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between long-wavelength sound waves and electrons in
a metal is mainly electromagnetic. A similar result was
obtained by BCS for longitudinal waves for q/)1 by
computing the net rate of absorption of energy in the
superconducting state produced by direct absorption
and induced emission of the imposed acoustic phonons.
Since our result for the attenuation coefficient of longi-
tudinal waves is similar to that obtained by Pippard,
we may assume that the effect of the space charges may
be neglected even in the normal state for ql(1. How-
ever, when ql&1, the above derivation which neglects
space charges would not give the correct lilnit for 0.„.

This attenuation agrees with Pippard's result for longi-
tudinal waves for pl&1. Again the ratio is given by

~,t/~. t= 2fo(eo).

Tsuneto has obtained the same result by using a matrix
density formalism and assuming that the interaction
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The Green s-function matrix method first developed by I. M. Lifshitz is applied to the problem of the
scattering of phonons by a localized perturbation in the lattice. The scattering can be described by a t matrix
that is localized to the same extent as the perturbation and has similar symmetry properties. The t matrix
can be written in terms of the perturbation matrix p and the Green s-function matrix g, perhaps most easily
in terms of the representation formed by the eigenvectors of the matrix g7, y; these vectors can often be found
by symmetry considerations. Two cases are of particular interest: (1) a "singular" perturbation which
leads to a t matrix independent of the strength of the perturbation, and (2) resonance scattering from a
low-frequency virtual local mode. The latter case is discussed for the example of decreased central-force
constants between (100) nearest neighbors and the impurity site. Some implications for thermal conduc-
tivity are mentioned.

I. INTRODUCTION

' 'I a series of papers that are as much as twenty years
~ ~ old, I. M. Lifshitz formally solved the dynamics of
a crystal perturbed by a defect. ' ' He assumed that the
normal modes and frequencies were known for the
unperturbed lattice, and by the use of the dynamic
Green's-function matrix was able to reduce the number
of degrees of freedom of the perturbed problem to a

~ Work supported in part by the U. S. Atomic Energy
Commission.

' I. M. Lifshitz, J. Phys. U.S.S.R. 7, 211, 249 (1943); 8, 89
(1944).

I. M. Lifshitz, Zh. Eksperim. i Teor. Fiz. 17, I01/ and 1076
(194/).

I. M. Lifshitz, Zh. Eksperim. i Teor. Fiz. 18, 293 (1948).
4 I. M. Lifshitz, Suppl. Nuovo Cimento 3, 716 (1956). This

English review article contains more references than those given
above.

manageable size, essentially equal to the number of
changes induced by the perturbation.

Subsequent work has been devoted mainly to one
aspect of the perturbed problem, namely, the appearance
of discrete frequencies belonging to lattice modes
localized around the impurity. ' ~ The Green's-function
matrix method may be readily applied to the electron
impurity problem if Wannier functions are used, as
shown by Koster and Slater."In this case, the local
modes correspond to bound electronic impurity states.

Lifshitz also discussed the problem of the remaining
modes which still have running wave character. '4 As

' M. Lax, Phys. Rev. 94, 1392 (1954).
6 E. W. Montroll and R. B. Potts, Phys. Rev. 100, 525 (1955).
7A. A. Maradudin, P. Mazur, E. W. Montroll, and G. H.

Weiss, Rev. Mod. Phys. 30, 175 (1959).
e G. . Koster and J. C. Sister, Phys. Rev. 95, 1167 (1954).' G. J. Koster, Phys. Rev. 95, 1436 (1954).
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one might expect, these solutions consist of an incident
plane wave plus scattered waves. The scattering matrix
can, in principle, be found exactly, without recourse to a
perturbation series. Quite recently the scattering of
lattice waves by isotopes has been treated in detail
by Takeno. "His calculations of the cross-section yield
resonance scattering, under appropriate circumstances,
from virtual local modes associated with the impurity.
The possibility of such modes had been pointed out by
Brout and Visscher, "and the analogous virtual-bound
electronic states had been discussed using the Koster-
Slater formalism by WolG."

Our aim is to present the details of the general solu-
tion of the scattering problem and to discuss the scatter-
ing amplitude when the perturbation is large so that
the Born approximation breaks down. Two cases of
particular interest are "hard-core" scattering from a
singular perturbation and resonance scattering from a
virtual local lattice mode.

