PHYSICAL REVIEW VOLUME

131,

NUMBER 4 15 AUGUST 1963

Low-Energy States in Y*°

YEonG E. Kmx
Lawrence Radiation Laboratory, University of California, Berkeley, California
(Received 1 April 1963)

The low-energy levels of the odd-odd nucleus Y% are calculated with finite-range central and tensor forces
to first order by means of the j-j coupled odd-group model. The two-body matrix elements for the central
and tensor forces are expressed in the j-j representation, from which a generalization to off-diagonal matrix
elements is obtained in the limit of the zero range. A phenomenological Gaussian potential without a hard
core, estimated from the free two-nucleon potentials of Jackson-Blatt and Brueckner-Gammel-Thaler, is
used for the residual interaction. The effects of the tensor force are analyzed in detail as a function of the
force range. The numerical results of the calculation are in reasonably good agreement with available

experimental spectra.

I. INTRODUCTION

ECENTLY, an isomeric state in the odd-odd

nucleus Y* has been found.! It is interesting to
see if this isomeric state can be explained in terms of
the j-j coupling shell model. Furthermore, as several
other low-energy states were reported previously,? a
theoretical calculation of these observed low-energy
states is worthwhile, with the hope that it might
provide useful information on the effective interaction
between protons and neutrons in the nucleus.

We shall adopt the odd-group model with j-j
coupling in which the nuclear properties of the nucleus
are assumed to be determined by the properties of the
odd-group particles. In odd-odd nuclei, one assumes
that the residual interaction between proton and
neutron is sufficiently weak so that it can be considered
as a perturbation on the central field of the ‘“nuclear
core,” and further that the wave function is a vector-
coupled product of the wave functions of two odd-group
particles.

To justify the theoretical basis of the well-known
Nordheim’s coupling rule;? de-Shalit investigated the
case of nuclei with one proton and neutron outside
closed shells. He used the zero-range force between
them, and obtained expressions for the diagonal matrix
elements.? Calculations for specific odd-odd nuclei have
been made by several workers for the finite-range force
in which central exchange forces are included.5¢

We shall use the central and tensor parts of the
nuclear force, neglecting the spin-orbit force entirely.
This practice is probably reasonable, as it appears that
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Energy Commission.
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the existence of the spin-orbit force in the nuclear force
is still questionable. The residual interaction of nucleons
outside the closed shell is not well known, and there
seem to be no a priori reasons for retaining the same
strength parameters of the free two-nucleon problem
for this interaction. However, because of our ignorance
of the exact form of the residual interaction, we shall
rely upon the free two-nucleon force parameters in
estimating the strengths of our force, which we hope
simulates the residual interaction.

II. ZEROTH-ORDER APPROXIMATION

Before discussing our choice of the residual force
between proton and neutron outside closed shells, we
describe the basic assumptions that enter into our
calculation. In our odd-group model, we assume that
the doubly closed shell can be treated as an inert core
giving rise to the central field in which nucleons outside
the doubly closed shell move. It is assumed that 38
protons and 50 neutrons form closed-shell cores. The
assumption that 50 neutrons form a closed shell has
been established because Zr* exhibits typical properties
of a closed-shell nucleus.” The 38-proton subclosed
shell has been assumed by several workers,® and we
make the same assumption. These assumptions simplify
the calculation, since there will be only one proton and
one neutron outside the doubly closed-shell core in Y*°.
The wave function is then the j-j-coupled new basis
vector, which is a simple vector product of the wave
functions of the nonidentical nucleons 1 and 2 (proton
and neutron) :

[@)=Ri(r1)Rs(r)| j1jeI M),
where R;(r1)Rs(r2) is the radial part of the wave
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LOW-ENERGY STATES

TasLE I. Single-particle levels of the thirty-ninth proton.
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TasLE III. The zeroth-order levels in Y%.

Energy (keV)

Configuration Y8 a Yol a Y9 b
P 0 0 0
gor2 913 551 732

a Experimental data from Ref. 11.
b Average between Y& and Yo

function and |j172JM) is the angular part. Now we
assume that the Hamiltonian describing this nucleus
at low energy may be written as

H=H1+H2+V12,

where H; and H: are the single-particle shell-model
Hamiltonians for particles 1 and 2, respectively, and
Vis is the two-body interaction between particles 1
and 2. This implies that

Hi|la)=ei'|a),

for =1 or 2, where ¢’ is the single-particle energy for
particle <. In the zeroth-order approximation, the level
energies are given by the sum of proton and neutron
single-particle energies D_; €. Estimated single-particle
levels have been reported in several works,*!° but one
cannot avoid the arbitrariness in choosing the pa-
rameters involved. Instead, we rely on the experimental
single-particle levels of neighboring nuclei to eliminate
ambiguity. For the proton single-particle levels, we
choose the average values between Y® and Y®, and
for the neutron single-particle levels the average
between Sr® and Zr%. The experimental single-particle
levels are presented in Tables I and IT, and the resulting
zeroth-order energy levels are listed in Table ITI. The
assignment for the lowest state of the fifty-first neutron
as the ds» configuration is evident from the fact that
the observed ground-state spins and parities of Sr®
and Zr* are §t.11 The lowest state of the thirty-ninth
proton is assumed to be py/2, since both Y® and Y%
are known to have ground-state spin $—.' Recently,
the atomic-beam measurement of the ground-state

TasLE II. Single-particle levels of the fifty-first neutron.

