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Superconductivity with Pairs in a Relative p Wave*t
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In previous treatments of superconducting systems with attractive interactions acting in odd-angular-
mornentum partial waves, the correlated electron pairs were formed in only two components of a spin triplet.
This oversight is corrected here by a more general variational treatment, allowing all three components. In
the case of a p-wave interaction, the present state is proved to give the absolute minimum of the free energy.
Its rotational degeneracy is discussed. The energy spectrum is found to be isotropic (provided the normal
phase is also) with the usual gap, and so to be completely equivalent thermodynamically to the BCS state.
The charge-density autocorrelation is also isotropic, and the charge-current correlation vanishes. The state
exhibits the conventional Meissner effect, and cannot be experimentally distinguished from the BCS state
by means of electromagnetic or tunneling measurements, acoustic attenuation, or nuclear magnetic reso-
nance (NMR) relaxation times. The paramagnetic spin susceptibility decreases with temperature from
its value in the normal phase to a limiting ratio of -„ in good agreement with results deduced from Knight
shift measurements on mercury and tin, and in contrast to the BCS prediction. However, the addition of
impurities is found to reduce the critical temperature sharply (again in contrast to the BCS case). Thus,
the experimental observation of the p-wave pair state is expected to be difficult, and the agreement with
Knight shift data is probably fortuitous. Finally, it is suggested that a similar eKect in He might explain
why the predicted superQuid phase has not been observed.

I. INTRODUCTION the correlation, the theory predicts that a weak uni-
form magnetic Geld cannot polarize the superconducting
electron spins and, hence, that at zero temperature no
shift should occur.

Observations to the contrary have stimulated a
number of authors to propose possible explanations. "
Although these focus primarily on the small size and
impure composition of the samples, ' among the sug-

gestions advanced has been that the electrons might
pair in a spin triplet, thereby remaining able to interact
with a magnetic field and exhibiting a finite spin sus-

ceptibility even in a bulk superconductor. ' Because the
over-all wave function of a Fermion system must be
antisymmetric under the interchange of any two par-
ticles, a pair of total spin S=1 (the syrrunetric spin
functions) must necessarily have odd spatial parity, and
hence, odd orbital angular momentum. Triplet pairing
thus requires the hypothesis of an interparticle inter-
action attractive in at least one odd partial wave, such
as the p wave.

Such interactions have already been studied in con-
siderable detail, ' although primarily because of a close
mathematical similarity to the low-temperature super-

A GREAT measure of success has been achieved by
the Bardeen-Cooper-Schrieffer (BSC) theory of

superconductivity' in comprehending and correlating a
large and varied body of experimental observations on
superconductors. Agreement between theory and ex-
periment' is in many instances so striking as to establish
the validity, virtually beyond doubt, of the fundamental
BCS hypothesis of correlated electron pair formation in
the superconducting state. Nevertheless, certain iso-
lated puzzles do remain, ' one in particular which has
attracted a good deal of theoretical attention being the
observed Knight shifts in nuclear magnetic resonance
(NMR) experiments on mercury, e tin, s and vanadium. '
These resonance frequency shifts from free atom to
metal are conventionally interpreted as reQecting the
presence of an additional magnetic field at the nuclei due
to a nonvanishing spin magnetization of the conduction
electrons in the external 6eld. Since according to the
BCS theory pairs are in spin singlets (electron spins
opposed), and since a finite energy is required to break
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fiuid phase proposed for liquid He'. " In particular,
Anderson and Moreim (A1VI) have predicted for a state
with p-wave attraction, many peculiar features, such as
energy spectrum with anisotropic gap vanishing in cer-
tain directions, nonexponential low temperature specific
heat, and surface currents, which taken together make
this state physically implausible and in sharp convict
both with the BCS results and with experiment.

The present paper re-examines this question and
demonstrates that the previous treatments" of attrac-
tive, odd-parity interactions in fact contain uniformly
the same oversight. The method used to find the ap-
propriate superconducting state was a coupling of single-
electron states of parallel spin components, " thus al-
lowing pairs with spin components 5,= &1 only; it did
not consider the syrnmetrized combination of anti-
parallel spins which comprises the 5,=0 component of
the expected spin triplet. Here we propose (Sec. II) a
variational state incorporating components 5,=0 as
well as 5,=+1; in the special case of a p-wave inter-
action, we select one of the solutions corresponding to
stationary points of the free energy, and show that it not
only has lower ground-state energy than the equal spin
pairing (ESP), but more generally gives the absolute
free energy minimum. The ESP must, therefore, describe
some excited state.

The properties of the state with p-wave pairing are
found (Sec. III and IV) to be very close in most respects
to those of the BCS state with s-wave pairs, in contrast
to the ESP. Assuming an isotropic normal phase, the
superconducting spectrum is also completely isotropic
and displays the usual gap; the state is thus thermo-
dynamically identical to BCS. The charge-density
autocorrelation function is isotropic, and the charge
density —current density correlation vanishes. The spin
susceptibility, on the other hand, is always finite, with
a superconducting-to-normal ratio decreasing mono-
tonically with temPerature to the limiting value X,/X„
= s, in good (if possibly fortuitous) agreement with the
Hg and Sn data. 4 ' In such other key measurements as
the acoustic attenuation and NMR relaxation, as well

as the complete range of electromagnetic experiments
from the Meissner effect to infrared absorption, the
p-wave state is found to predict results essentially the
same as the BCS state.

The effect of adding impurities to the system differs,
however, from BCS, although both the theoretical and
experimental situations are not entirely clear-cut. In the
conclusion (Sec. V) we discuss to what extent the p-
wave pair state is physically realizable in the presence of
impurities, and show that it is unlikely to be a valid
explanation of the existing anomalous Knight-shift
phenomena.

"K. A. Brueckner, T. Soda, P. W. Anderson, and P. Morel,
Phys. Rev. 118, 1442 (1960);V. J. Emery and A, M. Sessler, ibid.
119, 43 {1960).

's For brevity, we shall refer to this state as the ESp (equal spin
pairing) solution.

An Appendix specifies a criterion for the existence of
a ground state mixing both s- and p-wave pairs, and
shows this to be unlikely for most reasonable potentials.