Phonon scattering by defects can be studied experi-
mentally by measuring low-temperature thermal con-
ductivity. A variety of data indicates that resonance
scattering of phonons may have been observed experi-
mentally" ";in fact, the data motivated a search for a
mechanism, which in turn led to the Green's-function
method to be presented here.

A disadvantage of the use of Green)s functions for
three-dimensional problems is that they must be
calculated numerically, even for the simplest cases.
Such a calculation is necessary for quantitative work;
nevertheless, quite a bit of information can be learned
from qualitative arguments which have the advantage
of not being restricted to a given model of the lattice.
The latter course is taken here.

that for the first atom in the cell, i =1, 2, 3 corresponds
to vs= 1, a= 1, 2, 3; for the second atom in the cell,
i=4, 5, 6 corresponds to m=2, a= 1, 2, 3; etc. This
change will simplify the notation and make it super-
fically the same as for one atom per unit cell. In the
new notation we have

(2)

In the harmonic approximation, the Hamiltonian is

H =-' p p V"(L,L')I'(L)N'(L')
L,r.~ ig

+-', Q M,fu'(L)$'. (3)
L,i

The mass of the mth atom in the cell is given by 3f;.
The spring constant or force constant coeKcient
matrix V'/(L, L') is given in terms of the potential
energy V of the lattice by

V'&'(L, L') = (c)' V//c)N'(L) i3u/(L') )„s.
The lattice vibration equations of motion can be

obtained from Eq. (3). We assume a time dependence
of the form exp( —icosi) and define

A'&(L, L') = (M M )
—'/'V'& (L,L'),

and

v'(L) = (M.)t/'u'(L) .

The equations of motion then give

Q (A'&(L,L') —cosh"'3(L, L'))v/(L') =0
L',j

or, in abbreviated matrix form,

II. BACKGROUND

A. Perfect Lattice
(A —o/'I) v =0. (6')

The formal theory will be stated in quite general
language. Consider a perfect crystal with E unit cells
located at points given by the set {L}of primitive
translation vectors. There are r atoms per unit cell
located at b„, m=1, 2, , r with respect to an origin
in the cell. The equilibrium position of the mth atom
in the Lth cell is L„=L+b„.The displacement u„(L)
is defined in terms of the actual position of this atom
X„(L)bv

N„(1.) =X„(L)—1.„.
g= 1) 2) 3.

We shall find it convenient to drop the indices m, c and
introduce a new index i (or j) running from 1 to 3r such

'0 S. Takeno, Progr. Theoret. Phys. (Kyoto) 29, 191 (1963)."R.Bront and W. Visscher, Phys. Rev. Letters 9, 34 (1962)."P.A. Wo18, Phys. Rev. 124, 1030 (1961).
'I M. V. Klein, Phys. Rev. 122, 1393 (1961).
"W. Gebhardt, J. Phys. Chem. Solids 23, 1123 (1962).
'5 R. O. Pohl, Phys. Rev. Letters 8, 481 (1962).
~s C. T. Walker and R. O. Pohl, Phys. Rev. 131, 34 (1963).

The normalized eigenvectors are running waves or
phonons:

&(P) ) or n &/(L) —/V
—1/2h &i(sic.L) (7)

The wave vector k is "quasicontinuously" distributed
throughout the first Brillouin zone, and the eigenvalues
o/'(k) ) form a quasicontinuous spectrum or band. The
polarization index X runs from 1 to 3r. Some writers use
L„instead of L in the exponent; this changes the phase
of the polarization vector BAq'.

B. Perturbed Lattice

Let us now put a defect into the lattice. This will
change some of the masses to M;+AM, (L) and some of
the spring constants to V"(L,L')+AU" (L,L'). The
equilibrium positions generally will be shifted somewhat
from L„.The derivatives in the new potential matrix
U+hV are to be evaluated at the new equilibrium
positions, and I'(L) now refers to displacements from
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those positions. The equations of motion become

(A —(u'I+nl') v =0,

where

(8)

columns,

~l' (L,L') = (M M )-u aV' (L,L')
—(hM /M )(u'8'&5(L, L') . (9)

The strength of the perturbation is characterized by
the dimensionless coupling constant n.

