
P. B. G HATE

plane as that of the impurity. The probability that the
diffusing ion will exchange sites with a vacancy in an
adjacent plane is then larger than that of the impurity-
vacancy exchange in the same basal plane. One may
thus understand why the diffusion of gold in the parallel
direction is faster than that in the perpendicular
direction.

If the diffusion in the perpendicular direction were
entirely due to the nonbasal jumps of the gold tracer,
then one may expect D„/D,—5.2 for zinc. The ratio of
the diffusion coefficients Du/Ds in the temperature
range of the experiment is approximately 3.3 within

&10%%u&. This suggests that both types of the jumps are
probably contributing to the perpendicular diffusion.
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We have obtained the allowed magnetic resonance modes or spin waves in the canted antiferromagnet
NiF2 in the presence of a Sloch wall. Our formulation includes the anisotropy and exchange energies of the
crystal together with characteristics of the wall such as its sti6'ness, mass, and viscosity. From the dispersion
equations, we show that there exists a bound wall excitation branch having a lower excitation energy than
the free spin wave excitation branch. Further, we have calculated the effective nuclear magnetic resonance
field enhancement due to the bound wall excitation branch as a function of the parameters of the crystal
and the Bloch wall and shown that our results are equivalent to those obtained experimentally. Finally, we
compare this enhancement with that of a pure antiferromagnet —demonstrating that the canting is essential
for this process.

I. INTRODUCTION
' 'N this paper, we investigate the eGect of a Bloch wall
& ~ on the spin wave excitation spectra in a canted anti-
ferromagnet such as XiFg. In this type of substance, the
canting arises from the spin-orbit coupling under the

eGect of the crystalline electric field. In Sec. V we obtain
the allowed normal magnetic resonance modes and the
dispersion equations for the bound wall excitations and
the free spin wave excitations. The analogous ferro-
magnetic and antiferromagnetic cases have been con-
sidered by Boutron, ' Winter, ' and the author. ' In
Sec. VI, we calculate the effective enhancement of the
nuclear magnetic resonance signal caused by the bound
wall excitations. This is similar to the enhancement
factor obtained by Portis and Gossard4 for ferromag-
netic substances and experimentally by Shulman' for
NiF2.
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FIG. 1. Crystal structure of NiF2. The circles and the squares
represent the nickel and the Quorine ions, respectively.

*This research was supported in part by the Office of Naval
Research.

II. FORMULATION OF THE PROBLEM

The substance, NiF2, has a rutile-type crystal struc-
ture with both corner and body-center cation sites. %e
consider the magnetic corner cation sites as being on
sublattice A with index j and the magnetic body-center
sites as being on sublattice 8 with index k as shown in
Fig. 1. The magnetic properties of NiF2 have been con-

' Mlle. F. Boutron, Compt. Rend. 252, 3955 (1961).' J. M. Winter, Phys. Rev. 124, 452 (1961).
s D. I. Paul, Phys. Rev. 126, /8 (1962).
'A.mortis and A. Gossard, Suppl. J. Appl. Phys. 31, 205S

(1960).
s R. G. Schulman, Suppl. J. Appl. Phys. 32, 126S (1961).
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sidered in detail by Moriya. ' Using the spin Hamiltonian

(where J', the exchange energy is large compared to D,
the anisotropy energy, and E, the canting term),
Moriya has shown, among other things, that under
static conditions and below the Neel temperature, the
spins align in the plane perpendicular to the c axis and
are approximately along the u or b axis. There is a net
magnetic moment caused by a small canting of the
different sublattice spins to each other in this plane.

We postulate the existence of a Bloch wall (either
from magnetostatic energy considerations or from
lattice defects such as dislocations'~ and consider the
dynamic situation in the presence of such an environ-
ment. As in references. 3 and 6, we assume that the
Bloch wall has a 6nite width determined from minimum
energy considerations between the magnetic anisotropy
and exchange energies of the crystal —the angle between
adjacent spins changing slowly. Let 8 and P be the
angles between the x axis and the static magnetization
on sublattices 2 and 8, respectively, and let us choose
a new system of axes, X, F, and 2', where X is the spin
direction for the static magnetization and X and I' vary
from atom to atom while z is not changed (see Fig. 2).
Then the Hami. ltonian becomes

K=JP;,s $(S,xsI,x+5,"ssr) cos(gs —8;)

+ (5;xsj,r—S,rsj,x) sin(8; Qs)+5 's~']-
++; fD(5 *)'—E[(5; ) —(5, ) ]cos28, }

+Z V'( ')'+&L(s )'—(s ")'jco»4 } (2)

T. Moriya, Phys. Rev. 117, 635 (1960).' I. Jacobs and C. Bean, J. Appl. Phys. 29, 537 (1958).

III. STATIC CASE

Our unperturbed energy or ground state is determined
by placing S&, S„s&, and s, equal to zero, and Sz and
sz equal to S. Moriya has minimized the Hamiltonian
given by Eq. (1) as a function of the angle between the
two different magnetic spins, (assumed, however, to be
on the same lattice site). He obtains his Eq. (5.3), i.e.,

tan(g —8)= —(I /4J) sin(&+8).