II. FREE-ENERGY MINIMIZATION

1. General Formalism

From the pair interaction potential

+kk'a' —kyar' +k~ ~k'~tS—k'~'
kk'a o'

(where ak, t creates a particle of momentum k and third
spin component -', o), the ESP retains only the terms
with 0-= 0-', which, unlike 'U, are not invariant to a rota-
tion of the spin space. It is, therefore, not surprising that
this theory predicts a strong anisotropy in the ground
state and the single quasiparticle excitations. In order to
treat symmetrically all three components of the spin
triplet which are included in the full interaction 'U of
Eq. (1), we must couple electron states of opposite
momenta and both same and opposite spins.

%e, therefore, perform a canonical transformation"
(conserving the momentum but not the s component of
the spin)

oker =g (+sr' O'kryo'+&an' tr—ks' ) q (2)

where o.t is a quasiparticle creation operator. This
transformation mixes four states, and thus is more
general than the usual one. '4 It proves convenient to
adopt a four-component matrix notation"

0!k+

a ktt

and to write the transformation (2) in the abbreviated
form

f uk

kt-k* u—k'3
(4)

where nk, ~k are 2X2 matrices and Uk is 4)(4."The
condition that the transformation be canonical (that
both a and rr obey Fermion commutation relations) is

then simply

Uk U' koJc

"N. N. Bogoliubov, Doklady Akad. Nauk SSSR 119, 244
(1958) Ltranslation: Soviet Phys. —Doklady 3, 292 (1958)1; J. G.
Valatin, Phys. Rev. 122, 1012 (1961).

'4 But see remark at the end of Sec. III.
"We adopt the convention that quantities with superscript k

are matrices in either 2- or 4-dimensional spin space; tr will denote
trace in these spaces only.

or that Uk is unitary. From definition (4) it can be seen
that Uk and U " are not independent; the relation
between them is
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K—=KO—PX+ U=g &kiik t&k +U
ko(7)p 0- expL —P P Ek,nk, teak, ], Trp= 1,

Ke next select for the system a trial density matrix of Hamiltonian of the system is
independent quasiparticles.

(14)

and choose the parameters U" and Ek so as to minimize
the free energy appropriate to p. The variational calcula-
tion is considerably simplified, however, by making a
diferent choice of independent variables. For this we
define the 4&4 matrix

The application of a generalized Wick's theorem" then
gives'~

(X)—= tr (pK)

= —,
' tr{g c&(1—wk)+~ Q Vkk'x"tx"'}, (15)

kk'

(akakt) =—Tr{pukakt} and the entropy 5 is calculated by using Eqs. (7), (11),
and (12)

1 1+wk xk

5=——tr plnp = — Ek, ln
ko

or in detail,

(8')

Again we find that Wk and W " are related: Since the
exchange of operators in Eq. (8') shows that

mk=m kt Xk= —X—"
) 7

therefore, using definition (8),

0 1 )0 iq
W =W t= — W- *I

1 0 (1 Oj

(9)

(10)

Furthermore, Wk is closely related to Uk and Ek, . The
form (7) of the density matrix implies that

1—f(~k+)

(~k~kt)

1 1+Wk
bF= —-', Q SWk hk ——ln

P 1—Wk
(17)

with the definitions

(18)

+Li—f(Ek.)j in/1 —f(Ek.))}
= —2 «{k(1+Wk) lnLk(1+Wk)3}

= —Q tr{-', (1—W") ln)-,'(1—W")j}.
k (16)

Using the fact that Wk as well as its infinitesimal
variation 8Wk must satisfy Eqs. (10), the corresponding
variation bP of the free energy Lgiven by Eqs. (13), (15),
and (16)j can be cast into the form

=—-', (1+tanh-', PEk),

f(g& k ) alld
dk—= —-,'Q Vkk Xk'= —b, '.

kl
(19)

W"= tanh(-'PUkEkUkt) . (12)

Thus, U" is the unitary transformation which diago-
nalizes the Hermitian matrix W", whose (real) eigen-
values are functions of Ek, and so the Wk are completely
equivalent to the Uk plus Ek as a set of variational
parameters. However, the fact that the subsidiary con-
ditions (10) on W" are linear, in contrast to the condi-
tions (4) and (5) on Uk, makes the minimization of the
free energy with respect to the Wk much more con-
venient.

The free energy
a=pc) —Ts, (13)

may be expressed in terms of the Wk. Measuring the
kinetic energy eI, from the chemical potential p, the

where f is the usual Fermi-Dirac distribution func-
tion, and Ek is the diagonal matrix of signature
(Ek+, Ek, Ek+, —E k )—. Comparison of Eqs. (8)
and (11) using Eqs. (4) and (5) shows that

Since the coeflicient of 8Wk in Eq. (17) satisfies the re-
quirements (10), the condition for a stationary free-
energy function PF =0 for any 8Wk satisfying Eq. (10)7
implies

Sk—P ' ln(1+Wk)/(1 —Wk) =0,

Wk= tanh-'Phk (20)

By comparison with Eq. (12), it is seen that at sta-
tionary points,

gk U kgkUkt (21)

so that U also diagonalizes h into K

2. A Special Class of Variational States

The coupled matrix Eqs. (19) and (20), with defini-
tions (8) and (18), constitute a complete description of
the variational states leading to a stationary free energy.

"C. Bloch and C. De Dominicis, Nucl. Phys. 7, 459 (j.958);
M. Gaudin, ibid. 15, 89 (1960).
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gkgkt= ~gk~' (22)

This condition then implies that (8k)' is proportional to
the unit matrix [from Eq. (18)]and, hence, [from (21)]
that

($k)~= (Ek)2= g 2+
~

gk~2=E ~ (23)

In full generality, however, they are quite dificult to
analyze, so we at first consider only a special class of
solutions for which the equations simplify greatly. We
will then show that this class in fact contains those
solutions which correspond to the absolute minimum of
the free energy, as desired. The restriction we impose is
that 6k be proportional to a unitary matrix:

With this ansatz, Eq. (25) reduces to

ak ——~2 p U, (k,k')(Ak. /Eg, ) tanh-,'pEk, (29)

which with Eq. (23) are the same gap equations as in the
s-wave case, the radial part V~(k, k') of the p-wave
potential simply replacing the s-wave interaction. At
least for the model potential used above, the corre-
sponding ground-state energy (3C)p is, in fact, lower than
(X)Ksp, since an explicit calculation reveals

(m) Ksp —(m)0
= 21Voco' exp (—2/Ep Vy) [1—(0.94)'7)0. (30)

x'= (6"/Ek) tanh-', PEk. (24")

The latter, when combined with Eq. (19), becomes the
familiar gap equation

6k= —
2 Q Vkk (6k'/Ek ) tanh-,'pEk, (25)

where 6" is now a 2X2 matrix, and Ek is given by Eqs.
(22) and (23).

