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The precision of the neutron measurements is such that
a small moment on iridium, 0.2—0.3 p&, would just be
detectable. However, it is known' ' that there exists a
range of compositions for these and similar compounds
over which the Laves phase structure is found. If a 3%
weight loss on melting, as noted by Bozorth and co-
workers, be attributed to loss of Tb then one would have

' J. H. Wernick and S. Geller, Trans. AIME 218, 866 (1960).

to do with Tbo.9Ir2 rather than TbIl2 and a moment
differing by some 10% from that of the ideal compound
would be inferred. It appears impossible to us to state
at this time that iridium does or does not carry a small
magnetic moment.

7 Direct chemical analysis of the TbIr2 specimen investigated
here gives a composition Tbi. OIIr2, which is not distinguishable,
in our measurement, from the ideal composition. A change from
the ideal composition of 10% Tb would, however, create fluctua-
tions in the nuclear intensity which would be easily detectable.
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The Hall coefficient in a many-valley semiconductor is calculated for high electric fields and is shown
to be independent of the electric field. For silicon we find Ripp/Rui=0. 9 snd R»p/Riii=0. 85, where Ripp
is the Hall coefficient for the current in the $100j direction, etc. For germanium we find Riii/Ripp=0. 68.
Distribution functions for hot electrons in high magnetic fields are calculated at high and low temperatures
for acoustical phonon scattering.

'N this paper we shall consider the galvanomagnetic
~ - properties of a system of electrons in a strong elec-
tric field. Sodha and Eastman' have calculated the
electric-field dependence of the low-magnetic-field Hall
coe%cient for the case of a simple parabolic energy
band and scattering by acoustical phonons.

ConwelP has used McClure's' solution of the Boltz-
mann equation to obtain general expressions for the
Hall coefficient in a many-valley semiconductor in
terms of the electron-distribution function. The condi-
tions under which one may use McClure's treatment to
describe a system of hot electrons have been discussed
qualitatively by Conwell.

In this treatment we separate the general Boltzrnann
equation for a many-valley semiconductor into coupled
equations for the isotropic and anisotropic parts of the
distribution function. The equation for the anisotropic
part is shown to be identical with McClure's equation
except for an additional term which is shown to be
negligible. The equation for the isotropic part allows
one to calculate the electric and magnetic field depend-
ence of the distribution function for arbitrary 6elds.

In Sec. II, we calculate the low-magnetic-field Hall
coeS.cient using the hot-electron distribution obtained
by Reik and Riskin. ' Results are obtained for several
current directions in silicon and germanium. In Sec.
III we calculate the distribution function for hot elec-
trons in high magnetic fields for acoustical phonon
scattering.

' M. S. Sodha and P. C. Eastman, Phys. Rev. 110, 1314 (1958).
~ E. M. Conwell, Phys. Rev. 123, 454 (1961).' J. W. McClure, Phys. Rev. 101, 1642 (1956).
P H. G. Reik and H. Riskin, Phys. Rev. 124, 777 (1961).
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Transforming these ellipsoidal surfaces into spheres,
Eqs. (I) and (2) become
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We now separate f into two parts 5 and A: f=s+A,

I. THE BOLTZMANN EQUATION

The time-independent Boltzmann equation is given by

e(E+V)(8) vKf= Cf, (&)

where E and 8 are the electric and magnetic fields, C is
the collision operator, and K and V are the wave vector
and velocity, respectively. Ke consider a many-valley
semiconductor with ellipsoidal constant energy sur-
faces. In the coordinate system of the principal axes
of the valley under consideration, the electron energy
is given by
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where S is the isotropic part of the expansion of f in
spherical harmonics and 2 is the anisotropic part.
Separating Eq. (3) into isotropic and anisotropic parts
we 6nd

eE' V'x S+An.{eE' Vx A)
+ (e/ms) K'X B' V'x A = O'A (4)

Is{eE' VxA)=O'S, (5)

where An{X)=anisotropic part of X, and Is{X)
=isotropic part of X. We now make the following
assumptions:

(a) An{eE' 27x A) is small;

(b) O'A = —A/r(e) .