C. True Local Modes

g(~') &(~')
G(oP) = (15)

where p is a much smaller m)&e symmetric matrix.
Those points in the lattice and those components where
F is nonzero we shall call the "space of p". We now
write G as a matrix of matrices,

To lay the foundation for the treatment of virtual
local modes, we want to discuss brieRy the case of true
local modes, that is, modes with a frequency different
from any in the quasicontinuous spectrum of the
unperturbed lattice. We can define the Green's-

function matrix by

where the ega matrix g is defined on the space of y,
E is a (3rlV e)Xm—matrix, and 8 is a symmetric
(3rX—sz)&&(3rlV m) matrix—. We also write for the
3rÃ-dimensional column vector

G(~'-) = (A cu'I) ',—-
which is diagonal in the phonon representation

(O'X'
~

G (~')
~
kX) = 8~~ 4), (~Ay-'—~')—'.

Explicitly, we can write'~

G=P v(8)v(kX)'(a I,),
'—~') ',

or
expLik. (L—L') jhow), 'hkx'

G"'~ (L,L') =—P

(10)

(12)
v, = —uE((a')yves, (17)

where v~ is n dimensional. Ke note that Fv=yv~ and

(11) GI'v=Gyv(=gatv)+Ryv(.
Thus, Eq. (13') becomes two equations:

(16)

an eigenvalue, eigenvector problem in the localized
space of y, and

aI) —&

L1+uG(a&') I']v =0, (13)

v = —o,GI'v. (13')

This set of equations can be solved explicitly, in

principle, if the defect is suSciently localized; i.e., if

F is nonzero only on a small set of indices. In this case,
we can write, perhaps with some relabeling of rows and

As the inverse of a symmetric matrix, G(oP) must also

be symmetric. Multiplying Eq. (8) on the left by
G(aP) gives

which gives the "long-range" displacements in terms of
the solutions of Eq. (16).

Solutions of Eq. (16) exist if and only if

det
~ 1+ag (&o')y

~

=0. (18)

If o. is suKciently small, there are no solutions of this
equation because g(oP) is bounded as &u' approaches an
edge of the quasicontinuous spectrum from outside.
The modes are local for co' outside the band in the sense
that the vector v, falls off rapidly with distance from
the impurity. This can be seen by writing out Eq. (17)
explicitly:

exp[ik. (L—L') jBgg'h„g""I'"'(L',L")v'(L")
v'(L)=(-)—Z Z Z (17')

If the defect is localized near the origin, the sum (or
integral) over k will yield a decreasing contribution as

~L~ increases, because of the rapid oscillations of the

exponential.
Such local modes can be shown to result from a

su%ciently large decrease in mass AM/M &0 or from a,

su%ciently large increase in force constant.

'7 An asterisk denotes the corTIplex conjugate; a dagger, the
Hermitian conjugate; and a wavy line, the transpose.

III. SCATTERING AND THE T MATRIX

A. Formal Solution of the Scattering Problem

If co' is in the band, the singularity in Eq. (17') at
~&z' ——~' will pick out plane waves of this frequency at
large distances ~L~. Exactly how this is done will

depend upon how we decide to integrate near the
singularity. The problem is best formulated using the
language of scattering.
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We look for a solution to Eq. (8) of the form

v= v(kpAp)+w B (19)

where v(kpXp) is the plane wave of Eq. (7) for phonon
mode kpXp. Equation (8) yields

( „,„,P — )v(k,7„)+&rv(k,7,)
+ (2 —pp'?+ yi') w =0. (20)

We now set
PB =OBS l +&e=olp

can use the relation

i i
=Z-+ wing(x),

X Z6 S
(26)

where

G+ =Grr (pp')+iGr (rd') (27)

where I'(1/x) denotes the principle value of 1/x, and
5(x) is the Dirac 5 function, to obtain

where e is an infinitesimally small positive number.
The matrix A —oP+I now becomes Hermitian and has a and
unique inverse

Grr (oB') =PQ v(B )v'(B.) (pp»' —rd')-' (27')

Gr(~') = ~+.(kX)vt(B,)S(~»s—~s). (27-)
G+=G (rpp'+) = (A —rd p'+?) '. (10')

We can multiply Eq. (20) on the left by G+ to obtain

(?+KG+I')w = —aG+I'v (kphp) . (22)

The first-order perturbation result is obtained by
neglecting the second term on the left in Eq. (22):

w= —~G+rv(ky„). (23)

The T matrix is defined so that the correct solution
takes the form

(24)w = —G+T+v (k pXp) .