One type of solution of Eq. (25) corresponds to the
ESP, and is characterized in the present formalism by
6k being diagonal. More explicitly, if the potential is
restricted to a p-wave attraction only,

Ukk ———3Vg(k, k')k k', (26)

AM have shown, with the assumptioris of the standard
model [V&(k,k') constant and nonvanishing only if k

and k lie inside a shell
~

ek
~

(&o containing 4culVo states]
and weak coupling, that the ESP zero-temperature gap
function leading to the lowest ground-state energy
(X)E sp 1s

&

Akmsp=2' exp( —1/XOV, )

Thus, Ek =E k is independent of 0.. A further conse-
quence is the reduction of Eq. (20) to

W"= (Sk/Ek) tanh-', pEk, (24)

which now splits into the pair of 2&&2 relations

w"= (ek/Ek) tanh-', PEk, (24')

3. Absolute Minimum of the Free Energy

More generally, though, we can demonstrate that for
any p-wave potential (26), the "isotropic" solution
given by Eqs. (28)—(29) leads to the absolute minimum
of the free energy corresponding to a variational state
of the form (7), and is, thus, the best approximation of
this form. To carry out this proof, we shall use a
generalization of the method of Balian and Mehta. '~

Attaching the subscript 0 to all quantities associated
with the solution (28)—(29), we obtain from Eqs. (13)
and (15),

F—Fo=-,' tr(Q ek(w 0
—w")

+-,' Q Vkk (xktx"' —xktox'p) }+T(Sp—S). (31)
kk'

By using Eqs. (24'), (24"), and (25) in the form

~A. = (Eko coth2pEko)w "p)

Vkk x"'o = —2 (Fko coth-,'PEko) x"0,
k'

and again recalling deffnition (8), we can recast the free-

energy difference (31) as

F Fo ', Q tr {(x—"—x——ko-) teak k (x' —xk'o) }
kk'

+-', p(Eko coth-', pEk, ) tr((wk —w"0)'}+Q—Qo, (32)

(Ug, (k)
X (0.94) (4~)'"I

0 Mkki =2 (EkO coth-', pEko)8kk~+ Ukk~, (33)

However, Eqs. (25)—(26) have many other solutions;
most especially, we exhibit

Q—=—
s Q(Eko coth-,'pEko) tr{ (W )'}—TS. (34)

k.+~:k„—
&kO=&k~

k,

When considered as a function of the S'k, the quan-
tity Q [in which S is given by Eq. (16)) has stationary
points when

—P ' ln(1+W")/(1 —Wk)]}=0,
"R. Balian and M. I.. Mehta, Nucl. Phys. 31, 587 (1962).[consistent with Eq. (22)] where hk is now isotropic.

;.,„)
5Q—=——', p tr(hWk[(Eko coth-', pEko) Wk=~a—

3 Vio(k) v2Ui, i(k))
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that is, using Eqs. (24) and (20), when

1 1+W"p 1 1+Wk
ln = ln

8'kp 1—8"kp 8"k 1—8'k

which is equivalent to

(Wk)2 (Wk )s

Since Q depends only on (W")', Q= Qp at the stationary
points. Moreover, the behavior of S at the boundaries of
W" (whose eigenvalues must lie between —1 and +1)
implies that Q cannot attain its absolute minimum on
the boundaries. Thus, the minimum occurs at the sta-
tionary points, so that

Q-Q.&0

If in addition the matrix 3fkk is positive semidefinite,
then it is evident from Eq. (32) that F—Fp&0, and the
isotropic solution does indeed give an absolute minimum
PQ of the free energy. This positive semidefiniteness con-'

dition is exactly the same as in the s-wave case, since by
saturating the matrix 3I with an arbitrary vector

I

$k ——(4m)'' Q ski Yi (k),
t,m

we find

pM$= Q tki~*l 2(Esp cothspEkp)8kk~ —Vi(k, k') jpj'g~iy„
kkIm

+ Q 2(Esp coth —,'p&»)
l
(»-l' (33)

k, l&l, m

For /=1 and for each m, the summand is identica'l to
what would have been obtained with an s-wave po-
tential Vkk ———Vi(k, k'), as can be seen also from the
gap Eq. (29). But it is proved in Ref. 17 that the matrix
in the right-hand side of Eq. (35) is in general positive
semidefinite (and so 3f also) precisely for that solution
L'kp of Eqs. (23) and (29) which gives the lowest free
energy for the state with s-wave pairing. The p-wave
variational solution (28), then, is actually one of lowest
free energy.

The method used here is indeed not restricted to the
p-wave case. The expression (32) is valid whenever Fp
is a stationary value of the free energy associated with a
gap matrix 6kp satisfying Eq. (22). An application to the
question of the existence of a mixture of s- and p-wave
pairing" (when the potential Vkk contains both waves)
is given in Appendix A.

be deduced from Eq. (32); it is constructed by
multiplying d "p by a phase factor e'+ and replacing
Yi (k) by Y'i (Rk), where R is a rotation in the mo-
mentum space only. Whereas the first type of degener-
acy is associated as usual with the nonconservation of
particle number in the canonical transformation (2) and
with the invariance of K under the gauge group
ak —+ uk e'&I', the second type is connected with the
nonconservation of spin in (2) despite the invariance of
K under rotation of the spin and momentum spaces
separately. In addition to the total particle number, the
total spin and orbital angular momentum of the trial
system do not have well-defined values. (Expressions
for the mean-square fluctuation of these quantities are
presented in Sec. IV.) Nevertheless, states with a well-

defined total spin and orbital angular momentum may
be built by superposition of solutions with different
values of R (weighted with an appropriate rotation
matrix) in exactly the same way that the BCS state of
fixed number of particles is obtained by mixing solutions
with different values of y."These angular momentum
eigenstates, although degenerate in this approximation,
would appear in an exact theory as low-lying rotational
collective excitations.

Additional understanding of this degeneracy may be
gained by studying the rotational properties of the trial
density matrix associated with the minimum solution
(28). By substituting Eqs. (4), (21), (18), and (28) into
(7), we can express this density matrix as

ps~ exp{—PfP ekak, tak, + P Ak(2m/3)'~'

X(,', -'„-',o, —,'o'l im-)Y „i*(k) a, ktak, t+H. C.]}. (36)

In this form it is easy to check that pp is invariant under
a full rotation, although not under rotations of the spin
or momentum spaces separately. More precisely, the
system is composed of bound pairs each having spin
S= 1 and orbital angular momentum L= 1, coupled to a
total angular momentum J=O.

