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The frequency spectrum of a disordered one-dimensional chain is calculated using a self-consistent field
approximation. By requiring that the phonon scattering amplitudes satisfy a certain requirement of analytic
self-consistency, an implicit equation for the phonon self-energy function is obtained. This equation turns
out to be exactly soluble, and leads to a spectral function which possesses no singularities and which exhibits
a very Qat, broad impurity band.

' 'N a previous publication one of the present authors
(J.S.L.) discussed a multiple scattering technique

for the calculation of the frequency spectrum of an
isotopically disordered one-dimensional lattice. It was
shown that, for small impurity concentrations, the
spectrum could be determined from the amplitudes for
scattering of a phonon by a single impurity or small
clusters of impurities. In the interesting case of light
impurities, these scattering amplitudes contained poles
associated with high-frequency localized modes, and
these poles gave rise to new bands at the upper end of
the frequency spectrum. Furthermore, these impurity
bands turned out to be narrow and spikey, i.e., the
spectral function contained a set of infinite discon-
tinuities. However, certain mathematical features of the
solution led the author to speculate that these singu-
larities would not be present in a calculation in which
the analytic properties of the scattering amplitudes were
taken into account more nearly self-consistently. In
this note we should like to describe a nontrivial self-
consistent held approximation which satis6es these re-
quirements of analyticity, which leads to exactly soluble
equations for the one-dimensional model lattice, and
which does, in fact, remove the unpleasant singularities
from the frequency spectrum.

Ke begin with a brief review of the previous results.
The spectral function is given by
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where the Q„are the normal mode frequencies of a
chain of X atoms and D is the phonon Green's function.
For any particular con6guration of impurities, D may
be written as a matrix in a wave number representation;
i.e., in the representation whose basic states are the
phonon eigenstates of the pure lattice. Upon averaging

~ Supported in part by the National Science Foundation.
t This work will constitute part of a Ph.D. thesis to be sub-

mitted to Carnegie Institute of Technology by R. W. D.' J. S.Langer, J. Math. Phys. 2, 584 (1961). Hereafter referred
to as I,

over all configurations of impurities we regain transla-
tional symmetry and D becomes diagonal. Thus, ac-
cording to the analysis of I, we may write

Ds(pp') =
cos —co +Gs(co )

(2)

where the co&'s are the eigenfrequencies of the unper-
turbed lattice and Gs(cps) is a self-energy function.

To lowest order in the concentration of impurities q,
Gy, (co') turns out to be proportional to the forward
scattering amplitude for a phonon incident on an iso-
lated impurity. That is

Gs(~') = 1Vqfi, s(cos), (3)

and tq, s (cos) satisfies the equation
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Here X=—M/M' —1, where M and M' are the masses of
the host and impurity atoms, respectively. Notice that
the quantity Xa»s/X plays the role of the phonon-
impurity interaction, and that the quantity (co&'—cop) '
is the unperturbed propagator.

From very general principles, we know that the exact
expressions for D and 6 have very similar analytic
properties. In particular, both functions are analytic
everywhere in the co plane except along the real axis
where there are branch cuts. These branch cuts occur
wherever the spectral function g(po) is nonzero. In the
approximation described by Eqs. (2), (3), and (4), D
and G both have branch cuts coinciding with the single
acoustic band of the unperturbed lattice. If a local
mode exists, however, Gs(cps) has a simple pole at the
local mode frequency opp Ds(co') has a similar pole near
cop the exact position depending upon h; and g(co) is
nonzero in a narrow band in this region. In a more
accurate approximation, we know that both D and 6
should have branch cuts coinciding with this impurity
band.

We may automatically satisfy the requirement of
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analytic self-consistency by modifying Eq. (4) to read

XGDyI

t2, 2 (CO2) = ——Q Xa)2 2D2 (a)')t2-, 2. (CO'). (5)

According to Eq. (2), this means

q~(1+v)
(13)
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where co~ is the maximum frequency of the unperturbed
chain. Thus, p is determined by the purely algebraic
equation,

t2, 2~ ((O )=
X~1,'

t2», 2~ (CO ). (6)
(de« M+—G2» (QP)

The kernel of this equation is separable; thus, it may be
solved easily, with the result

Finally, the averaged spectral function is given by

2M 1
g((u) = lim —Im—Q
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According to (9) and (12), (14) becomes
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Then, because G2(oP) =1Vgt2 2(&u2), we find the following
implicit equation for the self-energy function:

2 1
g ((o)=—Re

[s&„2(1+y)—co2J" (15)

where y(&o2) is the solution of (13).
The general features of the spectral function g(co)

now may be deduced from an examination of the roots
of the algebraic equation (13). First, we make the fol-
lowing transformation of variables:

Equation (8) may be compared with the corresponding
result obtained from Eq. (4), which is

2t(x) = X ~ (16)
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Then

2
a„g(x)=—Im2t(x) (17)

G2 (a&2) =y(a 2)(V22,

then y(aP) satisfies

v( ')=q& (&+—E
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It is convenient to rewrite (10) in the form

(10)

In diagrammatical language, we may say that, in Eq.
(8), we have replaced the unperturbed Green's function
by the exact one in each of the phonon lines of the dia-
grams which contributed to (8'). The solution of (8)
is thus equivalent to the summation of a very large
class of diagrams.