We shall verify a posteriori (see Appendix) that assump-
tion (a) is valid. After making these assumptions, Eq. (4)
becomes identical with McClure's linearized Boltzmann
equation for this band structure, except that the equi-
librium distribution is replaced by the more general iso-
tropic function S. We find straightforwardly that

dS
A= r V'— —

le

field with respect to the ellipsoid axes. Taking into
account the intervalley scattering to zeroth order they
found that the number of electrons in a given valley
is simply

22)~ 1/TP 2, (10)

where 1; is the temperature of the valley.
We shall now see that the Hall coefficient is, in

general, anisotropic, in contrast to the weak electric
field case, and that it becomes independent of the
electric fields for large fields. The saturation of the Hall
coe%cient for large electric fields could provide an ex-
perimental method for verifying if the isotropic part of
the distribution becomes Maxwellian at high electric
fields. Erlbach and Gunn' have studied the shape of the
isotropic part of the distribution function by making
noise experiments on hot electrons, but their experi-
ments were not in the range of very large electric fields.

We shall now outline the calculation of the Hall co-
efficient. The current in a given valley is calculated by
putting Eq. (9) into Eq. (8). Taking the longitudinal
axis of the ellipsoid as the x axis and the transverse
axes asy, s axes we find

eE'+ (esr2/ms2) B'B' eE'+ (er/me) B'XeE'

1+(esr2/ms2) B"

Substituting this into Eq. (5) we find

. (6) where

g68/2g —e/k Te &3/2g —e/& &ed &

2(eE')' d — dS 1+ysscosr2
68/2 = O'S,

3mse1/2 de de 1+Ksrs

where ys is the direction cosine of B' with respect to
E' and t0= eB'/ma.

We see from Eq. (7) that when 8 is sufficiently small
we can neglect oP~' compared to unity and we obtain
the same S as in the absence of the magnetic field.
2 becomes simply

dS — ev.

A = r V' eE—'+——B'&.(eE'
5$p

II. THE HALL COEFFICIENT

and similar equations for the y and s components. We
consider the applied field E~ in a given direction, the
magnetic field 8 perpendicular to K~, and we wish to
calculate the Hall field in a direction E~, perpendicular
to E~ and B.The current in each valley is resolved into
components parallel to Eg, B, and Ei, and the current is
summed over all the valleys. We then require that the
current in the Ei and B directions be zero, and deter-
mine the Hall 6eld in terms of the current in the K~
direction. We neglect terms in 8' throughout.

The calculation is simplest in silicon where we have
two ellipsoids in each of the cube edge directions. We
take the electric field in the [100] direction and the

magnetic field in the [001j direction. Taking x, y, s
axes in the [100],[010j, [001j, respectively, we find

If we limit ourselves to small magnetic fields (t02r2«1)
we need only insert the hot-electron distribution in Eq.
(&) and, thus, calculate the current and Hall coefficient.
We shall consider a many-valley semiconductor in a
strong electric field. In this case Reik and Riskin4 have
shown that the isotropic part of the distribution func-
tion in each valley is approximately Maxwellian and is
given by

V, =O,

2e'8Ex
ey ri +2 r2 e2 &2

+ +
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Ãy 7] P2 7pV„=2eE„+
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t22 P2 +2
e elkre ~ T +2~ + +-
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where n, P, y are the direction cosines of the electric

where 22&, ri refer to the [100j valleys and n2, r2 refer
to the remaining four valleys, since by symmetry these
latter valleys all have the same 22;, (r,) and (r,2). Setting

' E. Erlbach and J. B. Gunn, Phys. Rev. Letters 8, 280 (1962) .



V„=0 and expressing 8, in terms of J„we 6nd

J+- (111/ti, )(r10)+(E+1)(r,')

2e&e ((nt/110)(rt)+2E(r0))((101/tt&)(rt)+(1+1/E)(r, ))
(14)

where E=m1/mi. Taking r=A0 ' ~ve obtain from Eqs.
(9), (10), and (ll)

niagnetic field in the $110]direction we find

(, )=AI'(—', —s)(kT, ) '/I'(-',—-),

(rt, 00) =A'I'(-', —2s) (kT1, ) "/I (0),
Nl/100= (T0/Ti)'"= E'". N0

——N/2(2+E'1') where

3(3+"y) (5+4E+3y4'+')
-R 111 (21)

(1+8E+3p'~') (5+4/E+ 3y»+')

Substituting Eq. (15) into (14) we obtain

J,B
fR [00 &

Taking s=-'„E=20 we have

R111/R100 (22)

(16)

~100
(E'+2E")(E'+1+E'"+E ")

III. LARGE MAGNETIC FIELDS

(E"+' '+E+1)(2+E'~') Our results imply that it should be possible to meas-
ure the ratio of the effective masses by measuring the
hot-electron Hall coeKcient, but it should be re-
membered that all the calculations are based on a