These conclusions become even clearer if instead of
using a basic set of electron wave functions with
quantum numbers k and a, we use a spherical wave
basis characterized by radial wave number k, orbital
angular momentum /, and total angular momentum j
with projection li. The density matrix (36) then becomes

pp exp( —P Z Le s Q as i;,'ak i,,+&s(j+ ',)"-
III. ROTATIONAL PROPERTIES AND DEGENERACY

In the previous section, we have proved that the
equation bP=O does not have any solution of free
energy lower than Fp. However, this minimum is de-
generate, and other solutions besides (28) of the same
energy exist. The family of minimum solutions 6 „&can

' N. R. Qlerthamer, H. Suhl and T. Soda, Eighth International
Conference on Low-Temperature Physics, London, 1962 (to be
published) .

X(JJ& &l00)ak, ,+;,; „tai,; „;, „t+H.c.j), (37)

showing that instead of the canonical transformation
(2), the p-wave state could also be obtained by pairing
electrons of same k and j, opposite p, and /= j&—,'. The
Clebsch-Gordan coefficient now reveals explicitly that
for this solution each pair has zero total angular
momentum.

'P P, +. Anderson, Phys. Rev, 112, 1900 (195$),
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Still another choice of basis which also sheds light on
the rotational characteristics is the helicity represen-
tation. "In this representation, the spin of a particle is
quantized not along the s axis, but rather along the
direction of the momentum. The helicity quantum
number X is taken to be + (—) when the spin projection
is parallel (antiparallel) to k. Thus, the unitary trans-
formation between electron operators in the two bases
may be taken as the spin rotation

is a special case of a general theorem" which states that
an arbitrary canonical transformation can always be re-
garded as a pairing of the BCS-Bogoliubov type between
single-particle states in an appropriate representation.
The ESP method overlooked the fact that this ap-
propriate representation was not the usual plane wave
basis, but rather the spherical wave representation, Eq.
(37), or the helicity representation, Eq. (40).

OI

exp( i8—k-,'o„) exp( —iq k-', o,), IV. EQUILIBRIUM AND TRANSPORT PROPERTIES

1. Equilibrium Properties
ak+= coss8kei akt+slnz8ke 1 ~ akim,

ak ——sin-,'8ke&'"kakt+coss8ke &'~kak$,
(38)

where (8k, yk) are the polar angles of k with respect to
the s axis. The gap matrix rewritten in the helicity
formalism now takes a very simple form: In the usual
BCS case,

~) X' ~~k~XX' 7 (39)