This will be true if T satisfies the matrix equation

T+=nI' —nFG+T+ =nI.'—nT+G+F .

The solution is

T+=(?+ rG+)- r= r(?+ G+I)-,
or

r =~r+ ~srG+r+~prG+rG+r+"

(24')

The last form is the perturbation expansion of the
solution, which converges well for small n.

The choice (21) for oB' and, hence, for the way of
handling the singularities in G guarantees that we have
chosen the outgoing asymptotic scattering solution. "'
The proof of this statement begins by writing Eq. (24)
explicitly:

expLr'k (L—L')]h»'h»'"
w'(L)=( —)—E & Zg L',L" r, s k,X e, —&0 —«

XT"'(L',L")+vs,x,'(L") .

A stationary-phase argument can be used to show that
the integral picks out those values of k which make the
denominator small. Such values of k correspond to
outgoing waves. A similar result can be obtained from a
time-dependent calculation. If the perturbation was
"turned on" in the distant past when the solution was

v(t) = v(kpXp)e-~p', the solution in the present becomes
Lv(kpXp)+wge '""with w given by Eq. (24).

The Green's-function matrix G(pB'+) is complex. We

For large ~L—L'~ one can again apply a stationary-
phase argument to show that Gg and G~ are comparable.
In fact, in the limit of large distances we have Gg —+ iGy.
In this case, only a few phonon states are picked out
in both expressions, namely, those where coI,&'=co'. At
short range we have

~
Glr ~)) ( Gr provided rp' is far from

its value at the edge of Brillouin zone (i.e., roughly
for res/rprl'«1, oBD ——Debye frequency). Under these
conditions the exponential will not oscillate very
rapidly and will allow a relatively large number of
phonon states to contribute to Gg, whereas the delta
function severely limits the number of states that can
contribute to Gl.

3. Connection with Thermal Conductivity
As usually treated, ""the calculation of the thermal

conductivity involves a Boltzmann equation for the
occupation numbers SA, of the form

(cllVs (ciXs
(—)I

Bt If EBl) ll
(28)

The collision processes occurring on the right side of
Eq. (28) will be of at least two types: (1) inelastic or
three-phonon processes characteristic of the defect-free
anharmonic crystal; and (2) elastic scattering by a
random distribution of m impurities. It is usually
assumed that there is no interference between the two
processes so that the collision terms add. A case where
this assumption apparently does not hold has been
discussed by Carruthers" and by Abeles, Beers, Cody,
and Dismukes. "In this paper we assume no interference.

The elastic-collision term as calculated by pertur-
bation theory takes the form

(clos)
E(k,k') ()Vs —lVs)d'k', (29)

cit 9 el. Bpll

"P.G. Klemens, in Solid State Physics, edited by F. Seitz and
D. Turnbull (Academic Press Inc. , New York, 1958), Vol. 7, p. 1.

"P.Carruthers, Rev. Mod. Phys. 33, 92 (1961).
~ P. Carruthers, Phys. Rev. 126, 1448 (1962}."B.Abeles, D. S. Beers, G. D. Cody, and J. P. Dismukes,

Phys. Rev. 125, 44 (1962').
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where the kernel E is proportional to elV '~I'ii ~'

&r,'b(rp1, —rps. ). The impurity concentration is given by
eiV ', and F» is the matrix element of F for a single
impurity between two phonon states. When the defect-
phonon interaction is strong, but the concentration of
the randomly distributed defects is small, one must
replace F» in the above expressions by the correspond-
ing matrix elements Tsi, + of T(ppp'+), where Mp =&s=

Gpss

.
This statement has been proven (i.e., the T-matrix
Boltzmann equation was derived from first principles
starting with the equation of motion for the density
matrix) for electrical conductivity with elastic scatter-
ing of electrons by I uttinger and Kohn."They treated
the electric field as causing a small perturbation of the
electron-plus-scatterer system. For the thermal conduc-
tivity the corresponding temperature gradient cannot
be introduced into the Hamiltonian, and it is probably
better to start with a correlation-function expression. "
We have not carried out the derivation but feel quite
confident that it would give the above result. This
confidence is based on the mathematical similarity
between a drifting electron gas producing an electrical
current limited by elastic scattering from defects and a
drifting phonon gas producing a thermal current limited
by elastic scattering from defects.