For E/J smaH, this reduces to

&=8+s.+ (E/4J) sin28. (3)

sin28= —tanh (2hz), (6)

where h =E/4Ja and is the inverse of the wall thickness
in agreement with Moriya's results.

IV. EQUATIONS OF MOTION

%hen the Bloch wall is subject to perturbations, it
exhibits stiffness, inertia, and viscosity caused by both
the interaction of the wall with imperfections in the
material and by magnetic e6ects of the material itself.

Thus, substituting for Ps and expanding 8s about the
position j, we get for the ground-state energy,

5t'o= Q, {—8JS'+4JS'a'(88/8z)'
—(8'5'/4J) sin'28}, (4)

where the summation, i, is now over all lattice sites and
where a is one-half the unit cell lattice distance in the s
direction. Upon minimizing Eq. (4) with respect to 8,
we obtain the useful relation,

(88/Bz)' = (E/4 Ja)s cos'28.

For a 90' wall, this equation integrates to
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K'[E~ (St")'+Z~ (»")'7

tl-f [+, (5,') +g, (s,*) 7, (8)

respectively, while the viscosity may be represented
phenomenologically as

ft(dS,/d t)„;„= I'—~S;rer I'—2S,*e

As shown in references 2 and 3, these additional energy
contributions for the stiffness and inertia can be
represented by the terms

immediately, i.e.,

5,=Sr' exp[i(k,~+ k„y+k,s)7wings-

32J52 (D+~)+64J252k2a2

where
R y

=Azo —SF'

'Kg=A'M —$I 2.

(13a)

(14a)

For the more interesting low-energy case, we obtain
the equation

and

ft(ds;/dt);, .= I'~s—I,rer I'2s—I,'e, (9) (wgp2+16E S cos40 32K'J—S

The equations of motion are given by the formulas

N(dS, /dt) = [S;,X7, (10a)

ih(dsg/dt) = [sp,ae7, (10b)

where R is the total Hamiltonian given by Eqs. (2),
(7), and (8) after placing the linear terms equal to zero
by the minimization condition. )We add Eqs. (9)
directly to Eqs. (10) to obtain complete expressions. 7
If, in Eq. (10a), we expand sz about the position j and,
in Eq. (10b), we expand S; about the position k, and
keep only second-order terms (valid for long wave-

lengths), we get, using Eq. (5) and the commutation
relations,

dSr/dt= (8JS+4JSa'g')s, —I'gSr

+ (8JS+2DS+2MS+2ES cos28)5„(11a)

dsr/dt= (8JS+4JSa'g')S. I' sr+ [8JS-—+2DS
+2MS 2ES cos20+ (SE—'/J) sin'207s„(11b)

dS,/dt= (8JS+4JSa'g')sr —I'25,

—(8JS+4ES cos28+2K'$)Sr, (11c)

ds,/dt= (8JS+4JSa'g')Sr I'2s, [8JS+—2K'S-
4ES cos28+ (2SE'/—J) sin'287 sr(11d)

Neglecting small terms and recognizing that E', the
stiGness, is small compared to the anisotropy D,
Eqs. (11) can be solved for Sr.

We recognize, from the excitation spectra in the
absence of a Koch wall obtained by Moriya' and by the
author, ' that there will be two excitation spectra —one
of high energy (w'= DJ) and one of low energy
(w'=K'J' or E'). For the high-energy case, Eqs. (11)
yield the approximate relation

[(w~wm)' —325'J(D+3ll) (w&w2+64J 5 a g )

+1 28w gy2 J'2a'252 /275 r Q(12a—)

In this case, the energy of the excitations is sufficiently
high so that we have been able to neglect the additional
trigonometric terms coming from the presence of the
Bloch wall without appreciably altering the energy
level of the excitations. The solutions can be written

+64J'5'a'g')Sr =0. (12b)
In the next section, we consider the solutions to this
low-energy case.

