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The theory of deuteron stripping for incident deuteron energies below the Coulomb barrier is presented
for proton-neutron interaction of finite range. Reasonable approximations valid only for the conditions
prevailing in the case of Coulomb stripping enable factorization of the transition amplitude in analytic
form. The results account for observed regularities and explain the discrepancy between experiment and a
theory based on zero-range nuclear forces. Stripping with associated Coulomb excitation is shown to be a
competing process for suKciently low deuteron energy. The reaction enables excitation of a new class of
excited states. It should in particular yield information about the alleged multiplet structure of low-lying
states of odd-A nuclei, of which the even-even neighbors show vibrational spectra. Angular distributions of
outgoing protons resulting from stripping on targets with J;&~ 1 may yield information about static quad-
rupole moments of those nuclei. The contribution of the polarizability of the deuteron to the diHerential
cross sections is shown to be negligiMe.

I. INTRODUCTION tions which are a factor 4—5 bigger than those calculated
the zero-range approximation. '

The cause of the discrepancy may be understood once
it is realized that Coulomb stripping is a marginal direct
interaction process, in the sense that the transition am-
plitude is proportional to the weak overlap of the tail of
the wave function of the captured neutron with that of
the incident deuteron. An approximation which neglects
the finite size of the deuteron, forces the neutron to be
close to the proton. It thus prevents the neutron from
penetrating closer to the nucleus where i.ts overlap with
the capturing state is much better. %e have here an
indication why a zero-range approximation may under-
estimate the cross section.

Section II contains a treatment of Coulomb stripping
for a conventional finite range proton-neutron inter-
action. It v ill be shown that reasonable approximations
can be made in the case of Coulomb stripping, which
would not be valid for normal stripping conditions.
These approximations lead to a factorization of the
transition amplitude, and one consequently obtains the
cross section in an analytic form. This approach will be
shown to remove the discrepancy between experimental
results and the zero-range theory.

The increase in the relative importance of the Cou-
lomb effects makes it necessary to investigate competing
processes, which also lead to a final nucleus consisting
of A+1 nucleons and a scattered proton. The most
probable of this is presumably Coulomb excitation ac-
companying stripping and this process is described in
Sec. III. The mechanism is of particular interest since a
new class of states in the 6nal nucleus can be reached.
indeed, the ts-p interaction does not involve the target
coordinates and leads only to final states containing a
neutron in a single particle state coupled to the target in
its ground state. The stripping reaction combined with
Coulomb excitation may lead to states describing a
single neutron coupled to a Coulomb-excited target.
Such processes are, in principle, also possible in ordinary

S TRIPPING reactions have proven to be one of the
most useful tools in the study of nuclear structure.

The mechanism, a lowest order direct nuclear inter-
action between one of the nucleons of the deuteron with
the target nucleus, is apparently widely valid, and the
characteristic patterns for the angular distribution of
(d,p) and (d,n) reactions are reasonably understood on
the basis of this mechanism. '

Stripping reactions have been studied extensively at
deuteron energies large compared to the Coulomb
barrier. The deuteron as a whole will then be able to
make relatively close contact with the target nucleus,
thus, enabling a direct interaction.

For deuteron energies small compared to the Coulomb
barrier one expects a decrease of the stripping efficiency,
while at the same time the relative importance of Cou-
lomb effects and the actual structure of the deuteron
increases.

Stripping at energies smaller than the Coulomb
barrier has bee@ treated by Ter Martirosyan' and
independently by Biedenharn et a/. '4 and goes some-
times under the noncharacteristic name of Coulomb
stripping. (This name would be more appropriate for
the Oppenheimer-Phillips process, ' where deuteron dis-
sociation by the Coulomb field preceeds a typical
nuclear interaction. ] The above-mentioned authors
have used an approximation which neglects the finite
range of the proton-neutron force in the deuteron. Ex-
perimental results, however, show absolute cross sec-
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stripping reactions. Their cross section is, as we shall
see, smaller than that for Coulomb stripping which in
turn is less probable than normal stripping. The associ-
ated stripping is, therefore, generally masked when
normal stripping can proceed, but is of relevance when
Coulomb stripping is the dominant process.