whereas in the p-wave case, Eq. (28) is equivalent to

~~~ "=~k~~)" (39')

An alternative way of forming these superconducting
states is thus seen in both cases to be the pairing of
electron states of opposite momenta but equal helicities;
the factor of P difference supplies the needed change of
pa, rity. The density matrix (36) transformed into the
new basis is simply

pp ~ exp( —P[P ekakktakk

+k. 2 ~Ax' akim a—kx' +H c j} (40)
khan'

«0 M. Jacob and G. C. Wick, Ann. Phys. 1, 404 (1959).

and is, therefore, clearly rotationally invariant in both s-
and p-wave cases. The values of the spin and orbital
angular momentum of a pair follow immediately from
the forms of Eqs. (39) and (39') and the work of Jacob
@nd Wick '0

The previous developments apply only to the special
solution ps corresponding to 6ks

I Eq. (28)j, and the
physical picture of the other solutions pz of the same
energy is less simple. In particular, the rotation R of the
momentum space with respect to the spin space
decouples the spin 5=1 of each pair from its angular
momentum 1.=1, so that each pair no longer has the
well-defined total angular momentum J=0.

It is also worth remarking that whereas the canonical
transformation of plane-wave states initially proposed
in Eq. (2) mixes four such states, the resulting super-
conducting system is, in fact, composed just of pairs, as
seen in expressions (37) and (40) for the associated
density matrix po, or in similar expressions for pg. This

2. Computation of Nonequilibrium Properties

The nonequilibrium behavior of the system, on the

other hand, does exhibit certain significant differences

from that of the BCS state. These properties, such as
driven responses and absorptions, correlations and

fluctuations, are described in a convenient and unified

manner as special cases of double-time Green's func-

tions. "If 8(t) and $(t) are Heisenberg operators corre-

sponding to observables, then we define the function

G(t —t') =—i(T((B(t)e(t'))}+i((B}(e}, (41)

where T is the time-ordering operator. When 0', and

are both one-particle operators of the form

8 Q A ~&r' akron ak'~' )
kk'o o'

(42)

then G is closely related to the usual two-particle Green's

function. It is shown in Appendix B that for a supercon-

ductor with a spin pairing restricted only by the unitary
requirement (22) on 6k and the form (42) for 8 and (fl,

«'C. Bloch and A. Messiah, Nucl. Phys. 39, 95 {1962);B.
Zumino, J. Math. Phys. 3, 1055 (1962)."See, for example, the review article of D. N. Zubarev, Uspekhi
Fiz. Nauk 71, 71 (1960) Ltranslation: Soviet Phys. —Uspelrhi 3,
320 (1960)g, and the included references.

The single quasiparticle excitation spectrum of the
state with P-wave pairs is given by Ek (ek+Ak—)—'ts,

combined with Eq. (29) to determine 6k, and is iso-

tropic. Thus, the system behaves exactly as does the
usual BCS state with respect to every equilibrium

thermodynamic property, or other property dependent

only on the spectrum or density of states. (The density

of the rotational states mentioned in Sec. III is small,
and just like the usual collective states, their contribu-

tion is negligible. ) For example, the specific heat is

exponentially small at low temperatures; there is no T'
contribution as predicted by the ESP solution since the

energy gap here has no nodes. As another item, the thin

film tunneling characteristics are identical with the
BCS state.
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G is given by

G(t) =—(2zr)-' d~ e '"'G(&o) (43)

Es oo+Eg Eg—+ztt &a+Ed Es—izt—
( ~a) ( ea 6" 6" t--f(Eg.)(1—f(Es)) f(Eg)(1—f(E;))-

G(co)=-', Q tr Bs's~ 1+—~A
"s'~ 1+ 8"'—"

Esl E Es Es

+iEs ~ —Es)+/Es ~ Es $—+/Es ~ —Es, Es ~ —E~ ) (44)

The linear driven response function is readily ob-
tained from G(~). To define this function, s' we consider
applying to the system an externally driven time-
dependent perturbation, of the form

SC'(t) = l (t) e. (45)

We then inquire as to the average value at the time 3 of
any other observable S.The linear response is de6ned as
the erst-order change in the measured quantity due to
the presence of the (weak) perturbation

R(t—t') —=d(~ll(t))/m (t')
~

& o

= —z(L6l(t), e(t )])O(t—t ) (46)

3. Spin Susceptibility

The linear response most characteristic of the state
with p-wave pairs is the spin susceptibility tensor X,,
In this case the perturbation is a uniform static magnetic
field in the direction j assumed to interact only with the
electron spins, and the response is the total induced spin
magnetization in the direction i. Thus, 8""'=—poa;5~~,
where the 0-, are the Pauli matrices, 2""' has the same
form, and

X,t——R(o)=0)=ReG((v=0). (47)

Now the most general matrix A~ can always be written
in the form

A straightforward comparison of spectral representa-
tions" shows that R(cu) is obtained from the form (44) of
G(co) by the simple recipe of replacing oo —i' everywhere
it occurs by oo+zzt zz.

XRe(d;d, *—e,, (dod)~ —d d*d, ,), (49)

where we have dropped the indices k It is interesting to
note that in general the susceptibility has full tensor
character, and the induced magnetization is not the
same for all directions of the applied held; this is true of
the ESP solution, for instance. The isotropic p-wave
solution, 6"0 or 6"~, on the other hand, leads to a
scalar susceptibility, x;;=Xb;;. When the standard
model potential is used, its ratio to the normal Pauli
susceptibility is given by

x,]x„

X,/X„= os+~~V, (50)

E'S P
Q ~mew~

matrix associated with the even-parity part of the po-
tential (e.g., the s-wave BCS part), whereas dq is as-
sociated with the odd-partial waves (such as the p-wave
part). Inspection of Eq. (28) shows that the isotropic
p-wave pair solution 6"o is expressed in this notation as
simply d& ——Azk, dso=0, while the BCS solution is
Ao=&a, ds=0. '4

Substituting Eqs. (44) and (48) into (47), we may
evaluate the spin trace and obtain

df(E) 1 df(E) 1—2f(E)
X;t= 2tzos P d +— +

gE E' BE 2E

6"=Q„ds„o„os, v=0, 1, 2, 3, (48)

where 0.0=—o.~a.203= i. It proves more convenient at this
point to characterize the gap matrix by the d&„ than by
the actual elements of A~ itself. By referring to Eq. (19),
it may easily be seen that d&o is even in k, while ds
(P=1, 2, 3) is odd. Thus, d~o is the part of the gap

2' As defined here, the linear response does not include the eGect
of collective excitations, as would for example a treatment using
the random phase approximation (see Ref. 19). The collective
excitations may be restored in the Green's function context by the
procedure of G. Baym and L. P. Kadanoff, Phys. Rev. 124, 287
(1961),applied especially to the superconducting gauge-invariant
electromagnetic response by V. Ambegaokar and L. P. KadanoB,
Nuovo Cimento 22, 914 (1961).The conclusions of the present
paper would not be affected.

I Sn
o Hg

1.0

FIG. 1. Ratio of the superconducting to normal paramagnetic
spin susceptibility, as a function of reduced temperature. The dash-
dotted, solid, and dashed curves give the theoretical predictions for
the s-wave, p-wave, and equal spin-pairing states, respectively. The
experimental points are taken from the Knight shift measurements
of Refs. 4 and 5.

s' Also in this notation the ESP solution has ds =kXs&x, dao=0.
The degeneracy under rotation of the spin space studied in Sec. III
is connected with rotations of the vector dg.
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with I' being the ratio previously calculated by Yosida7