We shall, therefore, use T instead of F in the calcu-
lation of thermal conductivity. Interesting possibilities
arise when the two are quite diferent; that is, when
perturbation theory breaks down. We now examine
some of these possibilities.

this is true, we can then express t as follows:

e(i)e(i)
t=nP y

i 1 1+@;n
(33)

If the eigenvalues ti, (cu'+is) satisfy ~ti,nj))1 for all
i, we have the strong coupling limit and can write

~ ye(i)e(i)
(34)

a result independent of the coupling constant. The t
matrix remains finite even for a "singular" perturbation
ny. This result is well known in scattering theory.

A resonance in the scattered amplitude will occur at
a frequency ~'=~&' satisfying

1+n Re@i(coP)=0.
Near such a resonance we can write

(35)

where

pe{i)e(t)

(pp pip)Ri (rpp)+$Ii(t'dp)
(36)

1+ntr i(pp'+) =n (~'—rpP) t Retii(rp') $„
dQ)

gin Immi(~P) . (35')

Near a large enough resonance only the /th term in
Eq. (33) is important:. In such a case we have

C. Nonperturbative Behavior of T

We first note from Eq. (24') or (25) that T is localized
to the space of p. We can, therefore, write

R,'(o~p) = LR p (cv')$, ~,
Zco

1,(~P) = ImLt, (~P)j.

(37)

(38)

where
t=ny(1+ng+y) ',

LRegjye(j) = LReti7e(j),

LImgjvs(j) = I:Imt js(j)
(32')

As we shall see, the eigenvectors can often be deter-
mined by symmetry considerations and can be assumed
to form a complete orthogonal set in the space of y. If

"J.M. Luttinger and W. Kohn, Phys. Rev. 109, 1892 (1958).
PP H. Mori, J. Phys. Soc. Japan 11, 1029 (1956);R. Kubo, ibid.

12, 570 (1957).

and where the Green's-function matrix in the space of
y can be written g+= gn(rpps)+igr(~p'). It is convenient
to work with the eigenvectors e(j) and the eigenvalues
ti; of the matrix g+y=g(happ'+)y:

g+pe(j) =t,e(j) . (32)

Corresponding to the two parts of g, there will be two
parts of ti= Re@+i Imp:

The resonant peak in the intensity
~
t

~

' is down to
half-maximum when 6+ =+~—~t = ~Su~' where

Ir(~p)

roti (rdp)

From this result and Eqs. (32') we see tha, t the peak is
narrow when, roughly speaking, the imaginary part
of the localized Green's function is much smaller than
the real part. As pointed out in connection with Eq.
(27), this should be the case for p&P«pp~', i.e., for long-
wavelength acoustical modes.

Equation (35) is equivalent to

det~1+n Reg(&uP)y~ =0. (40)

This condition is as close to Eq. (18), the condition for
a real local mode, as one can get with ~' in the quasi-
continuous spectrum. We are, therefore, justified in
referring to Eqs. (35) and (40) as the condition for the
existence of a virtual local mode. The smaller the
frequency of this mode, the narrower the resonance
peak, and the more "real" the virtual mode becomes.
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If the mth atom is at a site of cubic symmetry, the
reduced Green's-function matrix is also diagonal:

gab(~2+) (3Q)—1 Q gab(~ 2 ~2 se)
—1 (42)

Equation (40) becomes

M' —Mq 1 1
1— ~res I' Q

M ) 3E» ce»' —ro'
(42')

For small oP, we can write

(31')—'P P (ro»' —co')
—'= (3N)—' Q ro» '= Qror-

kX kX

III. SOME EXAMPLES OF VIRTUAL LOCAL MODES
AND RESONANCE SCATTERING FROM THEM

A. Heavy "isotopic" Impurity

Suppose the mth atom in the unit cell at the origin
has a different mass M ')M, but there are no changes
in force constant. Then, in our original notation, the
space of y is the 3X3 space where L=L' = 0, m =nz', and

j/I '—3f
oPbb ah=i 23

by Lengeler and Ludwig. '5 These authors chose to deal
with a monatomic simple-cubic lattice with central- and
noncentral-force constants betwee~ nearest neighbors
only. The substitutional impurity was bound with
different force constants to its neighbors. Some aspects
of the related virtual normal mode problem have been
discussed by Visscher, " again as they pertain to the
MOssbauer effect.