Section IV discusses the e6ect of a 6nite polarizability
of the deuteron. In spite of the loose structure of the
deuteron, it turns out that for deuteron energies su%.-

ciently below the Coulomb barrier, one may neglect the
contribution of its polarizability to the differential
cross section.

II. COULOMB STRIPPING

The Hamiltonian describing a (d,P) reaction can be
written in the form

H =H~(&)+ T„+T„+V„„(r,e„,e )
+ V ~+ V ~"c+ V ~-c. (1)

H~(() is the target. Hamiltonian written in internal co-
ordinates $; T~, T„, and V„„are the kinetic and inter-
action energies of the nucleons in the deuteron; V„~
and V~~ denote their interaction with the target nucleus
and we have decomposed V„~ into its Coulomb part
V~~c and the remainder V„~"~ such that

e2

V„~=V~ c+V„„c and U„~c=
protons f&

—f,;

We also use the coordinates r= r„—r„, R= ~i (r~+r„).
We denote by +;~+) scattering states which are solu-

tions of (E—H)+, &+'=0. 4,&+& describes a deuteron
with energy Eq= 5'&g'/4M incident on a target specified

by I n;JPI;) and outgoing scattered waves. n; stands for
all quantum numbers required to describe the target
nucleus in its ground state in addition to its total angular
momentum J; and the magnetic quantum number M,.

The 6iial state of our system, C ~( &, is a product wave
function of InrJar) and that of a proton with asymp-
totic momentum k~. The proton is supposed to move in
an effective 6eld V„which approximates V„~. V„
usually consists of a nuclear optical potential V„and
of Ze'/r~, the dominant monopole part of V~~o for
r„&R~, where R~ is the nuclear radius. Inside the
nucleus the Coulomb potential is assumed to be due to a
Saxon-Woods-type charge distribution.

The complete transition amplitude is then given by

Ze2
f=(~..' '"""Iv.-+-Z

protons f&
—1'. f&

+V. —V"I+. '+'""-"') (2)

V ~ and V„~ are in the usual distorted-wave Born
approximation replaced by an optical potential acting
on the center of mass of the deuteron. 0, '+) is then a
solution belonging to the Hamiltonian

H=H~(g)+ T„+T„+V„„(r)+Ze'/R+ V,p(R), (3)

where it is understood that Ze'/R is omitted for R(R~.
For Coulomb stripping we expect the dominant con-
tribution in (2) to come from the interaction region
around r~, the classical turning point for a proton of a
momentum k~. It is, therefore, reasonable to neglect,
for r„))R~, the diRerence V„~—V„, the range of which
is of order R~.

The amplitude f may then be decomposed into two
amplitudes f= f«&+f&", which describe, respectively,
stripping due to the proton-neutron interaction V„„,and
stripping with associated Coulomb excitation via

e2 Pe2
Vce

protons f&
—f, y~

In the modi6ed distorted-wave Born approximation,
which we shall use for Coulomb stripping, 4';&+& will be
chosen to be an approximate solution of the Hamiltonian

H'= H~($)+ T„+T„+V„+Ze'/r„. (5)

The true monopole part of V„~o rather than Ze'/R is
restored in (5), and in using (2) we again neglect V„~
and V~~" in comparison with V '. Higher order terms
in the Born series will lead to contributions to f which
are at least one order higher in V~ or V '.

Let us first consider the Coulomb stripping amplitude

f&'& which, on introducing the approximations described
above, reads

f"&=(4$ & ' ~ ~~~I v„yIe],„&+&"' *~')
with

C .'-"""'=~-;,(5,r-,e.)4 &-'(",e.). (7)

'p fJf~f describes the 6nal nucleus produced in the re-
action while Pq„& & consists of a proton spin wave func-
tion X,„(e„), coupled to an ingoing Coulomb wave
function

m'

P~„& '(r„)=expI —~ I'(1—ig„) exp(ik„r„)2"
(8)