for the BCS state,

de sech'I ' p(e'+6')'"] (51)

These quantities are plotted in Fig. 1 as a function of
temperature.

It is curious to note the good agreement between the
prediction (50) and the experimental values obtained
from Knight-shift measurements on mercury4 and tin. ~

To regard the data as indicative of a p-wave pair state
actually occurring in these elements is quite tempting.
In fact, although the effective electron interaction de-
rived in the BCS theory is an s-wave attraction, AM'
have conjectured that the crystalline structure of some
elements might tend to favor the p wave. In order to
confirm this hypothesis, however, one not only must
verify that the p-wave state in no way contradicts any
other existing measurement on Sn and Hg, but also
must consider whether a Knight-shift measurement does
in fact provide information on the electronic spin sus-
ceptibility. On both counts considerable ambiguity
exists: As will be discussed in the following, the state is

not altogether physically acceptable, but yet cannot be
ruled out entirely. Furthermore, recent NMR experi-
ments on the hard superconductor V3Ga have shown"
that in this instance much, if not all, of the Knight
shift can be attributed to orbital paramagnetism. These
authors also present arguments for a similar situation
occurring in pure vanadium'; the implications for the
experiments on Sn and Hg are not as yet clear. We re-
turn to these questions again in the concluding section.

4. Electromagnetic Response

Complementary in structure to the spin susceptibility
is the electromagnetic response, " including such im-
portant experimental tests of the superconducting state
as the Meissner eAect, infrared reQection and transrnis-
sion, and microwave surface impedance. Here, the
perturbation is an applied vector potential A(r)e '"',
with the induced current density at the point r as the
observable of interest. If we consider only the paramag-
netic part of the current, then we take

—A ~"'=8""'=(e/2mg) (k+k') e'&"'—'&' (52)

with 0 the volume, and the response tensor is

1 e
R(r, r', ro) =—

2 2nti

d k d Iz e e ) dodo +d'd
(k+k') (k+k')e'i" ""i' "i 1+— 1+—I+

(2')' (2m.)' E E'l EE'

f(E)—f(E')
X +[E~ E]+[E'~— E']+[E-+—E, E' ~ —E'] . (53—)

oi+E' E+irt—
Since all reasonable perturbations A(r) vary slowly over
distances comparable to a lattice spacing, so that

I
k—k' ((kr, we can replace dsds'*+1 d'* in Eq. (53)

by I
A& ', thus the s-wave and p-wave pair states lead to

identical expressions and are electromagnetically in-
distinguishable.

C(51,8,)=—(63m) —(i~i)(e), (54)

and are seen to be just the equal-time Green's functions,

(55)

Substituting Eqs. (43) and (44), closing the &e contour in

5. Correlation Functions and Fluctuations

A set of quantities closely related to the response
functions, not readily measured in a superconductor but
still useful for visualizing the nature of the state, are the
correlation functions. These are defined as

the lower half-plane, and using Eq. (24), the expression
reduces to

C(S,Q) =-', P tr{B"'"(1+w )A"'(1—zv ')

+Ba'axe ~' ~xa't}. (56)

The density-density correlation in particular, computed
by AM for the ESP solution and found to be anisotropic,
here becomes (for rAr')

C(p-(r), p" (r') )= —
I
l~- (r—r') I'

x...(r—r') I', (57)

where ttt ~ (r) is the Fourier transform of to„a.The first
terIn represents the negative correlation associated with
repulsion of particles of like spin due to the Pauli
principle; the positive second term represents the attrac-
tion of correlated (or bound) pairs. For the p-wave
solution,

1
C(p, (r,8),p. (0))=—8.. —

2

d'tt es ' sin'8 cos'8)
j,(kr)—tanh-,'PEs +

(2z.)' Eg cos'8 sin'8) 2

d'k Ag,

ji(kr)—tanh-,'PE& . (58)
(2m)s Eg,

s' A. M. Clogston, A. C. Gossard, V. Jaccarino, and Y. Yafet, Phys. Rev. Letters 9, 262 (1962).
"D. C. Mattis and J. Sardeen, Phys. Rev. 111, 412 (1958); A. A. Abrikosov, L. P. Gor'kov, and I. M. Khalatnikov, Zh.

Eksperim. i Teor. Fiz. 35, 265 (1958); 37, 187 (1959) [translations: Soviet Phys. —JETP 8, 182 (1959);10, 132 (1960)g.
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Although the correlations of densities of like and unlike
spins separately are anisotropic, averaging over spins
leads to a completely isotropic result. Because of the
first-order spherical Bessel function in the second term
instead of the jo found in the corresponding BCS ex-
pression, the correlation C(p,p) does have different
radial dependence in the two states; the difference only
occurs for small r, however, and is masked by the Pauli
exclusion term.

The density-current correlation was also computed by
AM, and for the ESP was found by them to be non-
vanishing. In general, this correlation is

which for the isotropic p-wave solution of Eq. (28)
reduces to

1
X—

2

d'k
j&(kr)—tanh-', PE& . (60)

(2')' Ek

Thus, there is an equatorial current about a fixed point
with a distinguished spin direction, although upon
averaging over spins this current correlation vanishes.
It follows that no observable surface currents are to be
expected here, contrary to the ESP case. It is also
interesting to note that Eq. (60) gives just the correla-
tion to be expected for two otherwise isolated spin-~
particles bound into an J = 1, S=1, 7=0 state. For the
degenerate p-wave solutions, p~, of Sec. III, the correla-
tion pattern is less simple, since the spins must be
rotated by E.

Expression (56) is also useful for computing the
fluctuations of observables from their mean. By sub-
stituting appropriately for A and 8, we find for particle
number X and total spin S,

+ g I
dk/Ek I' tanh'(2pEk) j ~ (62)

The first terms in these expressions represent the
statistical fluctuations in the thermally excited normal
electrons, while the second terms give the uncertainties
due to the trial density matrix failing to conserve these
quantum numbers, as discussed previously in Sec. III.
The mean square fluctuation in particle number is the
same for both s-wave and p-wave states, whereas in the
case of total spin, it is just the pairs of parallel spins
which contribute to the indefiniteness.

+ I ~k/Ek I' tanh'(-'pEk)], (61)

(S')—(S)'= —' Q P, sech2 PPEk)

This transition rate is given by the usual Golden Rule
formula, which in turn is related through the spectral
representation to the retarded Green's function via

P= —2),' ImR(ou) (63)

where E. is computed for S= 8~.
In the case of the acoustic attenuation, " the per-

turbation is an effective potential with wave number q
and frequency M obeying the phonon-dispersion law,
&u/q=sound velocity. This potential couples to the
electron charge density, so that A "~'=5I,

, Q—q and

f e e dodo *+8 Cl

P=7r&2 Q 8k k, q I
1+— 1+—

kk' ( E E EE

X(f(&') f(E)3(~ —E+E')+L—E' ~ —E &

+[E~—E, E'~ E'j . (64)—

In the long-wavelength limit, for q((kr, the p-wave
state leads to precisely the same result for the transition
probability as does the usual BCS state. The acoustic
attenuation in both cases measures the isotropic gap in

the energy spectrum, 6&.
For the case of the NMR longitudinal relaxation

time, T&,"on the other hand, the perturbation is the
hyperfine interaction of nuclear and electron spins.
Thus

E „=—2(1—ee")'
Xg(rtI I, Im) Im&(r„,r„;cv„)(mI I„ Ie), (65)

vv'

where e and m are states of the nuclear system diBering
in energy by ~„,I, is the nuclear spin at the site v, and

