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Fro. 2. Magnetic moment/g vs tem-
perature for the a-axis crystal.
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1.4 to 360'K have been described by Strandburg et al."
An identical procedure was used in the 300 to 500'K
range with the Dewar replaced by a standpipe furnace.

The experimental procedure and apparatus used for
the electrical resistivity measurements have been de-
scribed by Colvin et al.6
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Fro. 3. Magnetic moment/g vs temperature for the a-axis
rystal in the neighborhood of the Nt.'.el point. External fields are

indicated.

EXPERIMENTAL RESULTS

The data for the a-axis crystal are plotted as iso-
therms in Fig. 1 and as isofield curves in Figs. 2 and 3.
Figure 3 shows the 6eld-dependent nature of the Neel
point and also the extrapolation to zero field which
gives 229&1'K as the Weel temperature. The para-
magnetic data are plotted as the reciprocal of the
susceptibility (1/X) vs T in Fig. 4.

The data for the b-axis crystal are plotted as iso-

therms in Fig. 5, as isofield curves in Figs. 6 and 7, and
as (1/X) vs T in Fig. 4. The Neel point in Fig. 7 extrap-
olated to 229&1'K.

The isofield curves are obtained from the isotherms.
Since the points of the 1 and 3 kOe iso6eld curves are
taken from the steep portions of the isotherms, these
curves are only qualitatively correct.

The magnetic moment per gram, 0, is plotted vs
(1/H) in Fig. 8 for the b-axis crystal and the resulting
straight lines extrapolated to (1/H)=0 to obtain o.„r.
The 0- z values are plotted vs T' ' in Fig. 9, and extrap-
olated to T=O to obtain the saturation moment 0' p.

The saturation moment was 328&3 emu/g.
It was dificult to determine whether a T'" fit was

better than a T' fit. It would appear that Niira's
energy-gap approach" is more appropriate. This has
been done by Mackintosh" with excellent results.

Two techniques for determining the ferromagnetic
transition temperature were applied to the basal plane
data. In one case, plots of 0' vs T at constant field were
extrapolated to o'=0 and the resulting T values plotted
vs field. This curve was then extrapolated to H=O to
yield the ferromagnetic Curie temperature. The result
was 221~2'K for both the a- and b-axis crystals. In the
other method employed, H was plotted vs T for several
constant values of 0 and these curves were extrapolated
to H=O. The resulting temperatures were plotted vs 0-

and this curve was extrapolated to 0.=0, again yielding
the ferromagnetic Curie temperature. The result was
224~2'K for both the a- and b-axis crystals.

The c axis in terbium is very hard magnetically and
for temperatures below 220'K constraining chains were
needed to prevent sample rotation. The chains per-
mitted vertical motion but decreased the weighing
sensitivity. The data at 219.3'K and above are plotted
as isotherms in Fig. 10. The 219.3'K curves are indica-
tive of the general behavior and the lack of reproduci-
bility of the data for temperatures below 220'K. The
c-axis data above 220'K are also plotted as (1/X) vs T

' D. L. Strandburg, S. Legvold, and F. H. Spedding, Phys.
Rev. 127, 2046 (1962).

"K.Niira, Phys. Rev. 117, 129 (1960).
"A. R. Mackintosh, Phys. Letters (to be published).
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cos 30', since the u and b axes lie 30' apart in the basal
plane. When the linear high Geld parts of the isotherms
at low temperature were extrapolated to II=0 to
obtain o-oz, it was found that the difference between 0.0z

(a axis) and oar (b axis) (cos 30') was less than 3%.
Since the experimental error is of the order of 1% the
agreement is regarded as sufhcient to substantiate the
conclusion that the moments align spontaneously along
a b axis. Hence, the saturation moment 0.„0=328&3
emu/g, obtained from the b-axis data, is the true
saturation moment. This value corresponds to 9.34
&0.09 Bohr magnetons/atom and is to be compared
with the theoretical prediction gJ=9.0 Bohr mag-
netons/atom, calculated assuming a rFs state for the
tripositive free ion. Thoburn et a/. report a saturation
moment of 9.25 Bohr magnetons/atom for polycrystal-
line terbium. Liu'4 has suggested that the excess over
the theoretical prediction may be due to the polarization
of conduction electrons.

Fro. 7. Magnetic moment/g vs temperature for the b-axis
crystal in the neighborhood of the Neel point. External fields are
indicated.
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application of the magnetic Geld, but above 240'K the
change in resistivity resulting from the application of
the field was of the order of magnitude of the experi-
mental error. The peak around 226'K could be nearly
eliminated by a sufficiently strong magnetic Geld,
leaving a curve very similar to that for gadolinium as
reported by Colvin et a/. '
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Fro. 8. Magnetic moment/g vs 1//I for the b-axis crysta1.

DISCUSSION

The isotherms for the a-axis crystal below 80'K
showed a small positive slope at high fields. This
behavior was also observed by Thoburn et g/. ' for
polycrystalline terbium. This positive slope indicates
that the moments spontaneously align along a b axis.
If this is so, then the spontaneous moment, O.op, for the
a axis should be equal to 0-Oz for the b axis multiplied by

3l5
0 4 l2 l6

lP-5 TS/2 (oKS/2)

20 28

FrG. 9. Saturation magnetization of the b-axis crystal vs T'~ .

' S. H. Liu, Phys. Rev. 123, 470 (1961).
'~R. W. Green, S. Legvold, and F. H. Spedding, Phys. Rev.

122, 827 (1961).

The effective moment in the paramagnetic region,
obtained from the slope of the (1/X) vs T plot, was

p,«——9.77 Bohr magnetons for all three crystalline direc-
tions. The theoretical prediction is p,rr=gP (7+1)j'~'
=9.72 Bohr rnagnetons, while Thoburn et u/. ' report
p ff—9.7 and Arajs and Colvin' report p,«= 9.62.

The basal-plane resistivity of terbium was found to
be isotropic, within experimental error, over the tem-
perature range covered in this investigation. The basal
plane to c-axis anisotropy, given by p /p„was 1.29 at
room temperature.

The room-temperature resistivities of the terbium
crystals were from 30 to 120% greater than the corre-
sponding values for erbium and holmium reported by
Green et a/. "and Strandburg et a/. ,

"respectively. The
room-temperature anisotropy, however, is smaller than
the value 1.7 reported for erbium and holmium by the
same authors.
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