&(F(irl~, 1, i(k~r„k„r~)—). —

rl„= Ze' /mA'k„,

4;&+&, a scattering solution of H' Eq. (5), can be written
as a product of the wave function of the target y,.g,.~,.
and of a deuteron wave scattered by a point Coulomb
potential Ze'/r„. The latter wave function has the form

X&„&+~(r„,r,)X~„s&(e„,e,) . (9)

No coupling between orbital and spin parts is assumed
while, moreover, for Xir„'(o,e,) a pure '5 state is
taken;

xm„= Qm, , ,m, „(gm,,~~m, „I 1Md)xm, „ym, „. (10).
We now return to the amplitude f&" and inake the
usual statement regarding the overlap integral of final
and target nucleus present in Eq. (6). This function of
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r„, e will be assumed to represent a neutron with
quantum numbers o, l j„m moving in a central field of
the target.

deuteron, (15) asserts that, seen from the nucleus, the
neutron and the proton in. the deuteron appear at
approximately the same directions.

&v r(~,r-, ~-) I ~'(k))
=Z,.(j m J'M'I ~@4)y .&„~„„(r„,e„). (11) where

X~ '+'(r- r )-6 '+'(r )x(r) (16)

In substituting (11) into (2) we then find

f"'=2-.. (i -m-~'~'I ~s~r)
X (4-,.i.~.-,.(r-,~-)A. ' '(r.)xm..(~.)

X
~
V„„~Xg„&+&(r„,r„)x~,'(e„,s„)) (1.2)

%e first perform the spin summation

f&"=Pm, „m,„mi„~„(j.m.J;;,JrMr) (2m,;,'m, „~ 1M')
X (2m„,l~m&„~j ~m„)f~„i„mi„~". (13)

LSince xM„ is an eigenstate of o„e„with eigenvalue 1,
one sees that for an interaction of the form V„„=V„„~'&

+V„&"(O„e„), (12) yields the same results provided
V„„is replaced by V„&"(r)+ V„„&'&(r) .]Equation (13)
defines the partial amplitude f „i„,„"'

X
~
Vi, „~Xg, &+~(r„,r„)). (13')

For a further evaluation of f"& we shall employ ap-
proximations which are exclusively valid for Coulomb

stripping. All are based on the observation that the
dominant contribution to f can actually be localized.
Indeed, the Coulomb barrier prevents the proton from
approaching the target nucleus, thus requiring the
interaction area to be outside r„, the classical turning
point for the proton. The exponential decrease of
R „i„(r„),the neutron radial wave function outside the
centrifugal barrier, favors on the other hand interactions
as close as possible to the nuclear surface. The eRective
interaction area resulting from these two tendencies is
determined by the intrinsic deuteron wave function and
the proton-neutron interaction. Both have a character-
istic range of the order of the deuteron radius E~, which

is much smaller than r„, the classical distance of closest
approach. The interaction region in (2) will, therefore, be
limited to a region R&((r„ in the vicinity of the classical
distance of the closest approach. On this basis we now

suggest the following approximations:

e

P~„&+&(r ) =exp ——rl~ ~1'(1+~gd)
2

Xexp(ikz r„)F(—~d, 1, i(kdr„—kd r„)) (17)

k„r„k„tr —r
/

= —4r g P j,(zk„r)h&(~k„r„)
l=O m=—l

XF, *(n„)V, (D„), (18)

where jl, hl are spherical Bessel and Hankel functions,
respectively.

We now substitute (14)—(18) into (13). Since the
deuteron has been assumed to be a pure 'S state, only
the l= m= 0 term in (18) contributes. The partial ampli-
tude for Coulomb stripping to a state with a captured
neutron characterized by o.„t„m appears now factorized
and reads

f.,„i„,„"&= —A.„i„(E.) ho(ik„r, )

and x(r) is the spatial part of the deuteron ground-state
wave function. Pq„&+&(r~) is an outgoing wave function
for the deuteron center of mass but with the argument
R replaced by r„. The deuteron is thus described as a
rigid body which maintains a fixed shape as it traverses
the Coulomb field. In the approximation frequently
made one replaces X&„&+&(r„,r„) by P&, &+&(R)x(r), im-

plying that the most important factor determining the
reaction is just the natural spread of the deuteron due to
its low binding energy. This approximation neglects
entirely the asymmetry of the proton and neutron in the
deuteron with respect to the target Coulomb field. Our
choice, on the other hand, describes a proton which is

less likely to reach the nuclear surface than the neutron,
which fact should be important under the conditions
for Coulomb stripping.