V. SOLUTIONS

If we substitute u= —sin28 in Eq. (12) and let

Sr——Sr(s) exp[i(k,x+k„y)7,

we get the associated Legendre equation

(13b)

k~' ——k,'+k„'.

Thus, the solutions to Eq. (12b) are

Sr(s)=Sr'Pg (u),

which for a 90' wall can be written as

Sr (s) =Sroe'""*[tanh (2hs) —m7. (16)

The only regular solutions with regular derivatives
occur when m' is equal to one, or is equal to or less than
zero.

(a) m'=1: Then, Sr(s) equals Sr' cos20. For a 90'
wall, 0 varies from approximately 45' at s= —~ to
135' at s= ~, almost all of the change occurring within
the region

~

s
~

&k '. Thus, this is a bound or wall excita-
tion mode —its amplitude being essentially zero outside
of the wall. The dispersion relations are obtained by
putting m' equal to one in Eqs. (14b). We note that
when the stiffness, E', is equal to zero, the excitation
branch given by Eq. (14b) has a wall resonance of zero
energy. The solutions corresponding to Eq. (14b) for nz'

equal to one represent translations, hs, of the Bloch
wall.

(b) m'&0: For m equal to zero, our solution for
Sr (s) is Sro sin20. This wave function has its maximum
values outside the Bloch wall at 0=45' and 135' and
goes to zero at the center of the wall, corresponding to

(1—u') (d'Sr/du') —2u(dSr/du)

+[2—(ns'/[I —u'7) 75r =0,
where

w~w2=32JK'S'+16E'5'(1 —m') +6 4J' 5' kg a' (14b)
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E' cos28 sin'20E cos20 E'
sr —— 1+ +—+ Sy,

2J 4J 2J'(3E cos28+D+M)

the first free spin wave state of the system. The disper-
sion relation is obtained by putting m equal to zero in Eq.
(14b). All other solutions, represented by m' being less
than zero, form, together with m equal to zero, a free
spin wave excitation branch. For the dispersion relation
given by Eq. (14b), the bottom of the free spin wave
excitation branch is higher than the wall excitation
branch due to the extra term j6S'E'. As we would
expect, it is easier to excite the modes corresponding to
a translation of the wall than the free spin wave modes.
For the higher energy expression given by Eq. (14a),
the difference between the bound and wall excitation
spectra is small. These results are shown graphically
in Fig. 3.

Further, knowing Sy, we can obtain our spin coordi-
nate wave functions from Eqs. (11), (12), and (14). For
the more interesting lower resonance frequency given
by Eq. (14b), we get, for our normal resonance modes,
the relations

+S2OJS

QS2K JS + ISE S

v 22K JS

FIG. 3. Graph of allowed spin wave excitation branches for NiF&
in the presence of a 90' Bloch wall. Curve 1 is the bound wall state,
while curve 2 represents the lowest value for the free spin wave
state for the lower energy excitation branch of Eq. (14b). Curve 3
is the approximate excitation spectrum for the high-energy mode
given by Eq. (14a).

P2S (
iwsS, = —

~

cos'20—
7Z cos28+D+M

3E cos20+D+M

—4JSu'k~' Sy,

resonance signal, H coscoot, the effective field acting on
the V component of the nuclear magnetic moment,
AQ~Iyq ls

H.at = a ReLSr7/Isv„.

-Z'S
zwssg=

i
cos 28—

7E cos28+D+M

3E cos28+D+M

—4E'S—4JSu'k~' Sy.

Noting that the hyperfine interaction constant,
(AS=ALII), has a frequency of 51.2 Mc/sec, s we get
II',gf 2.5)&10 Sy.

To calculate S~ under the application of an external

(17) nuclear magnetic resonance signal, we apply the
formulas

We note that, for this resonance branch, the s com-
ponents of the spin are very much smaller than the I"
components while the major difference between Sr and
sy arises from the canting constant E.

(dS/dt). „~
——y, (SXH),

(ds/dt), „r,=y, (sXH),

VI. EXTERNAL MAGNETIC FIELD H= (H sin0ex+H cos8er) exp(iwst), (21a)

We now calculate the amount of excitation of the
bound Bloch wall resonance mode by an external nuclear
magnetic resonance signal. This excitation, correspond-
ing to motion of the Bloch wall, will act as an effective
field on the nuclei through the nuclear hyperfine inter-
action, causing an apparent enhancement of the applied
field. The major part of the effective field acting on the
nuclei from the hyper6ne interaction

for sublattice A, and

H= (H singex+H coster) exp(iwIIt), (21b)

for sublattice B. Then, using Eq. (3), our fundamental
Eqs. (11c) and (11d) are modified to read