Energy (keV)

Configuration Sreo & Zr b Y% e
ds/2 0 0 0
S1/2 1050 1225 1138
da2 2020 2070 2045
g2 ce 2205 2205

a Experimental data from B. L. Cohen, Phys. Rev. 125, 1358 (1962).
b Experimental data from Cohen (Ref. a) and Ref. 24.
° Average between Sr# and Zr9,

®S. G. Nilsson, Kgl. Danske Videnskab. Selskab, Mat. Fys.
Medd. 29, No. 16 (1955).

0 H. Noya, A. Arima, and H. Horie, Suppl. Progr. Theoret.
Phys. (Kyoto) 8, 33 (1958).

1D, Strominger, J. M. Hollander, and G. T. Seaborg, Rev.
Mod. Phys. 30, 585 (1958).

Configuration (proton-neutron) Energy (keV)

Pri2dsse 0
Zor2ls/2 732
P1/2S1/2 1138
go/251/2 1870
Priedase 2045
128112 2205
gos2d3/2 2777
go/281/2 2937

spin has been made for Y%, confirming the $1/» con-
figuration.’? The observed low-energy levels in Y are
shown in Fig. 1. The ground-state spin of Y% has been
determined recently by the atomic-beam method to
be 2.1

We treat Vi, as a perturbation of the central field of
the shell-model core, and evaluate the first-order
perturbation term. The total energy for the state of a
given J is given approximately then by

~eite; 1=1,2,

where the higher terms are neglected. Values for e are
listed in Table III. It is clear that Vi, removes the
degeneracy of the state with various J values arising
from a given configuration. The values of ¢, and con-
sequently E, are obtained from the eigenvalue equation

2; [{a| Viz| @)= (E— €0, -1)da,a (@' | aT M)=0.
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F1c. 1. Experimentally observed low-energy levels in Y9,

( 12 F) R. Petersen and H. A. Shugart, Phys. Rev. 128, 1740
1962).
13 F, R. Petersen and H. A. Shugart, Phys. Rev. 125, 284 (1962).
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For the numerical calculation, the summation is
restricted to the configuration listed in Table III.

III. RESIDUAL INTERACTION

Now we assume an explicit form of the proton-
neutron residual interaction, and proceed to evaluate
the matrix element. The residual interaction Vi, is
chosen as

Vie=VC(r1a)+ V7T (r12)S12,

where the first term is the central force, and the second
term is the tensor force. The explicit forms of these
forces are

VC(r12)=[Vru®Prr exp(—Bre‘r12")+ Vse®Pse
Xexp (—PBre712Y)+ VroCPro exp(—PBroCris?)
+Vs0%Pso exp(—Bso°ris?) ],
and
VT (r1s) = VreTPrr exp(—Bre’712?)
+ V1o Pro exp(—BroTr1s?) ,

where Prg, Pgsg, Pro, and Pgo are the projection

YEONG E. KIM

operators for the triplet-even, singlet-even, triplet-odd,
and singlet-odd states, respectively, and V’s are the
corresponding strength parameters. The operator Sy,
is the tensor force operator defined as

3(o1°112) (020 112)

127 01°03.

719

The matrix element for the central force may be
expressed as

(a| Ve(ri)|a") =3[ (Vret+ V109
+ (V1= Vo) (= )W+ Py Ka| UC(r1s) | @)
— [ (VoEC— Vs Vro%— Vso©)
+ (Vapl+ Veel—Vio®— Vo) (— 1)+ +7 Pyl
X{a|UC(r12)Psa’),

where Pg is the singlet projection operator, and Pjy’
is an exchange operator which interchanges I/ <>,/
and j'<> 7y in the primed (initial) states. The
matrix elements (¢|U°(r12)|a’) and {(a|U®(r15)Ps|a’)
are given by (see Appendix A)

(el UC(r1z) | )= (— D)# 2[5y L 72000 72 DY e Fi (415713 R0) (G5 ja— 3 [ROYW (jrji’ jage s k),
(a| UC(r2)Ps|a’y= (= 1) +a+7 ([0 72100 1072 D200 I DVW (hjidage; 37)
XW (U 31t 25 3T) 2k Fr(1:00,°0] £0) (1200570 | EOYW (114 1ol s RT),

and with the restriction that k45,41 and k411,
are both even. The symbol [¢] stands for [2a+1],
and ( | ) and W are the usual Clebsch-Gordan and
Racah coefficients. The Slater integral Fy is defined as

F),;:/ d?’l 1’12R1R1’/ d1'2 7’22R2R2’
0 0

1 rcosbye
X/ d( 2 )Pk(C05012) Uc(fm),
-1

where UC(r12) takes the Gaussian form exp(—pri.?)
with different values of 8 for the corresponding states.