In addition to the replacements mentioned above we
shall use the expansion of e """"/k r needed only for
r„&r

where k = (—2mE /f'i')'~' is related to E„, the binding
energy of the captured neutron.

Equation (14) expresses the fact that outside the
centrifugal barrier Pi.e., for k„r„))l(1+1)/2$ the radial
part of the captured neutron wave function may be
replaced by its asymptotic behavior suitably normalized

by A „i„(E„).
F'i„,„(Q ) Vi„,„(Q„). (15)

Since r„ is big compared to the dimensions of the

X &i„,.*(&,)4~„' '*(r,)A„'"'(r„)«„

X(4) ~

where xo(r) is the radial part of the deuteron wave
function.

Using the saddle-point approximation, ' Eq. (19) can
be written in the form

f-,.i.-."'=~-„~.(E-)V i(fin)1(~.)I' (»,r.), (2o)
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where 0„is the value of Q„at the saddle point and 8„ is
the angle between kq and k„.The orbital factor I equals

e

In the zero-range limit F(k„,r„) is independent of k„.
For finite ranges, however, it is an increasing function
of k„, and for any given value of k„, F(k„,r„) increases
with the increase of the range of V~ .

Let us take, for example, V~„(r) to be a Hulthen
potential

while the deuteron "form factor" F(k„,r„) reads e
—pr

V„.(r) = —Vp
~
—pr

(25)

F(k,r~) = —(4s)"' j s(sk„r)V~„(r)Xs(r)r'dr. (22)

~(~+~)( ~+~) '" ""( — "')
(26)Xs(r) =

M' k~ (2If+1) 2

dQ 2s.h' ' kg 2J,+1
n is related to ed, the binding energy of the deuteron, by

x
I
&.„i„(&.) I

'IF (k.,r,) I
'II(8,) I

'. (23) &'~'/~= «.
On substituting (25), (26) into (22) one obtains

0 where V0=44.5 is the depth parameter of the well in
MeV and y ' is the range of the nuclear force ( 1.4

In terms of the amplitude (20) the partial differential X 10-13 cm). The corresponding deuteron wave func-
cross section for Coulomb stripping corresponding to tion is
(13) is given by

The orbital contribution I(8„)has been calculated by
Ter Martirosyan' who used some techniques developed
by Sommerfeld. ~ The result is

-2n(n+p) (2n+p)- "' (4n) '"Vs
F(k„)=——

(~+a)' —k-'
(27a)

64m'g~gg
I I(8,)I'=

(esn. sy 1) (eswyd 1)

exp L2r1& (vr —yd) +2' $�„7
X

f (kg —k~)'+k„')'

where we have replaced the upper limit of integration
r„by ~. This latter approximation does not markedly
change F(k,r~) since in actual cases n+ p))k„. One may
compare at this stage F(k„) with the corresponding form
factor Ii 0 for the zero-range potential

Fs= —(5'/M) (8s.n) '". (27b)

where
2k„k„ 2k„kg

P„=arctan P~——arctan
kg' —k '+k~' kg' —k '—k„'

Ze'm 4k„kg
$= (s sin —;

2 (kg —k,)'+k '

0&y„, y, &~.

I
I(8~)

I

' yields the angular distribution of the protons
with respect to the direction of the incident deuterons.
The factor is common to both the finite-range and zero-
range theories. It has been shown in Ref. 2 that for g„,
r1d))1,

I I(8„)I

' represents a Gaussian distribution
around a backward angle which describes the experi-
mental data reasonably welL LThis result was also
derived later by R. Lemmer' who used an elegant semi-
classical argument. 7

Next we turn to the form factor F(k„,r~) given by
(22). This integral over the relative coordinate of the
deuteron can be calculated for any given V„„(r) and
associated Xs(r).

n
l2—

!0—

Pro. 2. Ratio of deu-
teron form factor for
Coulomb stripping using
a Hulthen potential and
normalized zero-range
potential as function of
Q value.