Since we do not intend here to obtain exact numerical
results, we shall not use a particular model for the
unperturbed lattice, except that it be a monatomic
Bravais lattice with cubic symmetry. The results can
be easily generalized to simple diatomic lattices such
as the NaCl structure. Calculations for other than cubic
symmetry couM be carried out in a similar manner.
We insert a substitutional impurity at a site of octa-
hedral symmetry. Its mass is assumed to be unchanged
(it would have to change by a large amount to affect
the conclusions to be reached), but the central-force
constant to its six octahedral nearest neighbors is
changed by an amount O.Mco ', where or is maximum
frequency of the unperturbed lattice and where n is
negative and dimensionless.

The perturbation matrix F of Eq. (9) becomes

where Q is a constant of the order of, but less than,
unity. We then have

1=Q (M' M)cv'/M~r)'—. (42")

B. Substitutional Imjpurity Bound with Weaker
Force, Constants to Nearest Neighbors

The true local modes resulting from an increase in
force constants have been discussed by Takeno'4 and

b' 8. 'Pakeno, Progr. Theoret. Phys. (Kyoto) 28, 33 (1962).

Thus, for a low-frequency mode for which (&o/cez&)'«1,
we must have (M' —M)/M =M'/M))1. Such an
"isotope" is not likely to be found in nature.

The possibility of a virtual local mode for a heavy
isotope was pointed out by Brout and Visscher in
connectio~ with the Mossbauer effect." Takeno has
recently calculated the resonance scattering cross
section numerically for a simple model of the lattice. "
The reader is referred to his paper for a more precise
estimate than that of Eq. (42"). He points out that
there is a solution of Eq. (42') in the band for a light
isotope in addition to that for a true local mode outside
the band. The frequencies of these two modes approach
each other as hm/m increases from negative values
towards zero. They meet at the band edge for a critical
value of 4trb/m. Just before this happens the width of
the virtual level is quite narrow because of the small
density of phonon states available for decay. Resonance
scattering from such a level would probably be masked
by strong three-phonon processes at these frequencies.

x(n) = (v(n) —v(0)j.n.

We can normalize the x(n) and use them as a basis for
the space of p. From Eq. (43) we see that y is already
orthogonal:

(n'(pin) =rd,„'8„„. (43)

This result is more general than the specific model of
octahedral neighbors.

Since p and g both have octahedral symmetry, the
eigenvectors of the matrix yg form irreducible represen-
tations of the group Oy, .'~ Those in each different
irreducible representation will generally have a diGerent
eigenvalue p, . The reduction of the representation (44)
begins by a splitting into states that are even and odd

' B.Lengeler and W. Ludwig, Z. Physik 171, 273 (1963)."W. M. Visscher, Phys. Rev. 129, 28 (1963).
D. Landau and E. M. Lifshitz, Quantum 3fechani cs

(Pergamon Press, Inc. , New York; and Addison-Wesley Publish-
ing Company, Inc. , Reading, Massachusetts, 1958), p. 314 ff.

where the n are unit vectors to the nearest neighbors:

I1=&Zy ) ~$g ) ~f3)

z~, z2, z3 being unit vectors along cube axes. The sum is
over all six values of n. Let a be the nearest neighbor
spacing.

There are only six degrees of freedom for this problem
represented by the relative displacements along the six
bond directions:
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TABLE I. Character table for the irreducible representations of
the group O. The last two rows give the characters of the even
and odd representations in Eqs. (47') and (47").

SC3 3C2 6C2 6C4
'and

A1
A2
J1'

f1 2
I'1

Even
Odd

1
1

0
0
0
0

1
1
2—1

3—1

1—1
0
1—1
1—1

1—1
0—1
1
1 =E+A1
1=F1

The matrix elements of g between the displacements
of Eq. (44) are

where

x(+i) = 2 '~'[ao(i)+I~:(i)]

L~(i) =2 '~'[x(i) —x(—i)],

under the inversion n —+ —n:

where the numerator is given by

(n'~ Ã~n) = {[cos(k.na) —1][cos(k n'a) —1]
+sin(k na) sin(k n'a))

X(&».n)(&» n'). (4~)

After the splitting of Eq. (46) the numerator becomes

0(i) = 2—"'[x(z)+x(—s)].