With the apphed electric field in the L111)direction the Maxwellian distribution function in each valley and
I„(&;)and (r;0) are the same for all valleys and the have treated intervalley scattering only to zeroth order.
Hall Beld is simply

E= (JB/ne)rRitt, R111=3E(E+2)/(2E+1) . (17)

If we take the electric field in the t 110j direction and
the magnetic field in the $001$ direction we find

where

(2+Ex"')(2+&)
~I&0= (19)

(E+1+E+28+1)(1+I/E+ +2 8+1)

1+1/Eq"
2 )

For s=-'„%=5.1 we have

Taking s=~ for phonon scattering and E=5.1 for
silicon we obtain

R100/Rill —0.9.

When co'w' cannot be neglected compared to unity
we must solve Eq. (7). Let us first consider the case of
scattering by acoustical phonons. If we assume that
equipartition holds for the acoustical phonons and that
5 varies little over the energy of a phonon, one' can
derive the following expressions:

d — ( S dS)-
O'S= Ct/0"' —0'I —+—); r =C /0"'

de kkT de l

2""x'mo'"~t.&T
Zd' 1+— 1+—E 1;(23)—

ph4 deto.

C0 ——pk'Cp deter/2'"1r'm0'"k TZa'

2—

X 1.31+1.61—+1.01

R110/R111 (20)

The anisotropy of the Hall coeKcient in germanium
is greater than in silicon since K=20 for germanium.
With the electric field in the L111] direction and the

where p is the density, C~ is the longitudinal velocity
of sound, and Z~ and Z are the deformation potentials
for dilation and uniaxial shear. Substituting Eq. (23)
into (7) we obtain

5= exp
0

0/kT

0+(2C0(eR')'/3m0C1)((~++ M'C )/0( + 010'))
(24)

0 R. Stratton, Proc. Roy. Soc. (London) 242, 355 (1957).
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This can be integrated to obtain If ye=0, Eq. (24) becomes

S—e slier—
l
+ +

kT) (kT)' (kT)'

—y/2 d«/kT
5=exp-

p 1+PkT/(1jppsr')«

where

( M (b' 2C—' brp—'C '))
Xexpl —

l
(»)

2(kT)' pkT-S=e-'"r' T,= T 1+
GO Cg

(28)

If we now neglect unity compared to oft' we 6nd

2Cs(eE')'
b —~2C 2+

2Cs(eE')'
C'= yp'rp'Cs'pkT, p=

3mpCg 3mpCgkT

«+b«+C

2kT

(4CI b2)rip

( 2«+b
tan-'l — l; 4C' —b'&0

&(4C —bs) Us)

k T 2«+ b—(bs —4CI)1/s
ln b' —4C'go.

(b' —4C')"' 2«+b+ (b' —4C')'"

When oP7' can be neglected compared to unity we
Gnd the well known Yanashita-Watanabe' type solution

Thus, if we believe the validity of the Boltzmann
equation' for oft'&&1 we find that for a large magnetic
field perpendicular to the electric field, S becomes a
simple Maxwellian whose temperature decreases with
increasing magnetic field.

The condition oPv'»1 requires enormous magnetic
fields (see Appendix) except at very low temperatures.
At low temperatures, however, the equipartition of
acoustical phonons is no longer true and Eq. (23) is no
longer valid. Strattons has calculated CS for acoustical
phonon scattering and spherical constant energy sur-
faces. The results can be modified by using the transi-
tion probabilities for ellipsoidal energy surfaces given
by Herring and Vogt. 9 We consider the case of spherical
constant energy surfaces for which Stratton finds

S=[ /kT+pj'e (26) PS=
d ( dS)——«'l S+ ', (2mC-')" «'" l—, (29)

lkT(2m«)'" d« d. P
If on the other hand oPv' is large compared to unity

we find from Eq. (24) that r = 5kTl/8«C,

5= exp
p «+y p'pk T

where C is the velocity of sound and l is the mean free
path for acoustical phonon scattering. This equation is
only valid if «/kT)&kT/mC' and, thus, only for electric
fields large enough such that most of the electrons lie

= $e/kT+ppsP]~""e '~"r (ppNO). (27) in this range. Putting Eq. (29) into (7) we find

AC'
S=exp—

kT o g((2~C')"/kT) «"+(5(eEl)'kT(2m«)'"/48mC) N

N —(1+y srpsrs)/(1+ppsT2)

(30)

When we consider optical phonons it is no longer
generally possible to replace the optical-phonon operator
by a simple differential operator as we did in Eqs. (23)
and (29). However, when the electric field is sufficiently
strong most of the electrons have energies greater than
the optical-phonon energy and one can derive a dif-
ferential operator for the optical phonons. In this case
we can again write a di6'erential equation for S, but the
equation is fairly complicated and we shall not consider
it here.
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APPENDIX

We have supposed throughout that An{eE' Vx A} is
small. We notice that this term is at least quadratic
in the electric Geld and is thus negligible for small fields.
Thus, we need only consider the intermediate- and
strong-field ranges.