F(1c„) ' 6—
'F

0

We have plotted in Fig. 1, I
F(k )/Fs I

' as a function of
the Q value of the reaction. This ratio increases with Q.
For Q=O, IF(k )/Fsl' 4.5. Experimentally it was
found by Erskine et al. ' that the zero-range formula for
the absolute differential cross section in the case of
Bi"'(d,p)Bi'", indeed, underestimates the experimental
value for Q= —0.2 MeV by a factor 4.5 which increases
slowly with Q.

The agreement between the calculated absolute cross
section and its experimental value for Bi" (d,P)BisM
might be somewhat accidental, but-"it is believed to

' A. Sommerfeld, 8'ellenmechunzk (Frederick Ungar Publishing
Company, New York, 2953), Chap. 7.' R, Lemmer, Nucl. Phys. 39, 680 (1962). q in MEV
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0

demonstrate the importance o e nih
' t f th finite range of V „in contain instead of the overlap integral (11) the factoi

the description of Coulomb stripping potentials.

e'- Ze'
Voe

I'„—r.; r„

oo +)( 4g
e'&« —()+t)«x

i=i X=1 9= )2)(+1—
X V).„(Q;)V)„*(Q~). (28)

The reaction amplitude f('-') resulting from Vc' will now

III. COULOMB STRIPPING ACCOMPANIED BY
COULOMB EXCITATION

It was mentioned before that since the proton-neutron
interaction does not involve the target coordinates, V„„,
ca,nnot lead to a final nucleus, where the captured neu-
tron is coupled to an excited state of the target nucleus.
In normal stripping such an excitation can. in princip e
be caused bv the term V,~—V~~" in the perturbation.
In Coulomb stripping the deuteron is too far away from
the nucleus to feel any appreciable nuclear force. There
remains however the possibility to excite those states)

by the remaining long-range Coulomb perturbatson V
which for r„)r; can be expanded into its multipole parts
as follows:

(v.;~,i', (k,r.1~.)2 «,'V~. (Q,) l
v.; r;.. ~(k)), (29

j=l

where the final nucleus is assumed to be described by a
single neutron coupled to a Coulomb excited target
nucleus, or

&oaf Jfclry((qrnp(ra)

=p„„,„„,„(-,' m, „l.m&„~j. m)

X (j„m„J M,'
~

J~Mf)Xm, „(a„)«.„u( -)&.-„.(Q-)~-.', , (~), (30

where y,. J,. ~,. is the wave function of the Coulomb
excited target nucleus. Equation (29) will, thus, contain
the reduced matrix element for an electric transition of
multipolarity X. Hy means of

13;; (E%)—= P f(n; J„'M; fe Q «;"V),„(Q,))a;J,M;)/'-'
pM j=1

1
1&~' J"Ile 2 «)"Vi(Qi)ll~ J')I',

2J;+1
one expresses f'-' as

4xe
f")(X)= (8 (EX))'"Pm, „m,„mt„,~,„,)r,'„(J,M(P p~ J; M; )

X (-'m -'m, .„~ 1M&)(2m, „l„mt„~j m„)(j „m„.T,'M
~

JfMf)

i («„)Vi, *(Q„)+),„( )*(r„)+)„(+)(ru) V),„*(Q„))t,(«)«„("+t)dr„dr. (31)

11 a ain the inte ral on the right-hand side of (31) a partial amphtude f „t„,„(ii, . v&" ~X ~. 8 virtue of the
he am litude ~") rE (13)] into a product of two integrals [Eq.same argments as used in Sec. II to reduce the amplitu e 1~, ~~q.