dS,/dt= (8JS+4JSa'P')sr I'SS, (8JS+2K'—S-
+4ES cos20)Sr —y,SH sin8 exp(iwIIt), (11e)

ds,/dt= (8JS+4JSa'g')Sr I' s, $8JS+2K'S- —
—4ES cos28+ (2SE'/J) sin'287sr

+&,SH[sin8+ (E/4J) cos0 sin287 exp(iwIIt), (11f)
corresponding to the nuclear magnetic resonance sig
is given by the term Sz or sz which yield Quctuation
the hyperFine interaction perpendicular to the X or
staticspin direction. Thus, fora given nuclear magnetic while Eqs. (11a) and (11b) remain the same.
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where

f(8)Ay,H
(22)

168(1—I')

~as= P(r,+ swsA) (I s+i7iws)+168'S '

+32K'JS' j/16E'S' (23)

f(8)= 3 sin38 —sin8. (24)

Ke are interested in the excitation of the uniform bound
wall mode given by Sr=St'Ei'(e), where I equals
—sin28, Pi'(I) equals cos28, and 8 varies from 45' to
135', (I varying from —1 to 1). Thus, we expand Sr
in terms of the normal modes of the system,

mP m(N)

(We note that any other terms needed to form a com-

plete set will have very small amplitudes since the
driving force, H, is small —therefore, essentially, excit-
ing only the resonance modes. ) Substituting for Sr in
Eq. (22), we et

~i"(I) f(N)
S&m (ivi2 ygs2)

1—Q l —s
(25)

Using the orthogonality relationship,

' Pi"Pi"(I) 1 (1+m)!
tn

1—I' m (1—m)1
(26)

the excitation of the bound state, Pi'(I), is given by
the equation

' f(N)Pi (u)
dQ. (27)Sy' ——

32E (1—ness) i 1—zP

Substituting Eqs. (23) and (24) into Eq. (27) and
integrating, we obtain for the amplitude of the bound
state excitation

(2)'"Ay HES'
'i (28)

32K'JS'+ (I'i+ ihws) (I',+ohms)

(19), the effective nuclear magnetic resonance field as
seen by the nuclei in the Sloch wall, is

H.ii= (SX10 "/K')H, i. (29)

The stiGness parameter, E', is structure sensitive.

Following the methods used in Secs. IV and V, this
set of inhomogeneous equations yields for Sz

d'5y dSy mo'
(1—gP) —2u + 2 — Sy.

dQ dQ 1—Q

Values between 10 's and 5X10 I erg/atom do not
appear incompatable with data2 8 for iron powder and
nickel oxide. Thus, in this case, the nuclear magnetic
resonance enhancement factor H, ii/H, i, may vary
from 5 to 100. The experimental value of approximately
50 observed by Shulman' falls within this range.

The effect of the bound excitation spectrum on the
nuclear magnetic resonance linewidths is similar to that
calculated by the author' for pure antiferromagnets.

Si'= (hy, /12J)H, , (30)

Ke note that S~' for the antiferromagnetic case is less
than that for the canted spin arrangement by the factor,
K'/E, which is less than 0.01. Thus, the ma, gnetic field
enhancement is dependent on the canting of the spins.
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8 W. L. Roth and G. A. Slack, J. Appl. Phys. Bl, 3525 (1960).
9 D. I. Pau1, Phys. Rev. 127, 455 (1962).

VII. ANTIFERROMAGNETS WITHOUT CANTING

Finally, we show that an antiferromagnet without
canting does not yield any enhancement of the external
nuclear magnetic resonance signal. That this is not
obvious stems from the fact than an antiferromagnetic
substance is not magnetically inert in the presence of
an external magnetic Geld —at least one of the sub-
lattices being in an unfavorable energy position, and
that the energy of the bound w'all state is one of the
same order of magnitude as that for the canted NiF2.

The normal resonance modes for the free spin wave
and bound w'all excitations in the presence of a 180'
Bloch wall have been calculated by the author' for a
pure antiferromagnetic crystal possessing orthorhornbic
magnetic spin symmetry —the two types of spins being
on two interpenetrating sublattices. Using Eqs. (20)
and (21) above and Eqs. (10) and (11) of reference 3
Lcorresponding to our Eqs. (11)j, we find that it is not
possible to excite (to first order) the low-energy wall
excitation given by Eq. (18) of this reference, t equiva-
lent to our Eq. (14b) with m' equal to onej. Instead,
only the high-energy wall excitation given by Eq. (22)
Lequivalent to our Eq. (14a)$ is excited. The equation
for Sy is, therefore, of the form


