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with clusters of impurities, we cannot hope to duplicate
the detailed structure which w'e expect to exist at the
high-frequency end of the spectrum. ' In other words,
the present calculation probably gives a g(x) which is
suitable for calculation of the specific heat but which

' P. Dean, Proc. Roy. Soc. (London) 260, 263 (1961).

is not adequate for, say, transport calculations where
the detailed dynamics of the system may be more
important.

Apropos of the broad impurity band, we should men-
tion that Flinn, Maradudin, and Keiss4 have found a
spectrum in remarkably good agreement with Fig. 3
using a completely different method. Also, it appears to
be characteristic of the self-consistent field approxima-
tion to broaden the spectrum of allowed eigenvalues
from that obtained using (4) or its analog. Klauder'
has found this to be the case in his study of electron
spectra in disordered metals.

4 P. A. Flinn, A. A. Maradudin, and G. H. Weiss, Westinghouse
Research Report (unpublished).' J. R. Klauder, Ann. Phys. (N.Y.) 14, 43 (1961).
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An expression for the field-emission current in a longitudinal magnetic Geld is derived in the zero-tempera-
ture limit. Two cases are considered, corresponding to constant Fermi energy (A) and constant electron
density (8). In both cases the calculated current density contains an oscillatory contribution periodic in
1/H, as well as a term which decreases as the square of the magnetic field. In case B, however, an oscillatory
contribution appears that is absent in case A. Since the two oscillatory terms in case B differ in phase and
their amplitudes depend on different powers of H, it should be possible to distinguish between cases A and
B.The current-decrease quadratic in H has its origin in the steady diamagnetism of the electron gas. Using
accepted values of effective mass, Fermi energy, and work function, we find that for bismuth the predicted
variations of the emission current with magnetic field should be readily observable.

INTRODUCTION

HE effects of a strong magnetic field upon the
physical properties of metals, semimetals, and

semiconductors have received considerable attention
in recent years. ' Much of the impetus derived from the
lucid exposition of Lifshitz and co-workers who demon-
strated the far-reaching inferences that could be drawn
from measurements of magnetoresistance and Hall
effect on pure single crystals at low temperatures. At
the same time, Harrison's work' provided a simple link
between de Haas —van Alphen data and what had
appeared to be very complicated band structures of

* Supported by the Office of Aerospace Research of the U. S.
Air Force under contract AF49(638)-70.

~ High Magnetic Fields (John Wiley R Sons, Inc. , New Vork,
and Tech Press, Cambridge, Massachusetts, 1962), cf. particularly
Part III.

I. M. Lifshitz and V. G. Peschanskii, Zh. Eksperim. i Teor.
Fiz. 35, 1251 (1958);38, 180 (1960) t translations: Soviet Phys. —
JETP 8, 875 (1959); 11, 131 (1960)g. N. E. Alekseevskii, Yu. P.
Gaidukov, I. M. Lifshitz, and V. G. Peschanskii, ibid. 39, 1201
(1960) (translation: ibid 12, 837 (1961)j. .' W. A. Harrison, Phys. Rev. 126, 497 (1962); 118, 1190 (1960);
116, 555 (T959).

most polyvalent metals. Finally, improved techniques
of crystal purification and growth, the attainment of
magnetic fields of better than 10' G by pulse techniques,
and the development of improved experimental tech-
niques account for the rapid accretion in recent years
of de Haas —van Alphen, Shubnikov —de Haas, cyclotron
resonance, and related data on a host of conductors. 4

Application of a magnetic field to a free-electron gas
gives rise to highly degenerate energy levels separated
by Aa& =P*H= eked/m*c as well as to regular singularities
in the density-of-states function, thereby exerting a
profound inhuence on any physical property either
directly or indirectly related to the electronic system.
Variations of the magnetic susceptibility, of the specific
heat, and of the transport properties periodic in H ' are
the direct effects most frequently investigated. The
only indirect effect that has been studied is the in-
Ruence of a magnetic field on the velocity of sound. '