(19)],we obtain for f „t„„„„(2)(X((t)

f.„t.-,.")(~ ) = —~-.t.(~-) ku(&k-«n) V(„-(.*(Qn) V).*(Qu)4'~, ' '*(r~)

XP (+) (r )«
—x—ldr (4 ) t/e j()(ik «)x() («)«'d«. (32)

The corresponding partial differential cross section is given

da ~~) M' k„167r'e'8,', (I lt)

dQ (2m'A ) kz (2l(+ 1) (2J+1) ma((netic quantum
S

(;m.„~„M,„~ &„-m„)(-, m, „i.m, „~&„m„)

X(j „m„J M~ JrMg)(j„m„'.J,'M;"~ JrMf)(J;M, Xii~ J,'M )

X (J;MP) '~ J M,")f.„t„mt„''(&i )f.„t„mt„-")*(&p'). (33)

l . ddl. —
' t '

ation one mav reduce Eq. (33) to the following form (see AppendixOn using the saddle-po&nt approxima, ion oy ~

d (" M' k„(2Jr+1)(2l„+1)(2j„+1)(2J.+1)
e'8;;(E'X—)—---—— .

dQ (2~A.) k„(2J.,+ 1.) (2lt+ 1)

4
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%'e further give the result for the singlet case l =0:

(do "&~ M' k„(2Jr+1) e'B,';(EP )
& (F )I'II&(8 )I'IG(k„,,r„)l

5 dn J i„=-.o (2+5')' 4 (2J +1) (2K+1)'
(34)

G(k„„r~) is a deuteron form factor corresponding to (22)
and reads

MeV), Jf———,', and Jf——-,'we obtain

p 0.6B,;;(F2),
G(k r )= —(4&r)"' j 0(ik„r)Xq(r)r'dr. (35)

0

The corresponding orbital factor becomes

The integral is again sharply peaked around r„r„and
can, therefore, be approximated by

I (8„) „'"+"I(8„), (37)

where I(8~) is given by Eq. (24), the angular factor for
the case of pure Coulomb stripping. To the extent that
(36) holds, approximately the same angular distribution
is predicted for Coulomb stripping with or without
Coulomb excitation. One also notes that the cross sec-
tions for final states belonging to the same parent core
remain proportional to 2Jf+1.

The relative importance of the described process is
determined by the ratio of the cross sections for Cou-
lomb stripping with and without associated Coulomb
excitation. We shall assume the same neutron reduced
widths and binding energies in order to obtain an esti-
mate for the ratio of these cross sections:

do. ~" da ~'& (2Jf+1) e'B ' (EX)

dQ dQ (2JI+1) (2K+1)'r„'"+'

G(k„,r,) '

F(k„,r„)

Here Jf refers to the case of stripping accompanied by
Coulomb excitation. The deuteron form factor G(k„,r~)
calculated for a Hulthbn potential is approximately

I,(8„)= k„('k.r„)P,„&-&*(r,)

&&/„,&+&(r )r '"+"dr . (36)

where B(E2) is expressed in units of e'&&10 " cm'.
Clearly, in order to obtain measurable values of p one
needs not only a "collective" target but also rather low
deuteron energies.

We first consider as targets the so called even-even
vibrational nuclei. Little is known about their odd
neighbors, but it seems that some of their low-lying
states indeed come close to a description of a single
particle coupled to an excited core.' For B,';(E2)
values 0.2 and 1„=0 p may become as big as 0.1—0.2.
It is clear that the relative importance of fn& increases
with Z/Eq but absolute cross sections may fall below
measurable values for too large values of this parameter.

A word on rotational nuclei is in order here, since the
largest B;;(E2)values are found for those nuclei. How-
ever, low-lying states of odd rotational nuclei are con-
sidered to represent an intrinsic structure which rotates
as a whole and not as an odd nucleon coupled to an
even-even core. The latter states might occur at much
higher energies for which Eq. (41) does not hold. It
would nevertheless be interesting to test by Coulomb
stripping the purity of the strong coupling model, in
particular for product nuclei with spin —,'.