For the tensor force, the matrix element can be
expressed as

(a| VT (r12)S12] a"y=35[(Vre"+Vro®)
+ (VreT— Vro?) (— DA+ Py Ka| UT (r15)S12] '),

and (see Appendix B)
<dl UT(flg)Slzl (l’>= 3 Z (a] Fm,la')W(lxly; KZ)
K,z,y

X(j1jeI M | T 00K - T,00K] 515, M),

s J
<j1j2]M[Tl(lz)K.T2(11/)K] jlljZIJIMI>= (__ 1)71’+Jz+l1+12+J65JJ,5MM,{

where
(alFala)==5 5 alrrila)Xs, i, j=1,2;
12,7

X11= (2/15)2[x]2(20k0 | x0) ,
Xo= (2/15)'[y ]2(20%0| y0) ,
X1o= ([x]ly])"*(10£0]20) (100 50)

XW(11xy; 2k),
and

(a ] 1’ﬂ’j](¥’>= (2k+ 1)/ dTl 7‘12R1R1// drz 1’22R2Rgl7’1‘7’j
0 0

1 /cosfyy UT(r15)
X/ d( >Pk (C08012) .
-1 2 2

712

Here the form of the radial function for the triplet-even
state is
U (r12)=exp(—Bre’r),

and for the triplet-odd state,
U7 (r12)=exp(—BroTr1s?).
The angular part in terms of 3-, 6-, and 9-j symbols is

o A Gananioe

, NIERITEE
x@o (s o ) 10){1 " x {l ; y}'

j1’ 1 Kj g je K
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In the zero range, the tensor force vanishes, and the
central force matrix element reduces to

(a|Ve(r1z)|a’) — (4m)~ (%)m

X[ @Vret+Vse)a|d(ri—r5)|a’)
+ (Vrel—Vse©)a|6(ti—15)01- 03] a’)],

where (see Appendix A)
(als(ri—r2)|a’)= (1/2[T DFo([ 511 72172 172" D™

X (j1372—31J0) (ji'3 72’ — 5| J0)

% [ (— 1)irkin e+ (— 1)7‘x+7‘1’+i2+7‘2’;‘_]_(7‘4:+.__15] ,
and
(a|8(r1—r2)o1+ 02| @)

= (1/2[T DFo([5:00 70052 1072 D
X (§1342—3170) (j1'3 52’ — 3] J0)

X4 (= 1)ttt 1 42(— 1)11+12+J]

A’
4+ (__ 1)1'1+:'x'+1'2+1'2'______} ,
47(J+1)
with
A=[Q2H+ 1)+ (=1 (27,+1)].
The matrix element {a| V(r13)01- 02| a’) vanishes unless
both Li+Il+J and L/+1/4J are even. Similarly,

{a| V°(r12)|@’) vanishes unless li+Ul'+I+1 is even.
The Slater integral Fy is given by

F0=/no Ry(r)Ro(r)Ry ()R (r)ridr .
0

For the radial part of the wave function, we choose
the harmonic-oscillator wave function. It is generally
believed that the harmonic-oscillator wave function is
a fairly good approximation for light and medium
nuclei, whereas the square-well potential is a closer
approximation for heavy nuclei. The radial wave
function has the explicit form

Rnl(r) = ane-—(vﬂ)r’rlvnl (f) ’

where N,; is a normalization constant chosen so that
/ R.* ()R (r)rdr=1.
The function v,(r) is the associated Laguerre poly-

141, Talmi, Helv. Phys. Acta 25, 185 (1952).
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nomial defined as
V1(1) = LogrpyatH2 (ur?)

¢ 1)k2k<n> Q1+1)1! -
= - D — 4
i k) (1)1

The nuclear size parameter »%/2 appearing in the wave
function has to be evaluated for the numerical calcu-
lation. The harmonic-oscillator spacing is known to be
roughly

hw=htv/m==24141* MeV ,

from which » may be evaluated. The evaluation of the
central-force radial integral has been simplified analyti-
cally by Ford and Konopinski.*® The tensor-force radial
integral {a|7#;|a’) cannot be evaluated directly, since
the integral has singularities due to the 7y term
appearing in the denominator. This difficulty is elimi-
nated by expanding the integral into a linear com-
bination of the Talmi integral.*%1® (See Appendix B.)
For the delta-function force, the radial integral can be
easily evaluated analytically, and the numerical values
of the integral have been given by several workers for
the diagonal case.!':16

IV. ENERGY SPECTRUM

Before introducing the tensor force, the numerical
calculations are carried out extensively with various
central force mixtures including Serber, Ferrell-
Visscher, and Rosenfeld forces and with various ranges.
Although the delta-function force may give the correct
sequence of the observed levels in Y* as shown by
Bouten ef al.,'” the calculations with realistic finite-range
forces indicate that we must introduce a fairly strong
attractive odd force to fit the experimental data if we
were to retain the singlet-even to triplet-even ratio
(~0.5) of the free two-nucleon potential. A calculation
with one set of central-force parameters with rather
strong attractive odd forces, which is chosen so as to
fit both the doublet spacings of J=2—,3— and J =2+,
7+, is shown in Fig. 2. Although the fit with the
experiment is good, there is no justification for assuming
the central force mixture of strong attractive odd force.
Furthermore, this is not the only set of parameters
which gives rise to a good fit with the experiment,
since there are other sets of the parameters which yield
equally good fits. From the free two-nucleon potential,
it is known that the triplet-odd force is weak, and the
singlet-odd is even repulsive.