We may solve Eq. (8) quite easily because G&(au2)

depends on k only through the factor A&I,'. Therefore,
if we write

(9)

1 gX (x—1/2t)
y(x) =x'—1——=

2t2 x—1/2t+X2t
(18)
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Equation (18) has been derived from (13) by making
the substitution (16) and factoring out (x+1/2t) in the
numerator and denominator of the right-hand side.
%e are left with a quartic equation with real
coefFicients.

In the case of vanishingly small q, we know that
(18) must have a solution which approaches the spectral
function for the unperturbed lattice, i.e.,

=0)

In the limit E—+ ~, the sum in this expression becomes
an integral and is readily evaluated (see I): At g=0, f(2t) always has two real roots at

1 1
lim —P~-" 1V & cu22(1+y) (o2 ic- —
e -+0

(21)X212+x2t —1 =0.

For x(1, the other two roots are pure imaginary; for
x)1 they are real, and Eq. (19) follows immediately.
The function f(21) relevant to this unperturbed situation

2(1+ry) ~2]1/2 is drawn in Fig. 1.Next consider small but finite values

t|' X Xa&2 1 1

Accordingly, we regroup the terms in (18) as follows:

(11) f(n) = [(1—x')n'+ 17[&~'+xn—13
+gX2t2(x2t —1)=0. (20)
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has the roots

(22)

of q. As long as we are far from the band edge, i.e., x is
less than and not too close to unity, the picture drawn
in Fig. 1 remains qualitatively correct and g(x) will not
be much different from gs(x). For sufficiently small
values of 1—x', however, there will be some region
along the negative rl axis where the cubic term in (20)
will be stronger than the quartic term. The resulting
curve will look something like Fig. 2. Notice that we
have drawn four real roots of f(ri) for x(1. In other
words, for sufficiently small q, g (x) may go to zero below
the edge of the unperturbed acoustic band. The new
band edge will occur at that value of x where the roots
A and 8 merge in Fig. 2.

If q is small (and X is not too small), both roots A
and 8 will occur at large negative values of q, whereas
C and D will remain relatively close to p=o. In this
case we may investigate the behavior of 0(x) near the
new band edge by assuming that the roots C and D are
still given accurately by (21) and factoring them out of
(20). The resulting quadratic equation

1
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Fro. 3. Spectral function for the case M/M'=3, g= r'0.

It is apparent that the self-consistent spectral function
peaks and then goes to zero with infinite slope instead
of becoming singular at the top of the band. Detailed
numerical calculations confirm that, for small q, Kq.
(25) is a very accurate representation of g near the
band edge (see Fig. 4).

As was pointed out in I, the band gap must dis-
appear for large enough values of the concentration q.
%e now may see in some detail how this happens. Con-
sider values of x so close to unity (the unperturbed
band edge) that root A in Fig. 2 is very far out along
the negative rl axis. Then f(ri) will be well approximated
by a cubic expression obtained by setting x= 1 in (20).
As we have seen, this cubic will have three real roots
8, C, and D for small q. As q increases, however, roots
8 and C merge and then become complex. In the case of
a three-to-one mass ratio (),=2), for example, the
critical value of q is about 0.22. For concentrations
greater than the critical q, g (x) will be nonzero through-
out the region near @=1.

The complete spectral function for the case M/M'= 3,
g—

y 0 is shown in Fig. 3. YVe have obtained this curve
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and for y&y;„we have
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purities.