4 The Fermi Slrface, edited by W. A. Harrison and M. B. Webb
(John Wiley tk Sons, Inc. , New York, 1960).

s M. J. Harrison, Phys. Rev. Letters 9, 299 (1962);J. J. Quinn
and S. Rodriguez, ibid. 9, 145 (1962).
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On the following pages we focus attention on yet
another direct effect which, as far as we know, has not
been the subject of either theoretical or experimental
investigation, namely, the current emitted from a cold
metallic surface in a strong electric field. The periodic
variations in y, C„, and the transport properties with
magnetic field arise because N(g), the density of states
at the Fermi energy p, exhibits singularities at intervals
periodic in H ', and all of the aforementioned properties
depend critically upon N(q). By contrast, in high-field
emission all the conduction electrons can contribute
to the current although the probability of emission is
greater for electrons of higher energy. The observed
current is thus a suitable integral over the electron
distribution, and, consequently, we would expect the
oscillations in H ' to be somewhat less well defined.
Nevertheless, as we shall see, periodic variations of the
emission current with magnetic Geld should be readily
observable under appropriate, physically attainable
conditions.

The phenomenon we consider here bears some
similarity to current oscillations in tunnel diodes in
strong longitudinal magnetic fields. ' In that case, the
current oscillations arise, indirectly, from oscillations
of the electron Fermi level which brings forth corre-
spondirig changes in the junction Geld. ' Since the barrier
width in a tunnel diode is roughly independent of energy
in the energy range of interest, the electrons that make
the dominant contribution to the tunnel current are
those in the lowest orbital quantum states. In our case,
we face a somewhat different situation. The width of the
barrier increases with decreasing electron energy and
normally only electrons near the Fermi energy con-
tribute to field emission. '

(o = eII/m*c (2)

CALCULATION OF THE EMISSION CURRENT

The allowed energy levels of an electron in a mag-
netic field; chosen along the s direction, are given by'

e= e((k,)= ei+e, =Su(l+-', )+h'kg/2m*, (1)

where

Di(e„F)= exp —g—
z

where

g—e+Aa) (t+ 1/2)—
= exp —g—

6.83X10'qP~' ~
ei 379X10 4

Pl/2~

)I
(6)

9.76X10 'F

(m*/m)' &12'~'t (3.79X10 4P'~'/P)
(7)

Here, F is the electric field in V/cm at the surface of
the metal; @ is the work function in eV; u(y) and t(y)
are functions evaluated by Burgess, Kroemer, and
Houston" and shown in Fig. 1.

From (4) and (5) we obtain the simple result

The emitted current density is given by the product
of the Qux of electrons of energy e incident on the surface
of the metal from within and the penetration prob-
ability D integrated over the entire electron distribu-
tion. The Aux of electrons with energy about ~, e,&0,
and quantum number / is

$f(e)v, i(c, )Ni (e)dc,

where f(e) is the Fermi distribution and the factor —,

takes account of the fact that for given e only half the
electrons have a positive 2' component of velocity. We,
thus, are led to the following expression for J~, the
current density attributable to the /th orbital level:

"2e'Fl
f(e)D, (e)de

s h2c

Finally, the total emission current density is obtained
by summing over all orbital states; i.e., J=Pi Ji.

We now proceed on the assumption that the pene-
tration probability in a longitudinal magnetic Geld is
the same as in zero field. Accordingly, Di(e) =Di(c„F)
is given to good approximation by'

is the cyclotron frequency of electrons of effective mass
m* and l is a positive integer or zero.

The number of states with quantum number l and
energy between e and e+de is

where

J=A P Bi f(e)e'~'de,

2e'H
g
—fg+q/&j

)

(8)

(8a)
2'

Ng(e)de= ( m2*)' 'i( e eg) '"de—-
h'c

(3) (8b)

A. G. Chynoweth, R. A. Logan, and P. A. WolG, Phys. Rev.
Letters 5, 548 (1960).

'R. R. Haering and P. B. Miller, Phys. Rev. Letters 6, 269
(1961).