To include the tensor force in the residual interaction,
we must decide the strength of the tensor force. Since
the relative weight of the central and tensor force is

s 1)5 K. W. Ford and E. J. Konopinski, Nucl. Phys. 9, 218 (1958/
9).
16 N, Zeldes, Nucl. Phys. 2, 1 (1956/57).

17 M. Bouten, M. Demeur, and H. Pollak, J. Phys. Radium
22, 697 (1961).
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TasLE IV. Values of the intrinsic range and well-depth parameters, s and b, for the BGT and simulated BGT potentials. The intrinsic
ranges for the simulated BGT potential are assumed to be same as the BGT potential and are not shown. The corresponding strength

and force range parameters for the simulated BGT are also shown.

BGT Simulated BGT
Strength Force
States s b(F) s (MeV) range (F)

Central triplet-even 2.882 1.013 1.0 —223.02 0.706
Central singlet-even 2.964 1.461 1.028 ~110.03 1.018
Central triplet-odd 0.201 2.119 0.070 —3.57 1.476
Central singlet-odd —1.867 2.119 —0.648 +33.06 1.476
Tensor triplet-even 2.078 2.019 0.721 —40.50 1.407
Tensor triplet-odd —0.493 2.649 —0.171 +5.58 1.845

not well known in the residual force, we use the free
two-nucleon potential to estimate the tensor-force
parameters. Recent success of O calculations by
Dawson, Talmi, and Walecka!® encourages us to try
the Brueckner-Gammel-Thaler potential, hereafter ab-
breviated BGT.! Because of the computational com-
plexity involved, we take a form of the potential
different from the BGT. We modify the Yukawa radial
dependence with a hard core of the BGT potential by
replacing it with the Gaussian radial function neglecting
the hard core.

In estimating the strengths and ranges of our
Gaussian potential without a hard core, we use the
detailed analysis of Blatt and Jackson for the free
proton-neutron system in the shape-independent ap-
proximation.? If one considers a nuclear potential of

cy\-172
Lot (B°) "=2.0F
P3 S3
— 60 MeV 443
—H2
—— = 0.67
S
L
=
(0-,1-)
|-
—H1 3
gt 24 b
? 7+ &
3- =/ 3-
2- 2-
-2} Zero s i °
Diagonal Config- Exper
order matrix mix.
element

F16. 2. Calculated Y spectrum with the central force alone.
The central-force parameters are adjusted to fit both the doublet
spacings of J =2, 3— and J=2+4, 7+.

187, F. Dawson, I. Talmi, and J. D. Walecka, Ann. Phys.
(N. Y.) 18, 339 (1962).
( “’518(). A. Brueckner and J. L. Gammel, Phys. Rev. 109, 1023
1958).

2 J. M. Blatt and J. D. Jackson, Phys. Rev. 76, 18 (1949).

V(r)=sV'(r) so that V’(r) is the potential that gives
rise to zero-binding energy for the ground state of the
proton-neutron system, then V(r) for s>1 allows
bound states, whereas V(r) for s<1 gives rise to
virtual states. The intrinsic range & of V(r) is then
defined as the effective range of V’(r), and s is called
the well-depth parameter. The Yukawa and Gaussian
potentials in the shape-independent approximation are
expressed by Blatt and Jackson in terms of s and b as

—V(r)=s(147.585 MeV)b~2(b/r) exp[—2.1196(r/b)]
for the Yukawa potential, and
—V(r)=5(229.208 MeV)b~2 exp[ —2.0604 (/)2 ]

for the Gaussian potential, where b is in units of 10~
cm.

2+
3- o0
0.04 3= et
|
g - —0.05
¢ 0.02
X | = —
]
€
[
4
2 0.0 —0.0
[ =4
ﬂ)
>
¢
3
§_§ -0.02
— —-0.05
o
[~
(o]
S
S -004 7+ TF
0 ~ ==l =0.10
[ ep—
-0.06 -
] | 1 1 2 —
20 40 6.0 80 100 @©
Range (F)

Fr1c. 3. Diagonal tensor-even-force matrix elements for several
observed states in Y® as a function of the range parameter.
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The introduction of a hard core always makes the
force range shorter and the well deeper. However, we
retain the intrinsic ranges of the BGT potential for
our simulated potential of the Gaussian form, and
adjust the well-depth parameters so as to be consistent
with the low-energy properties of the deuteron. The
well-depth parameters are normalized to the triplet-
even part of the central potential, which has been
reduced from s=2.88 of the BGT potential to s=1.
Then the triplet-even part of the simulated BGT thus,
obtained fits approximately the ground-state and low-
energy properties of the deuteron (the binding energy,
quadrupole moment, percentage of D state, and triplet
scattering length).?! The values of the parameters s

Q.10

0.05

0.0

-0.05

Diagonal tensor-odd force matrix element

-0.10

(F)

Range

Fic. 4. Diagonal tensor-odd-force matrix elements for several
observed states in Y? as a function of the range parameter.

and b for the BGT and simulated BGT are listed in
Table IV.
The diagonal tensor-force matrix elements

(1/3)a| PreU7 (r12)S12| @)
and
(1/3)a| ProUT (r12)S12| @)

are plotted as a function of the range in Figs. 3-5. As
we can see from these figures, the tensor-force matrix
elements are not always a monotonically increasing
function of the range, and may be either positive or
negative. This is to be contrasted with the fact that