(23)

(24)

by direct numerical solution of Eqs. (17) and (18). That
is, we have found two real roots of (18) numerically,
factored these out, and then solved the remaining quad-
ratic equation. '

In Fig. 3, we have plotted for comparison the spec-
trum computed in I for the same choice of parameters
q and ) . As discussed above, the low-frequency acoustic
bands are identical except in the very immediate
neighborhood of the band edge. The function near the
band edge is shown in more detail in Fig. 4. In our new
approximation, however, the impurity band has be-
come quite broad and Oat. It seems likely that the
broad band is an accurate representation of the average
energy distribution of the impurity modes. On the other
hand, having omitted all higher order effects associated

s For the parameters chosen it turns out that f(q) always does
have two real roots and that the complex roots do, in fact, occur
on what we might call the "physical sheet" of the function g(x).
That this is not always true may be seen by examining f(u) for
any negative value of ), in which case y(x) has an unphysical
branch cut which must not be included in the spectral function g.
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with clusters of impurities, we cannot hope to duplicate
the detailed structure which w'e expect to exist at the
high-frequency end of the spectrum. ' In other words,
the present calculation probably gives a g(x) which is
suitable for calculation of the specific heat but which

' P. Dean, Proc. Roy. Soc. (London) 260, 263 (1961).

is not adequate for, say, transport calculations where
the detailed dynamics of the system may be more
important.

Apropos of the broad impurity band, we should men-
tion that Flinn, Maradudin, and Keiss4 have found a
spectrum in remarkably good agreement with Fig. 3
using a completely different method. Also, it appears to
be characteristic of the self-consistent field approxima-
tion to broaden the spectrum of allowed eigenvalues
from that obtained using (4) or its analog. Klauder'
has found this to be the case in his study of electron
spectra in disordered metals.

4 P. A. Flinn, A. A. Maradudin, and G. H. Weiss, Westinghouse
Research Report (unpublished).' J. R. Klauder, Ann. Phys. (N.Y.) 14, 43 (1961).
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An expression for the field-emission current in a longitudinal magnetic Geld is derived in the zero-tempera-
ture limit. Two cases are considered, corresponding to constant Fermi energy (A) and constant electron
density (8). In both cases the calculated current density contains an oscillatory contribution periodic in
1/H, as well as a term which decreases as the square of the magnetic field. In case B, however, an oscillatory
contribution appears that is absent in case A. Since the two oscillatory terms in case B differ in phase and
their amplitudes depend on different powers of H, it should be possible to distinguish between cases A and
B.The current-decrease quadratic in H has its origin in the steady diamagnetism of the electron gas. Using
accepted values of effective mass, Fermi energy, and work function, we find that for bismuth the predicted
variations of the emission current with magnetic field should be readily observable.

INTRODUCTION

HE effects of a strong magnetic field upon the
physical properties of metals, semimetals, and

semiconductors have received considerable attention
in recent years. ' Much of the impetus derived from the
lucid exposition of Lifshitz and co-workers who demon-
strated the far-reaching inferences that could be drawn
from measurements of magnetoresistance and Hall
effect on pure single crystals at low temperatures. At
the same time, Harrison's work' provided a simple link
between de Haas —van Alphen data and what had
appeared to be very complicated band structures of

* Supported by the Office of Aerospace Research of the U. S.
Air Force under contract AF49(638)-70.

~ High Magnetic Fields (John Wiley R Sons, Inc. , New Vork,
and Tech Press, Cambridge, Massachusetts, 1962), cf. particularly
Part III.

I. M. Lifshitz and V. G. Peschanskii, Zh. Eksperim. i Teor.
Fiz. 35, 1251 (1958);38, 180 (1960) t translations: Soviet Phys. —
JETP 8, 875 (1959); 11, 131 (1960)g. N. E. Alekseevskii, Yu. P.
Gaidukov, I. M. Lifshitz, and V. G. Peschanskii, ibid. 39, 1201
(1960) (translation: ibid 12, 837 (1961)j. .' W. A. Harrison, Phys. Rev. 126, 497 (1962); 118, 1190 (1960);
116, 555 (T959).

most polyvalent metals. Finally, improved techniques
of crystal purification and growth, the attainment of
magnetic fields of better than 10' G by pulse techniques,
and the development of improved experimental tech-
niques account for the rapid accretion in recent years
of de Haas —van Alphen, Shubnikov —de Haas, cyclotron
resonance, and related data on a host of conductors. 4

Application of a magnetic field to a free-electron gas
gives rise to highly degenerate energy levels separated
by Aa& =P*H= eked/m*c as well as to regular singularities
in the density-of-states function, thereby exerting a
profound inhuence on any physical property either
directly or indirectly related to the electronic system.
Variations of the magnetic susceptibility, of the specific
heat, and of the transport properties periodic in H ' are
the direct effects most frequently investigated. The
only indirect effect that has been studied is the in-
Ruence of a magnetic field on the velocity of sound. '

4 The Fermi Slrface, edited by W. A. Harrison and M. B. Webb
(John Wiley tk Sons, Inc. , New York, 1960).

s M. J. Harrison, Phys. Rev. Letters 9, 299 (1962);J. J. Quinn
and S. Rodriguez, ibid. 9, 145 (1962).