'7 T. Tsuneto, Phys. Rev. 121, 402 (1961),and references given
therein.' L. C. Hebel and C. P. Slichter, Phys, Rev. 113, 1504 (1959);
L. C. Hebel, ibid. 116, 79 (1959).

6. Absorptions

In addition to the real response, a second charac-
teristic property of a driven system is the absorption.
The two most significant measurements of this type in
a superconductor are acoustic attenuation and NMR
relaxation; the temperature dependences of the ratio of
these quantities to their values in the normal state have
been of great importance in verifying the electron
pairing hypothesis of BCS. In order to compare the
predictions of the p-wave pair state proposed here to the
successful BCS formulas, we note that the relevant
absorption coeKcient or relaxation time is derived in a
standard manner from the probability E for transition
between suitably weighted initial and final electronic
states, due to the application of the weak perturbation

K'(t) =Re '"'Q+H. c.
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R is a tensor to be computed for A"~'=-,'ae"~' +'"',
8"~' the same with v'-+ v. Since the interaction of one
nuclear spin I„with another I„ is not significant, we
have v= v' in Eq. (65). Also, since the energies of the
nuclear transitions are small compared to the gap, and
since the nuclear spins are disordered, to a good ap-
proximation only

Im P E,;(x,r; to)

= sist' P (ReL3(EE'1 ss'+dods'*) —d d'*]/EE'}

X [f(E)—f(E')]&(E—E'—~) (66)

is needed for computing I'. Since ds is odd in k, the
d d'* term drops out; the ss' term vanishes by reason of
symmetry about the Fermi surface. The coherence
factor 1+Re(dsds'*/EE') differs for the s- and p-wave
solutions, although at most by a factor of 2. But, in any
event, the result for I' is formally infinite, due to the
uncompensated infinity in the superconducting density
of states at the gap edge; an artificial level broadening
must be introduced to obtain sensible results. The
amount of broadening is customarily determined by
fitting the experimental data at one point, so that only
a relative temperature dependence of Tj is obtained. In
the absence of reliable estimates of this broadening from
first principles, the experiment is entirely insensitive to
an over-all numerical factor. Here again, both the BCS
and p-wave pair states are consistent with observation.

V. EFFECT OF IMPURITIES: CONCLUSIONS

Upon surveying the above calculations comparing the
theoretical predictions in various experimental situa-
tions of the BCS state with the alternative system of
p-wave pairs, an over-all picture emerges. The only
mathematical distinction between the two systems oc-
curs in the coherence factors (the matrix elements be-
tween electronic states). For those perturbations which
are spin-independent, the BCS term A~AI, is replaced in
the latter state by A&Ak k O'. But in two of the ex-
amples of this type )electromagnetic response, Eq. (53),
and acoustic attenuation, Eq. (64)] the perturbation is
of long wavelength, thus requiring the momentum
transfer k —k' to be small; the additional factor k k' has
little or no eQ'ect on the response to such perturbations.
In the third example )density-density correlation, Eq.
(58)], short wavelengths are involved; however, the
effect of the factor k k' in the term containing BI, is
masked by the main Pauli exclusion term. On the other
hand, when the perturbation is spin-dependent as in
Eqs. (49) and (66), the analogous BCS term in the
(tensor) coherence factor, A&A& 8;;, is replaced by

,'(Is;Js,'+fs Is;)+I—sk'8;;]. These two terms are
always different no matter what the momentum trans-
fer, and the resulting responses indeed differ; as ex-
arnples, we have computed the spin susceptibility )long

bF = (X')+-',E((a=0), (67)

where the Green's function is computed for 8,==K';
for impurities at sites v, 3'. is just the sum of contribu-
tions from each impurity separately,

A""'=g X(k—k')e "~ ~'i'" nonmagnetic,

=
t
I(I+1)]-'"P Z(k —k')e-'i'-"'&' e I„

magnetic. (68)

Substituting Eq. (44), and averaging over random im-

purity configurations (and in the case of magnetic
impurities, over random impurity spin orientations as
well), we obtain per unit volume and to first order in the

"H. Suhl and B.T. Matthias, Phys. Rev. 114, 977 (1959).
'0 A. A. Abrikosov and L. P. Gor'kov, Zh. Eksperim. i Teor. Fiz.

39, 1781 (1960) Ltranslation: Soviet Phys. —JETP 12, 1243
(1961)g."B.T. Matthias, H. Suhl, and E. Corenzwit, Phys. Rev.
Letters 1, 92 (1958)."E. A. Lynton, B. Serin, and M. Zucker, J. Phys. Chem.
Solids 3, 165 (1957).

wavelength, Eq. (49)] and the NMR relaxation time
Lshort wavelength, Eq. (66)]. However, we have seen
that neither of the corresponding measurements is a
suKciently direct and unambiguous test of the theory to
make a decisive choice between the two states, although
we have found some indication from the spin suscepti-
bility that the p-wave state is preferable. To make the
experimental distinction clear-cut, a spin-independent
perturbation of short wavelength is required.

The addition of dilute, random impurities to a pure
superconducting sample satisfies these criteria. The
eGect on the critical temperature of such alloying, both
by nonmagnetic and paramagnetic impurities, has been
previously calculated in the BCS context by Suhl and
Matthias, " and by Abrikosov and Gor'kov. " These
authors predict that T, is strongly depressed by mag-
netic impurities, while affected very much less, if at all,
by nonmagnetic impurities. This is precisely the experi-
mental situation at small concentrations: Matthias
et a/. 3I find T, drops almost to zero with the addition of
less than 1%%uo paramagnetic rare earth in superconducting
lanthanum, while Lynton et a/. 32 measure changes of T,
due to nonmagnetic impurities in millidegrees over a
similar concentration range.

To estimate the corresponding results expected from
the p-wave state, it is easier to follow here the perturba-
tion theory approach of Suhl and Matthias, " than the
more elaborate treatment of Abrikosov and Gor'kov, "
which yields qualitatively similar conclusions. The
former authors compute the change in the free-energy
difference between normal and superconducting phases,
and then invoke the law of corresponding states to
relate this to the change in T,. To second order, the
change in free energy due to a time-independent per-
turbation X' is
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impurity concentration, $,

We have defined

s mane

+I
P wave

nonmagnetic
-', k k' magnetic.

Proceeding through the integration of Eq. (69) step by
step with Suhl and Matthias, we find to lowest order in
6/cv

the integrations to be an average over the Fermi surface;
we have used the fact that X(k—k') is a slowly varying
function of ~k~. We recover the result"" that in the
BCS state nonmagnetic impurities have no effect (in
this approximation) on the free-energy difference, while

the exchange scattering of paramagnetic impurities
forces the superconducting and normal phases closer in
free energy, linearly with the concentration.

These conclusions are not, in general, true for the
p-wave pair state. Since the interaction between the
conduction electrons and an impurity is short ranged,
probably localized to the immediate vicinity of the im-

purity site itself, the perturbation extends only over a
distance comparable to the lattice spacing, and as we