21 M. H. Kalos, L. C. Biedenharn, and J. M. Blatt, Nucl. Phys.
1, 233 (1956).

IN Y?o

0.0t~

0.0

- 00! -

Diagonal tensor-even force matrix element

-002f —

1
[¢] 1.0 2.0
Range (F)

Fic. S. Diagonal tensor-even-force matrix elements for the
observed states in Y® as a function of the range at the shorter
ranges.

the central-force matrix elements are positive and
monotonically increasing functions with increasing
range and constant depth. The results of the calculation
with the simulated BGT potential are compared with
the experiment in Fig. 6. In diagonalizing the matrix,
the off-diagonal tensor-force matrix elements are neg-
lected, since they are small compared to the diagonal
tensor-force matrix elements. The numerical results
are also presented in Table V, and are shown schemati-
cally in Fig. 7. In Fig. 7, notice that the lowest and
highest J states (24 and 74) are separated from the
other J states arising from the same configuration,
goj2dss2. This is consistent with the revised ‘“weak”
coupling rule of Brennan and Bernstein.?

;
-% 0.5 2 1.0 _
= | V-, 74 3
e 2o =
3 ™
>
2 Pir2 Y52 s
w O —Hos @
w
3. —
-0.51 32 o
lero CF CFHTTE  CFHTTEHTTO CFHTTE4TTO Experiment

order diagonal  diagonal  diagonal

configuration
only only only

mixing

F16. 6. Comparison of the experimental and calculated spectra
of Y% with the simulated BGT potential. The symbols CF, TTE,
and TTO stand for the central, tensor-even, and tensor-odd forces,
respectively. In diagonalizing the matrix, the off-diagonal matrix
elements for the tensor force are neglected.

( ;261(\)4). H. Brennan and A. M. Bernstein, Phys. Rev. 120, 927
1 .
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TaBLE V. Calculated energy levels in Y%. The results before
and after diagonalization are shown in columns A and B, re-
spectively. In column C, the energy scale is shifted so that the
ground state lies at zero energy. In diagonalizing, the matrix the
tensor-force off-diagonal matrix elements are neglected.

Proton-neutron Energy (MeV)

configurations Jr A B C
1198612 2— —0.515 —0.516 0.0
3— —0.480 —0.487 0.029
Zoradsro 2+ 0.382 0.377 0.893
3+ 0.622 0.600 1.116
4+ 0.624 0.610 1.126
5+ 0.583 0.551 1.067
64 0.679 0.679 1.195
7+ 0.359 0.357 0.873
Pri2S1/s 0— 0.672 0.672 1.188
1— 0.734 0.734 1.250
g9/251/2 4+ 1736 1745 2261
S5+ 1.655 1.671 2.187
P1.d3r2 1— 1.815 1.816 2.332
2— 1.650 1.650 2.166
Prigire 3— 2.047 2.054 2.570
4— 1.927 1.927 2.443
gosodsse 34 2.372 2.326 2.842
44 2.609 2.686 3.202
5+ 2.677 2.671 3.187
6+ 2.487 2.663 3.179
Zo/287/2 1+ 1669 1669 2185
2+ 2.269 2.274 1.753
3+ 2.615 2.683 3.199
44 2.491 2.420 2.936
54 2.769 2.790 3.306
6+ 2.470 2.295 2.811
74+ 2.841 2.842 3.358
8+ 2.129 2.129 2.645

The results of other configurations presented in Fig.
7 and Table V are also consistent with coupling rules
of Nordheim,? and de-Shalit and Walecka.?? The
eigenfunctions are also computed, and the results are
shown in Tables VI and VII. As we can see from these
tables, the configuration mixing is not very important
for most of the observed states. The almost pure con-
figuration of the ground state (pijads2)’=2" is con-
sistent with the measured magnetic moment. The
measured magnetic moment of the ground state of Y%
is —1.629 nm, whereas the calculated magnetic moment
with the empirical g factors evaluated from neighboring
nuclei is —1.609 nm if we assume that the configuration
is pure.®® A level at 0.247 MeV has been suggested by

TasLE VI. Calculated eigenfunctions for
odd-parity states in Y9,

Eigenvalues Eigenfunctions
Jw MeV) piedsis  presuz puedsie Priogar
1— 0.734 0.9997 0.0246
1.816 0.0246 —0.9997
2— —0.516 —0.9998 0.0158
1.650 —0.0158 —0.9998
3— —0.487 0.9987 0.0500
2.054 0.0500 —0.9987

% A. de-Shalit and J. D. Walecka, Nucl. Phys. 22, 184 (1961).
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TasLe VII. Calculated eigenfunctions for
even-parity states in Y%,

