressed in terms of Ao'

and mo' alone and are generally valid for any "linked-
peripheral" production process are

2/3M'
2M2
4M2

3.7
2.5
2.1

El,——10'M
Rc Rg =5.3/M

6.7/M
5.8/M
5.5/M

I, s/M'»1
Rg

(2,2/M) ln(s/M )'/
(1.8/M) ln (s/lV )'/
(1.6/M) 1n (s/M')'~'

(1) The inelasticity depends only on Ap', and is

given for N-N, N-N*, and N*-N~ final states by
Eqs. (3.3), (3.8), and (3.9), respectively.

(2) The number of fireballs depends upon s, hpP, and
mo' and is given for the specific case of N-N final
states by Eq. (4.5).
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(3) If As' and ms' are constant with energy, then
(i) the inelasticity is constant;

(ii) the number, n, of 6reballs increases with energy
as 1n(s/M') i and,

(iii) the multiplicity is simply proportional to the
number of fireballs and is also ~ ln(s/M').

Any "linked-peripheral" mechanism in which the
nucleons emerge unexcited, with Ap'=5m„' and mp'

=4iV', which is the most interesting case examined in
the last section, gives an inelasticity 1=0.3 and the
number of fireballs n= 2 for incident nucleon laboratory
energy El.——10'M. Thus, just the assumption of a
"linked-peripheral" production model leads naturally
to an explanation of some of the main features of very
high-energy E-S inelastic events.

We have shown, in addition, that the chain-of-pions
interaction with values of the parameters which are in
agreement with the inelastic data is not inconsistent
with the Regge vacuum pole hypothesis for high-energy
elastic scattering.

It should be pointed out that the approximations
used may give rise to a large accumulated error because
the fireball variables are neglected in a sum of terms
in the exponent of the expression for the amplitude.
This is onset to some extent by the fact that the
number, n, of fireballs depends only logarithmically on
s) Ap ) and tgp .

We have seen that the inelastic amplitude as given
by Eq. (6.6) depends exponentially on the nucleon
variable, fc' ~exp(L —2(v+1)/rP/(1 —cosg~)) which
with the approximations made is of the form needed
to give the Regge-type behavior of the amplitude in the
elastic channel. However, this predicts that the im-
portant values of the angle, 0~, at which the unexcited
nucleon emerges decrease as Ls in(s/Ms)] '" for large
m and s. This in turn implies that the nucleon transverse
momentum Pz also decreases, P~oc

fin�(s/M')

j "'."This

' Note added in proof. I . Van Hove has shown in a recent paper
that if he assumes certain simple forms for the inelastic Gnal states,
then in order to account for both the conjectured shrinking of the
p-p elastic diffraction scattering at very high energies and the
observed constancy of the average transverse momentum of the
secondaries produced in the inelastic collisions, it is necessary to
assume a certain amount of correlation between the secondaries.
A very simple mechanism which Van Hove discusses is apparently
illustrated by the model considered in this paper. The mechanism
consists of the secondaries arising from fIrst-generation primaries
which are uncorrelated but which have an average transverse

apparently does not agree with the present cosmic-ray
data. Although the analysis made here does not apply
to the accelerator energies, it seems reasonable to expect
qualitatively the same type of behavior at these
energies if the source of the Regge behavior of the
elastic amplitude is the same. In any case, it seems
worthwhile to look for such a correlation between the
angular dependence of the nucleons produced in the
most peripheral inelastic events and the angular de-
pendence of the elastically scattered nucleons. If, in
fact, this eGect is not present then we may conclude
that the experimental region lies outside of the range
of the model considered here.

Finally, we have not exhausted the chain-of-pions
possibilities. It is still interesting to examine S-E~ and
S~-X* production, particularly if the experiments
show that larger values of hp' are important. If the
links are exponential factors, as suggested by Frautschi, '
then the same approximations lead to an inelastic
amplitude which has an exponential dependence upon
the nucleon variable. It would be of interest to deter-
mine the range for these various possibilities, particu-
larly if they are successful in explaining the inelastic
events. At present, this approach appears to be a simple
test of whether the dominant vacuum Regge pole
hypothesis for the elastic E-X scattering interaction
is in fact compatible with the high-energy inelastic data
that is now available.
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momentum which approaches zero at least as fast as E. '
L(ln (s/M')) r~' in the case of the Regge pole conjecture) ass'"~ cc. The explanation of the constant average transverse
momentum of the secondaries is then the same as that given in
the above text.