R. H. Good and E. W. Mueller, in IIundbuch der I'hysik,
edited by S. Fliigge (Springer-Verlag, Berlin, 1956), '2nd ed. , pp.
176, 231.

9 We shall disregard spin splitting throughout this discussion.

The integral in Eq. (8) is of a type commonly en-
countered and is conveniently evaluated in a series in
powers of kT/q. In the present treatment we restrict
ourselves to the limit T —+ 0 and retain only those non-

'0 R. E. Burgess, H. Kroemer, and J. M. Houston, Phys. Rev.
90, 515 (1953).
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however, e is Gxed, additional oscillatory terms appear
that arise from the variation of q with B.At constant
electron concentration, the Fermi energy in a magnetic
field is given by"

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0 where go is the Fermi energy at T=O'I, II=0, and X

and P are given by

X= 2vrqri/h(o —~/4,

(= 2Ir'gk T/ko.

FIG. 1. The functions p(y) and t(y).
(12)

vanishing terms of lowest order in the expansion
parameter. In this approximation, In the zero-temperature limit, to which we are re-

stricting our treatment, Eq. (11) reduces toJ=A Q' Brdfe«' e'«'—j
=Ad P' Ee'p "&I'—1j

(—1)'
sink . (13)

()
(k~)ops

n(~)=np 1+—I

—I—
The prime on the summation. denotes that the sum is to 48(Ilp I (8z')'i'krfo)
be taken over all values of l between 0 and /, „,where

is given by / =rf/Acr —sr. With the aid of the
Poisson summation formula, one readily obtains

-d(e&'e —1)—g
J=Ad +g (—1)"

4x'p'+ (App/d)'

(krp)
&( 2s-P sin(2vrP&/Ace) —

i

—i( cos( 2n- Pri/Pu)pe&")—
Edj

1——Sin(2prpri/i'Itp) . (10)

The oscillations in J with H, periodic in 1/H, are
apparent from Eq. (10).

We here distinguish between two situations which
often may not be realized in practice but which repre-
sent extreme limits.

(A) The light-mass conduction band overlaps a
heavy-mass hole band, and (3) there is no band overlap
whatever.

Case A is approximated by many semimetals, such as
bismuth, in which de Haas —van Alphen oscillations are
most easily observed. Case 8 is probably rare in all but
monovalent metals, but may be approximated in suit-
ably doped e-type semiconductors, for example, g-InSb.

In case A, the high density-of-states hole band will
maintain a fixed Fermi level by accommodating elec-
trons from or contributing them to the electron band as
the magnetic Geld is varied. In case 8, the number of
electrons will remain fixed and the Fermi energy now
depends on the strength of the applied magnetic Geld.

In case A, Eq. (10) represents the final result. If,

It is the Fermi energy rl(B), as given by Eq. (13),
which must be substituted in Eq. (10) when evaluating
the emission current for case S. Although the Geld
dependence of the Fermi energy through the monotonic
increase with EP and the oscillatory terms is relatively
small, nevertheless, this eBect cannot be neglected,
particularly in the fIrst term of Eq. (10) where the
Fermi energy appears in the exponent. Provided
AoI/rip((1, it is permissible to replace y by pp in the
expression for X, Kq. (12), and also in the arguments of
the trigonometric function in Kq. (10).This simplifying
approximation cannot be employed at Gelds of sufhcient
strength such that Acr)go, the prevailing situation
already at moderate fIelds ( 15 kG) in bismuth and
at even lower fields in dilute SiSb alloys.