Eigenvalues Eigenfunctions
Tr (MeV) gordsiz  goeSie Gordair  forgure
2+ 0.377 0.9987 0.0491
2.274 0.0491 —0.9987
3+ 0.600 —0.9937 0.1070 0.0332
2.326 —0.1108 —0.8962 —0.4294
2.683 —0.0161 —0.4304 0.9024
44 0.610 0.9938 0.1100 0.0079 —0.0040
1.745 0.1101 —0.9906 —0.0736 —0.0314
2.420 0.0064 —0.0648 0.5174 0.8532
2.686 0.0037 0.0472 —0.8524 0.5206
S5+ 0.551 0.9860 0.1578 —0.0466 —0.0248
1.671 0.1623 —0.9871 0.0949 0.0295
2.671 0.0361 0.1060 0.9105 0.3980
2.790 0.0058 —0.0100 —0.3997 0.9165
6+ 0.679 0.9997 —0.0115 —0.0174
2.295 0.0206 0.6906 0.7229
2.663 0.0037 —0.7231 0.6907
74 0.357 —0.9996 0.0263
2.842 —0.0263 —0.9996

Bartholomew et al.? to be the J =3— state arising from
the pyjeg7e configuration. They have indicated that
this assignment is consistent with their data and with
the observed beta decay of Sr% (total disintegration
energy of 0.535 MeV) only to the ground state, thus,
eliminating the possibility of this state being J= =0,
14, or 2—. However, the gr» neutron single-particle
level has been found 2* to be 2.2 MeV above the ground
state ds;2 in Zr%, and it is very difficult to understand
the (pi/eg72)7=° state being near the ground state.
This would require an extremely large matrix element
to over come this initial neutron single-particle spacing
of 2.2 MeV. The low energy of 0.247 MeV suggests
that this level is probably not attributable to the
configuration (p1/2ge/2) nor other configurations caused
by the core excitation of the 38-proton core. It remains
to be seen if the experiment can definitely assign the
spin and parity to this state.

The spin and parity of the state at 2.7 MeV have
not been determined experimentally, and there are
several calculated levels around 2.7 MeV. The probable
states within the energy limit of 2.740.2 MeV are
(P112g5/2) 74, (gojadsy2) =3, and (googr/2) 725,

V. DISCUSSION

Some shell-model and nuclear-matter calculations
have indicated that the nuclear force inside the nucleus
is not very much different from the free two-nucleon
potential. Our approach was that the residual inter-
action could be approximated by the free two-nucleon
potential. Because of enormous complexity arising from
the introduction of a hard core, we have neglected the
hard core and used a phenomenological Gaussian
potential which is deduced from the free two-nucleon

#R. L. Preston, H. J. Martin, Jr., and M. B. Sampson, Phys.
Rev. 121, 1741 (1961).
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Fic. 7. Calculated energy levels in Y. For each spin, the left-
hand column gives the odd-parity states and the right-hand
column the even-parity states. Various J states arising from the
same configuration are connected by thin lines.

potentials of Jackson-Blatt and Brueckner-Gammel-
Thaler. Although the experimental spectrum is not
sufficiently resolved to indicate that our choice of the
residual force is good, there is a remarkable agreement
between the calculated spectrum and experiment if one
notes that several shell-model approximations have
been made and the force parameters are not all adjusted
arbitrarily. A slight increase of the triplet-even part
of the central and tensor forces is sufficient to increase
the doublet spacings of J=2—, 3—, and J=2-, 7+
so as to improve agreement with experiment. Further-
more, by introducing the tensor force, we can eliminate
the unrealistic strong attractive odd central forces.
Concurrently, the simulated BGT potential is used for
Bi?125 where most levels of the ground-state multiplet
(total of nine levels out of possible ten) are resolved by
the high-resolution (d,p) reaction on Bi2? at the Massa-
chusetts Institute of Technology.?® The analysis of
those multiplets in Bi* along with Po?? also indicates
that the triplet-even part of the simulated BGT
potential is slightly too weak to account for the over-all
spacings of the Bi? ground-state multiplet. A slight
increase of the triplet-even part of the simulated BGT
potential improves the spacing of J=2—, 3— states.
It would be very interesting to see if one can resolve
go/2ds/2 and pyesye configurations by using the high-

%Y. E. Kim and J. O. Rasmussen, UCRL-10707, 1963, Nucl.
Phys. (to be published).

26 J. R. Erskine, W. W. Buechner, and H. A. Enge, Phys. Rev.
128, 720 (1962).
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resolution Y#(d,p)Y%, Zr'(a,t)Nb®, or Zr*(e,d)Nb®
reactions.

Finally, we should comment on the shell-model
residual interaction. From the analysis of various shell-
model calculations, the central force alone seems to
approximate the residual force very well in most cases,
though many of these cases involve like nucleons,
where the Pauli principle makes the tensor-even force
inoperative. However, the tensor-force contributions
are not always negligible, and must be taken seriously
in some cases such as in Y% presented here. The
characteristic of the tensor-force matrix element is
that it may be either positive or negative, so that in
some cases the tensor force effects cannot be exactly
simulated by a linear combination of four central force
components. Also, it should be noted that it is very
difficult to simulate the finite-shorter-range tensor force
by adjusting the strength parameters of the infinite-
range tensor force and that the infinite-range approxi-
mation for the tensor force is quite unreliable.
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APPENDIX A

Our interest here is to evaluate the spin-dependent
part of the central-force matrix element

(a| V(r12)01 02| a).