Assuming for simplicity that E is perpendicular to B,

P. Argyres, Phys. Rev. 112, 1115 (1958).' C. Herring and E. Vogt, Phys. Rev. 101, 944 (1956).
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(eE')s dS 2sre d ( 4sdtr
An(eE' VIA)=- Pss(cosi)) sing ———

I IPso(cosa)
m de 3 de&1+~'ei 3 de (1+a&'r'i

d S 2cco7.~

Ps (cosO) sin@ Pss (cos8) . (A1)
de' 3(1+el'r') 3 (1+alsrs)

Comparing this with the other terms in Eq. (4) we
find that for c0'r'&(1 the neglect of An{eE' VRA} is
equivalent to neglecting eE//e compared to unity for
the cases where phonon equipartition is valid. From
Eq. (26) we see that eE//e~ (mCP/kT)'" while for the

hot Maxwellian distribution, Eq. (9), we find eEl/e
eEt/kT, . In both cases the terms are very small com-

pared to unity. %hen co'~'))1 one can neglect the
An(eE' VK A) term for the high-temperature case
(equipartition of acoustical phonons) if

PmC ' )'" (PkT/eICs')" (nzCP/kT)"——(mCIs/k T)"'.
mCs'$1+ pkT/~Cs' ji (1+pkT/coCs')'"

(A2)

The condition oP~'&&1 is only realized in high mag-
netic Geld in this case, since the average relaxation time
decreases because the electrons populate higher energy
ranges in the presence of a strong electric field.

If we consider the number of electrons per unit energy
range we find that the maximum of this function is dis-

placed towards the higher energies because of the elec-
tric field, while the magnetic field displaces the peak
towards the thermal equilibrium value. Thus, the elec-
tric field "heats" the electrons while the magnetic 6eld
"cools" them. Similar results hold for the low-ternpera-
ture case.
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The pseudopotential method has been used to compute the band structure of germanium-silicon alloys

and the band structure of germanium under high pressure. In the former case the parameters were chosen

from a linear interpolation between the parameters used previously for pure germanium and pure silicon,

while in the latter case a simplified expression for the pseudopotential parameters based on the orthogonalized

plane wave method was used to estimate their variation with lattice constant. The results are in reasonable

agreement with experimental observations on the variation with pressure and alloying of the principal
band edges. The calculations also indicate that the first absorption peak due to direct transitions should

have a much larger pressure coefIIcient in Ge than in Si.

I. INTRODUCTION

A VERY useful way of obtaining detailed informa-
tion on the band structure of simple semiconduc-

tors has been to study the change produced in their
physical properties by alloying one semiconductor with
another. Johnson and Christian' studied. the change of
the energy gap of Ge-Si alloys as a function of si:licon
concentration. The energy gap increases rapidly up to

15% Si and from there on the increase is slow until

*Based on work performed under the auspices of the U. S.
Atomic Energy Commission.

f Thesis student from the University of Chicago.' E.R. Johnson and S. M. Christian, Phys. Rev. 95, 560 (1954);
A. Levitas, C. C. Wang, and B.H. Alexander, ibid 95, 846 (1954). .

the value in pure silicon is reached. Herman' speculated
that this result is due to the role of two different minima
in the conduction band: up to 15%%u~ Si the LI state at
ir= (2Ir/a)(sr, sr/Is) is the absolute minimum of the con-
duction band and when more silicon is added the abso-
lute minimum is shifted to a point along the L100]
direction near the state Xl at lr= (2Ir/a)(1, 0,0) which
is practically insensitive to addition of silicon. This
interpretation was confirmed most strikingly by
Glicksman, ' who was able to determine the symmetry
of the conduction minima for varying alloy concentra-
tion from the properties of the magnetoresistance

s F. Herman, Phys. Rev. 95, 847 (1954).
3 M. Glicksman, Phys. Rev. 100, 1146 (1955); 102, 1496 (1956).