Before closing this section we wish to point at a pos-
sible interference between the amplitudes f&'& and f&'& in
particular in the quadrupole case. If the target nucleus
has a ground state with J;&~ 1 then f~'& contributes also
to transitions caused by pure Coulomb stripping,
namely, those leading to a state in which a neutron is
coupled to the ground state of the target parent. f&" will
then contain the reduced static quadrupole moment
Q(E2) instead of B(E2). The possible change in the
cross section might yield information on static quad-
rupole moments.

IV. POLARIZATION OF THE DEUTERON

G(k„,r„)~
2n(n+p) (2n+p) '~ e~ "~

2k„(k„—n)

G(k r ) e"" '"~((n+p)' —k ')

F(k„,r,) 2k (k —n) Vo

For the ratio of form factors one then finds

(39)

(4o)

Since for the deuteron the centers of mass and charge
do not coincide, the asymmetric Coulomb field acting on
the deuteron may, in principle, polarize the deuteron.
The ensuing modification of the deuteron wave function
can be approximately calculated follov ing either the
variational method of Downs" or the perturbation
method of Ramsey et cl."The approximation is based

The ratio p is presumably most interesting for the
common case of electric quadrupole excitation: For
k 2,7n, p=3n, Vo——44,5 MeV and Ed/Z= (1/15) (in

' A, de-Shalit, Phys. Rev. 122, 1530 (1962),
'0 B.Q'. Doves, Phys. Rev. , 98, 194 (1955}."N. F.Ramsey, B.J.Malenka, and U. E.Kruse, Phys. Rev. 91,

1162 (1953).
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do-~') do-i') aF(k„r-„)

F(k„,r„)

where (do~"/dQ) is given by (27) and F equals
(42)

on the fact that for Eq((Ze'/R~ the electric field is then to th.e form
changing slowly in the region of the classical turning
point while the local velocity of the deuteron is small.
This enables the use of an adiabatic approximation
according to which the modi6ed ground state of the
deuteron is to first order given by

(47)

where ]=Ze/r„' is the local electric field acting on the
proton. x,(r) for a Serber interaction of the Hulthen
type with a range parameter p, is given by

Zg Tp

ihF(k„r„)= —4~
ry'

j i(ik„r) U„„(r)g(r)r'dr. (48)

where

X)(r) =g(r) cos8„,

eM-2n(n+y)(2n+p) "' 1
g(r) = —re

A' 4mp, ' 4o.

2 (1+nr) 2
X (0'+&)"

r2

~'(2n+~)'

One first concludes that the polarization of the
deuteron does not change the angular distribution of the
protons. Further it turns out that the ratio AF/F for
both Yukawa and Hulthen potentials is only of the order
of a few percents. Therefore, also the absolute value of
the cross section is not appreciably affected. It can be
shown in the same way that this correction is not
important in the case of an accompanying Coulomb
excitation either.

V. CONCLUSION

2(n+~)
e (a+u) ~

& (2—n+&)e—(a+u) r (44)

and cos|)~= (kq k„)/krak„.
If we now take x(r,r„) for the intrinsic deuteron wave

function instead of x(r) in (23) we obtain for the
Coulomb stripping cross section

M' k~ (2Jr+1)

dQ (2n.h')' kd (2J~+1)

XZ
I f-.~.-,.")+~f-.~.-,.")I' (43)

The additional amplitude Af &') is given by

af.„t„„,„&»= 4mA. „(„(E„)ze'—-

X ji(ik„r) U„„(r)g(r)r'dr

h)(ik„r ) cosO„V~„,„*(Qu)

X4'» ' ' (rn)4'»d'+'(rn)r9 'dry (46)

We shall use the previous arguments to replace hi(ik„r~)
by its asymptotic behavior ie '""u/k„r~ and take r„'
out of the integral at the point r~=r„. In addition, we
can assume the integrand to be peaked backwards, and
may thus substitute for the slowly varying function
cose the value —1. The differential cross section, now
taking into account the deuteron polarization, reduces

We have presented above an approximate theory of
Coulomb stripping. The underlying direct reaction
mechanism is the same as in normal stripping. Since,
however, in Coulomb stripping the effective interaction
area is relatively far outside the nuclear surface, particu-
lar approximations could be introduced. These lead to
an analytical expression for the cross section. The
characteristic backward distribution of outgoing protons
appears unaRected by the retention of a proton-neutron
interaction of finite range. Stripping form factors on the
other hand are appreciably modified and now account
for discrepancies found on comparing experiments with
a zero-range interaction picture.