It is convenient to consider the singlet projection
operator Pg and write the matrix element of V(1) Ps,

(a|V(r12)Ps|a)=1a| V(ti—1)(1—01-05)[a'). (A1)

Here, V(r;—r2) can be expanded in terms of the angle
o between r; and 1,

V(ti—12) =3 vx(r1,72) Pr(cosw) ,

where Pr(cosw) is the Legendre polynomial of order %.
We write {a| V (r12) Ps|a’) as

(a|V(ro)Ps|a)=1 2 farl's, (A2)
n,k
where
for=(—1)"(2k+1)
X{172T M| 1™ - @, Py(cosw) | ji' 7o' T'M'), (A3)
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and we may write P(cosw) as

//Rl*(rl)Rz*(rg)vk(h,rz) Pk(cosw)zixj (—1)C, B (1)C., @ (2),

XR1 (fl)Rz (7’2)1’121’22d71d7’2. (A4:)

2k+1

where
Adar 1/2
CK(]‘) (91) = |:7-—il I,x”) (013¢7') ’
2k+1

By the addition theorem for spherical harmonics, so that

fur= 5 (= 1)1 (D) joT M0, ™ (DC (1) -0 P ()C P Q)] 4132 T'M). (AS)
(3%

The angular part f.; can be evaluated by using the tensor-operator algebra developed by Racah,*” and de-Shalit
has obtained the expression of fax for the diagonal case in the zero-range limit.? The similar expression including
the off-diagonal case can be calculated easily and is given in terms of the usual 6-7 and 9-j symbols by

Fre= (= D)FF 05 pbar e (2k+ D)L, 12 Glle @[5 GICPL) GIC 1)

xz:(~1>k+f<2r+1>{ff‘, i }
r Je J1r 7

N e ]
- oA
S
. LN
- s
A

where
L7,7" 1=LQ2u+D2H"+ 1) 25+ 1)(25+1)],
and 3[le™||2) and (V||C®]||l') are the usual reduced matrix elements. Here the summation over 7 is restricted by
|k—n| <r<k+n. Obviously, we have
(a|V(ri—r2)|a)=2 forl'x,
&

(@|V(ti—ry)er- 0o @)= =2 fuls, (AT)
%

and
(@|V (r2)Ps|a")y=1[{a| V(ti—r2)a’)—(a| V (t1—15)01- 03] ) ],

where (a| V (r12)|a’) is just the matrix element for the Wigner force (n=0), whereas {a|V (r;—12)o1-02|a’) is the
contribution from the spin-dependent force (n=1). Instead of evaluating {(a|V (r12)a:- 02|a’) directly, we shall
find it easier to evaluate (| V (1) Ps|a’) first and then obtain {a|V (712)e1- 03] a’) by subtracting the contribution
due to {(a| V (r12)|a’) from (a| V (r12) Ps|@’).

Because # can take only two values, 0 and 1, we find it convenient to sum over % first. We may sum over » in
Eq. (A6) by using

d q e\(h v e
z<2y+1){p ; b}{s g b} z<2x+1>{“ b x}{ ‘j ’;}{; ;e boa, (AS)
v a f yle f v

which is easy to verify. Summation over » can also be easily performed, yielding a simpler expression involving
the 3-5 symbol:

el W ol 3 L gk Y
= fu= (0@l 2e(g S VG OO L G w G e @

Here we have
L7,7" 50 1=025+1) 25+ 1) (2724 1) (272" + 1) (2h41) (20 +1) (2h+1) (204 1) ].
The final expression for {(a|V (r12) Ps|a’) is
(a|V(rio)Ps|a’)=3 X Fi(—=1)» I8, 37 1171 (1,01,°0| k0) (1200’0 | KO)YW (I1jrl2j2; 3T)
k
XW U 71l Jo s 3W (hiy'loly' s RT),  (A10)

where the symbols (| ) and W are the usual Clebsch-Gordan and Racah coefficients.

27 G. Racah, Phys. Rev. 62, 438 (1942).
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Now we evaluate {a| V (r12)|a’). Noting

4

sV

7

we can easily verify

(@|V(rw)|a)= ; Fr(— )2+t g 5712515 51— 5 | RO) (Fo'3 ja—% | ROYW (§171' fage’ s RT)

0 %k r g .
{s l j}=(_1)WW[2(2,€+1)]_W{JZ ]
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k}ak.r,
S

(A11)

with the restriction that it vanishes unless both /;+41,+k and ly+1,'+% are even. From Egs. (A7), (A10), and

(A11), we get

(a|V(rip)or-az|a’y=23 Fp(—1)rtir+I[ 4 4 1 1" [V2(1,00,°0| kO) (120020 | EOYW (J17 12723 3T)
k

XW(h'jﬂz'jz'; %])W(llll%lz/; k])—l—(a‘ V(rw) la’> ’

where {a| V (r12) | @’) is given by Eq. (A11).

(A12)

Now that we have obtained the explicit forms of the spin-dependent matrix element for the finite-range case,
we obtain the corresponding expressions in the limit of zero range. For the zero-range force, we have Fy=F, for
every k, so that the summation over %k can be easily carried out analytically. The final results for the zero-range

force are

(a] Vo(rlz)!a'>=m

and

VO(riz)e1e02|a’)=—
(a| VO(r12) la) 2+

X [ (— )ik et [ 42 (— 1) bt T ] (— 1 )ikit ik’

where the superscript zero refers to the zero-range
limit, and

A= (2jH+ 1)+ (= 1)+t (25,+1).