NUMERICAL EVALUATION OF THE
EMISSION CURRENT

In this section we present results of a numerical
evaluation of Kq. (10) for bismuth using reasonable
values of electric Geld and other parameters. The pre-
ferred value of the work function of bismuth is 4.25 eV"
for the Fermi energy po and effective mass m* we take
15.7X10 ' eV and 0.0105 mo", for the electric Geld we
select a representative value of 3&&10' V/cm. One

"R.B. Dingle, Proc. Roy. Soc. (London) A211, 500 (1952).
"H. Jupnik, Phys. Rev. 60, 884 (1941)."J.E. Kunzler, F. S.L. Hsu, and W. S. Boyle, Phys. Rev. 128,

1084 (1962).
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Fio. 2. The function G(x).

For the parameters we have selected A'~5000 A/cm'.
Of the three field-dependent terms in (15), the last

clearly dominates at low fields; i.e., when h~((gp. As
the magnetic field is increased and Ace approaches gp,
the term involving the function G(qp/happ) takes on in-
creasing importance. Since G(tt/Itpp) and F(rt/Ao&) differ
in phase by m./4, and the amplitudes of the oscillation
have a slightly different 6eld dependence, it should be
possible to identify the two experimentally. Finally, we
anticipate a monotonic decrease in J with B, given by
the term ii, (h&o/imp)', which has the same origin as the
steady diamagnetic susceptibility of the electron gas.

and
g=1.43, d=1.33 eV

P*=1.1X10—' eV/kG.

where

J=A' 1——— ——G —, 14

2mem~gp2
A'= e '.

G(a) is the periodic function

G(x) =-,' —4x',

shown in Fig. 2.
Since bismuth approximates case A (constant e),

Eq. (14) is the desired result. At fields near 10 kG
oscillations whose amplitudes are about 10% of the
average current should appear.

For comparison, we give also the result for case 3
(constant e) using the same numerical parameters.
We obtain then, retaining only terms to order (A&a/iip)',

t'ttp~=~' 1—
I

—I+-I —
I
Gl—

12(tip j 4Eitp) khcp

( 1 )'"t'Itcp)'" gp)+ l l l

—
l

F —
l

A/cm' (15)
&2~') E g, i h~)

where
sin (2m prt/fno pr/4)—ao

Fl —= Z (-1)"
k Acp

From these numerical values it follows directly that for
reasonable magnetic fields, less than 50 kG, say,

Acp/d«1 and also itp/d((1.

We may, therefore, use these ratios as expansion param-
eters in the evaluation of Eq. (10). To lowest order in

App/d, ptp/d, we obtain

CONCLUSION

Ke have investigated theoretically the variation of
the high-6eM emission current in a longitudinal mag-
netic field in the zero-temperature limit within the
single-particle free-electron approximation. Under suit-
able conditions, perhaps most easily realized in bismuth
and bismuth-antimony alloys, the emission current
should show oscillations of the de Haas —van Alphen
type. Moreover, we anticipate a monotonic decrease in
emission, quadratic in H.

The expressions for the emission current in the cases
of constant Fermi energy and constant electron concen-
tration differ through the presence, in the latter in-
stance, of an additional oscillatory term whose phase
and field dependence set it apart from the term which
alone determines the oscillatory behavior in the former
case. Since a 6xed Fermi energy implies the presence
of an overlapping high density-of-states band, emission
current variations, apart from their intrinsic interest,
may provide useful information on the band structure.
It may also develop that the dependence of the emission
current on magnetic Geld could prove valuable in
the study of surface eGects in semimetals and some
semiconductors.

In our derivation of the equation for the emission
current, we have assumed that the penetration prob-
ability, D, does not depend explicitly on the magnetic
field. This assumption cannot be justified either theo-
retically or by recourse to experimental data since such
is, as yet, nonexistent. It may well be that the function
D(e.,F) depends on H also; this would surely modify
the behavior profoundly, but at present it seems futile
to try to anticipate that contingency.

fVote added im proof. The author would like to thank
Dr. N. Goldberg and Dr. I. Pollak for calling to his
attention an error in sign in Eq. (10) of the original
manuscript.