We have to admit that there is still lacking a more
satisfactory proof, showing that the approximations
hold to order deuteron radius over the distance to
classical turning point. Work in this direction is in
progress.

The second process considered is Coulomb stripping
associated with Coulomb excitation, leading to an
interesting new class of excited final states describing a
neutron coupled to a Coulomb excited target. It appears
that under favorable circumstances the latter process
may compete with Coulomb stripping.

We mention that appreciable cross sections can be
obtained for this type of neutron transfer reactions if
heavy ions are used instead of deuterons. The theory
given applies to them as well.

It has further been shown that the polarizability of
the deuteron is of minor importance. In particular, the
Oppenheimer-Phillips processes can be neglected.

The authors wish to thank their colleagues, in particu-
lar S.Nussinov and M. Banerjee, for fruitful discussions.
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APPENDIX

In order to prove Eq. (33') from (33) we first write the relevant sum by means of 3—j symbols as follows:

S= (2j„+1)(2Jf+1)(2J,'+1)
magnetic quantum

numbers

2 1~ jJ~ ) '2 1~ j~ (j~ J~ Jf t( j~ J' Jf
km, „mi„—m„) m,.„mi„' —m ' km„M —Mr) km„' M, ' —Mr J

X ! !f.„i„mi„"i(l~ii)f.„i„mi„&'i*(l~p') . (A1)
M; ii —M, ' M; ii' —M,"J

We shall frequently apply the formula

( ji j2 j3 (~i 4 j3
(—)"+"+ '+"'(2l,+1)

kmi Bl, f83 kB, B2 —m3
ji j2 j3 (1& j2 18)(jl f2 ~3)

X (A2)
~1 ~2 ~3

~alii

iii2 ri3~ ~ilail 02 ii3~

and any modi6cation thereof applying the orthogonality relation for the 3—j symbols.
By virtue of the symmetry relations of 3—j symbols and Eq. (A2) we can cast Eq. (A1) in the form

S= (2j +1)(2Jf+1)(2J,'+1)
magnetic quantum

numbers

( l. /„k (X ) kq
(—)'&-"—:+"'»'+'+"(2k+1)!

Em,„—m, „' nkp ——i' n)

J J. J, ), J, J, l. j„
X f.„&„~&„"'(l~p)f.„i„mi„"&*(Xp'). (A3)j. J,- k J, ~, k j.

l„ li k'i (21 +1)(2K+1) "'(k' 1 Xq
!Vi„mi„(Q„)Vp,„(Q,)=(—)"+"'+'"

! !Vi .(0„).
m&„ ii' n') 47r(2k'+1) k 0 2 Ol

A last relation, the addition formula for I"s of equal solid angles reads

2"(—)"'I"- (fin) I''-- (fl.)= (2k'+1)/4~

One now substitutes (A4) into (A3) and applies Eqs. (A5) and (A6) in order. to obtain

S= (2j +1)(2J,+1)(2J,'+1) la.„,„(Z.) I'Il&(t „)I lG(k„,r,)!
(2k+1) (2k'+1) (21 +1)(2lb.+1)

X E ( )., .,—;+~+~+i. —
k, k' 16m'

u t„(k' 1 li' X X k
X

(0 0 0) 4 4 O' 1 J J; j. j —', J J J
Repeated application of (A2) and symmetry relations finally leads to (33').

It is at this point that we use the saddle-point approximation, whose content is Lcompare Eq. (20)$

f-.i:,."'(l i )= —I'i.-.(fin) I'i.(fin)4-. i.(&-)1~(~n)G(k-,rn)

We now use the coupling formula for spherical harmonics

(A4)

(A5)

(A6)

fA7)