In Eq. (A13), {a|V°(r1s)|a’) vanishes unless ;417
41,41, is even. Likewise, (a| V(r12)01 02| a’) vanishes
unless both Ii+l+J and 6’41+ J are even. The
diagonal cases of both Egs. (13) and (14) agree with
the results obtained by de-Shalit.* An almost identical
expression for (A13) is given by Newby and
Konopinski,® and a similar expression by Noya et al.®
Equations (A10) and (Al1) are also given by Newby
and Konopinski.

APPENDIX B

The tensor-force matrix element will be evaluated
here in the j-j representation. We may express the
tensor force in terms of the orbital and spin tensors as

3V (r12)S1e= (8®-L®),

where S®@ is the irreducible tensor operator of rank 2
constructed from the spin operators ¢; and @3 and
L® is a product of the scalar V(r12) and the irreducible
operator of rank 2 constructed from the unit vector

X l: (__ 1)i1+jl’+lx+l1’+l+ (_ 1)7'1+7'1’+7’2+1'2'

Fo[ 7,7/ 172(j15 jo—%|J0) (41’352’ —%1J0)

A/

4](]—{—1)] (A13)

Fol 7,71 (13 2—3170) (413 72’ — 3| J0)

’

S A
4](J+1)}’ (A14)

I15/712. The spin and orbital tensors may be obtained
from?®

SM(Q) = (87{'/15)”2 (0‘1‘ V) (02' V) ‘y2m(r12)

27[' 172 V(le)
Lm(2) = <_> (y2m(rl2) ;
15 ?

712

where Yin(r)=7Y,(6,0) and Y (6,¢) is the spherical
harmonics.

The tensor force have been evaluated into spherical
tensors by Talmi.2® Expanding V(r12)/712* in terms of
spherical harmonics,

V(ri)/ri=72_ vi(r1,72) Pr(coswis)
k

=3 5l T (= 1)CH1)CD(2),

k=0 K

we obtain for the tensor force in terms of spherical

28 A, R. Edmonds, Angular Momentum in Quantum Mechanics
(Princeton University Press, Princeton, 1957).
2 I, Talmi, Phys. Rev. 89, 1065 (1953).
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tensors

I’(rlz)Su:?) Z FWW(lxly;KZ)T;‘IZ)K'TQ(W)K,
K.z,y

where
Foy=—57% v(r,r2){ (2/15)2[x ]2 (20%0 | 20)r
+(2/15)12[y ]2 (2040 yO)r2
+ (Cx][y D2 (10k0| 20) (10£0 | yO)W (11xy; 2k)rirs}
and
T, 09K=[g® ;)X C@(1)] for i=1or 2.

The symbols ( | ) and W are the usual Clebsch-
Gordan and Racah coefficients, and [a] stands for
[2a¢+17]. Now the evaluation of the matrix element for
V (712)S12 1s straightforward by using the similar method
of Appendix A. The final result is

(a|V(r2)Sela)=3 3 (a|Fu|e)W (1xly; K2)
K,z,y

X (Gugal M| Ty 025 Ty 00K Gy ' T M),

<j1j2]M|T1(lz)K.T2(ly)K] ]'1']'2/]'M’)_—_ (_. 1)jl’+j2+ll+l2+J65JJ,5M,M,{
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where
(@|Faylay=—5 3 (a|raijla’) Xy for 4, j=1,2,
kvivi

Xi= (2/15)2 £ ]2(20%0| 20) ,
Xop= (2/15)"2[y]/2(20k0[ y0),
X1a= ([ IyD"2(10k0] 20) (10£0 | 50)
XW(11xy; 2k),

and

(alr.,’rjla'>= (2k+1)/ dr1 712R1R1/'[
0 0

1 rcoswis V(r1)
X/ d( . )Pk(coswm) .
-1

712

]

dr of 22R2R2'1’ &5

The angular part is given in terms of 3-, 6-, and 9-j
symbols as
AR PR 31 T e e T
VAL e e e2a)

00 0

11 1) (:r 1t 1
, v ll x lll l2 y 127 2, 2 2[ 2
X (L0100 102D 00 0 Woh xpl Loyt

An almost identical result for the diagonal case only is
given by de-Shalit and Walecka.?® The radial integral
(e|7#i]a’) can be evaluated by expanding it into a
linear combination of Talmi integrals

(a|railay= 2 fulmm')= L (1/2m)=omtnt=s

m,m’

XX (m+m'—2041) 11732 (m,m') T o0,
where f; is the double integral of the form
fi= / / %1729 0y (71,72) €xp(— x:2— 2o2) X 2d X1 %% .

The variable x; is defined here as 7;/4/» and (»)™V2 is

oo K)o K

the length parameter appearing in the harmonic
oscillator radial wave functions, and

1 COSw19 V(7’12>
v (r1,72) = (2k+1) d( . )Pk(coswm) —-

-1 712

The Talmi integral Js, is the single integral defined as

0 a2\ V (v'/2x)
Jz,,=/ a2 exp(——) 2*dx.
0 2 va?

The expansion coefficient, T, is the Talmi coefficient
defined by Ford and Konopinski,'® and the explicit
expressions along with several recursion relations for
the Talmi coefficients are given in detail by Ford and
Konopinski.