remarked earlier very large momentum transfers of
order 2k' are allowed. In fact, ~X(k—k') ~' is certainly
not such as to restrict k to the vicinity of k in Eq. (70).
The exact cancellation of the two last terms, therefore,
occurs only for y= 1, that is for an s-wave state with
nonmagnetic impurities. The prediction for the p-wave
pair state, then, is that magnetic impurities would tend
to depress the transition temperature to roughly the
same degree as for the BCS state, and that in an equiva-
lent concentration nonmagnetic impurities would lower

T, even more, since PP is likely to be a good deal larger in
this case.

Such a situation appears to be contradictory to the
behavior of real materials, including Sn and Hg. Ex-
periments have generally shown that for equivalent
concentrations, magnetic impurities tend to depress the
critical texnperature much more than nonmagnetic ones.
The hypothesis of a P-wave attraction for Sn and Hg,
which we introduced in order to explain the finite value
of the spin susceptibility would, therefore, be justified
only if it were found that both kinds of impurities have
effects of the same order of magnitude for these mate-
rials. Unfortunately, only the effects of nonmagnetic
impurities in Sn have been studied, "but since they do

not appear to be anomalously large, such an eventuality
would seem unlikely. Therefore, even if the Knight
shift experiments are a measure of the spin susceptibility
of the conduction electrons, "the agreement of the data
on Sn and Hg with the predictions of a p-wave pairing
theory is probably a coincidence.

More generally, the possibility that a p-wave pair
state might be observed in some materials has already
been considered by AM."We have seen that it is a very
delicate question to distinguish experimentally such a
state from the usual BCS state: Only a direct and
unambiguous measurement of the spin susceptibility in
a bulk sample (experimentally unfeasible, if not im-

possible), or an anomalously large effect of nonmagnetic
impurities would be decisive tests. Moreover, real ma-
terials always contain at least a slight concentration of
nonmagnetic impurities; while they do not dramatically
affect a BCS state, they considerably increase the free
energy of a p-wave pair state. Superconducting transi-
tions of the p-wave type, if they exist, would therefore
have to be looked for only in extremely pure samples.

A similar situation arises in the cases of a d-wave
attraction, and in particular in the problem of the pro-
posed low-temperature superfluid phase of liquid He'."
Although here the impurities are not fixed scattering
centers, their eGect is expected to be much stronger than
in the BCS theory, and might explain why the proposed
superQuid phase has not been observed.
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APPENDIX A: MIXTURE OF DIFFERENT
PARTIAL WAVES

In the body of the text we have considered an inter-
action in a pure angular momentum state, either only
s wave or only p wave. The question naturally arises
whether, if the interparticle potential is attractive in
both partial waves, it might not be energetically favor-
able to form a state containing both s- and p-wave pairs
simultaneously. An indication was gained, "from direct
computation with a simplified model, that states of
mixed angular momenta are possible, but only for
special and quite restrictive potential shapes. However,
some general statements on this problem can be made,
using the positive-definiteness criterion on the matrix M
of Sec. II.

If the potential V~q is resolved into s- and p-wave
parts, V= V'+ V", and quasiparticle energies EI,' and
EI,& are found which, respectively, minimize the free
energy computed with each of the potentials separately,
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then

and
Mj, i, ."=2(Es' coth-', PEs')8gi +Vi, i," (A1)

M,„,»= 2(Z—s" coth-', PZ, ")B,i +V„" (A2)

M"= II»"—cothla~ "+V'l~l (A3)

to be positive definite, then it will be true from (A2) and
(A3) that ~~2E" coth-', i'.E"+V~~&0, and Eq. (32) then
implies that the solution of lowest free energy with the
combined potential is the pure p-wave state. Similarly,
if M'~&0, then the pure s-wave state minimizes the
combined problem. Thus, a solution with s and p pairs
occurring simultaneously can exist and lead to a mini-
mum free energy only if the potentials are such that

3II" and M»&0, M'" and 3II"'+0. (A4)

In particular, Eqs. (A4) cannot all be satisfied if V'
and V" both have the same radial shape, and as was the
conclusion of Ref. 18, a mixed solution is then not pos-
sible. Also, for the standard model potential, the
inequalities (A4) at T=O become"

exp (1/cVo V i') re„sinh (1/Xs Vr )
(A5)

exp (1/Ee V') re, sinh (1/Xe V')

In the weak-coupling limit, these inequalities reduce to

are both positive-definite matrices. If, on the other
hand, we also And the matrix

the equality re, exp( —1/EeV') = re„exp( —1/E, Vr);
the existence of a potential producing a mixture of s-
and p-wave pairs is, therefore, mathematically possible,
but physically quite unlikely.

It is interesting to point out the connection between
these results and the work of Bardasis and SchrieGer33 on
the collective excitations of a system in a pure s-wave
state, but with a potential also containing some attrac-
tive p wave. These authors showed that the s-wave
state becomes unstable with respect to the formation of
excitons when V"&V' (for re~=re, and in the weak-
coupling limit), implying that there exists some solution
of the variational equations of energy lower than the
s-wave solution. But on the other hand, AM found that
the energy of the ESP state was higher than that
of the s-wave state unless (0.94) exp( —1/EeV")
&exp( —1/1VeV'). Therefore, at least in the region
V'& V~& V'/Ll+1VeV'1n(0. 94)], neither the s wave
nor the ESP solutions can be the state of lowest energy.
In fact, the isotropic p-wave solution studied here is
just the state toward which the instability of Bardasis
and SchrieGer is tending.

It may also be noted that if there is a dominant s-
(or p-) wave potential, then a weaker potential of higher
angular momentum but roughly the same radial shape
does not produce any admixture of pairs with that l:
if M "&0,and if V' has suKciently near the same radial
shape as V' so that M"&0 also, then ~~22' coth-,'pE'
+V'+ V'~~ &0 as well, and the minimum for the com-
bined interaction is pure s.

APPENDIX 8: PROOF OF EQUATION (44)

To prove Eq. (44), we first substitute Eq. (42) into (41), which gives

G (t—t') = —s 2 B"""'"""~-"'LP'{ir~"" (t) is~ "(t')rr~ '(t'+) rri " " '(t+) })—(is~" -"'&~"")(rri.'« ")3 (B1)
Applying the generalized Wick s theorem in the Heisenberg picture, we obtain

G(t—t') =' 2 «I &"'"(T{"(t)"t(t')})~'"'(2'{"(t')" t(t) })
—II"(2'{"(t)..(t')}»-"'-"(2{o ' (t')" (t)})j, (B2)

where
a"(t) = exp{—ih "t}a".

But by adopting a spectral representation, and noting Eqs. (B3), (8), and (20), we find
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Requiring, in addition, solutions that satisfy Eq. (22), so that (h")'=Xi,', implies that

1 h~~ 1|
S(Z—h") =- 1+ ~&(Z—Z,)y-~ 1— S(Z+Z,).

2 Eg& 2k Ei,
(B5)

Substituting Eqs. (B4) and (B5) into (B2), and the resulting expression into Eq. (43), the t and re integrations may
be performed. Finally, carrying out the remaining Z integrations leads directly to Eq. (44) as desired.
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