Equation (45) becomes

(&' t& I&') =2 sin(k'a)»n(k, 'a)h»'h»",
(0,

~

&V
~
0,) = 2[cos (k,a) —1]

X [cos (k„'a)—1]h»'h»" .

From symmetry considerations we can write

cv„'(0"Iglo, ) =5,; p(I'r),

(5o)

(51)

The remaining reduction can be accomplished via the
character table for the group 0 shown in Table I.

The odd representation is already reduced and will

give a triply degenerate eigenvalue belonging to the
eigenvectors 0(1), 0(2), 0(3).The even representation
reduces to a totally symmetric "breathing" mode in
representation A ~ with eigenvector

e(g r) =3—Vs[/~(1)+g(2)+g(3)]

where p(F r) is the threefold degenerate eigenvalue
belonging to representation F&. It is given by

p(Fr, &o ) = 2a& A' r P [cos(kta) —1] (h»t)

X (~»' —aP —is)—'. (52)

For the even mode in representation 3 ~, we have

2 ~-'(&,'IgI&')e'(4 )=~(~ )e,'(~),

and two doubly degenerate modes orthogonal to it in where e, (A,) =1/v3, i=1, 2, 3.
representation E having eigenvectors that can be This gives

[sin(kra) h»'+ sin (ksa) h»'+ sin (ksa) h»s]'
y(~r, ~') =~ ' 2 (~,'I gl &,) = (2~-'/3&). 2

GPk)t
—40 —$6

(1—cos'kra) (h»')'+2 sin(kra) sin(ksa) h»'h»'

(dA;),
—M

(54)

From a similar equation for mode 8 we get

G)y), —GP —ZE

co„' [sin(kra) h»' —sin(ksa) h»']'
u(&,~') =

kz

(1—cos'kta) (8»')' —sin(kta) sin(ksa) h»'h»s

~1X
— —I &

(55)
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d'St, (a')
I da&2), '/dk

ju~(~') =

The second term in Eqs. (54)„(55) will probably be some point on the surface. The funct:ion
much smaller than the first term. It will be zero under
the assumption that ~I,q is independent of 'A, for then

(56)

It is also zero for a simple cubic lattice with nearest
neighbor forces"; the Green's-function matrix is
diagonal in i and j in such a model. For other models
G"will not be diagonal, but we expect the nondiagonal
terms to be much smaller than the diagonal terms.
This statement holds, for example, for the numerical
values of the static Green's function Pi.e., G(pp2=0)j
calculated by Flinn and Maradudin for a fcc lattice
with central forces to nearest neighbors. " Thus, for
rough estimates we may set

p(A2)=p(E) 2to 1V P (1—cos kya)(Byg~)

X (pp2q —OP —2p) '.
A similar case, that of changed force constant to (111)
nearest neighbors is discussed in the Appendix.

C. Some Properties of the Eigenvalues of gy

We consider Rep, (~2) for both positive and negative
co'. The latter case is useful for consideration of the
stability of the perturbed lattice. Ke see directly from
Eqs. (52), (53), (55) that p is positive for pp2(0, and it
decreases monotonically to zero as co' —& —~. In
addition it is clear that p is negative for co'&~ ', the
maximum lattice frequency, and its magnitude de-
creases monotonically to zero as cu2 ~ + po.

It is also true that

(d/dpp2)LRep(a&2+))p) 0.

To prove the statement, first convert the sum over k
to an integral

lV ' P = a'(Sn') ' P

is the density of states for branch X. For small co', p& is of
order co. We can, therefore, express Rep as an integral
of the form

Rep((opp) =E f(~2) (~2 ~ 2)—id~2 (57)

where f(cu2) is positive and of order cop for even modes
and of order co' for odd modes.

Thus, we can write

(d/dcop2) Rey (cop2) =—

&m

L9

f(cu2) E doP
CO2 —Cup~

1
f(a2) I' dpp2. (58)

ckd GP —
cop

We have made use of the fact that f(0) = f(a& ') =0.
This gives the desired result,

(d/d(o2) Rep (a)2) p
——

cpm

L(d/dpp2)f(pp2)ja& 2dko2)0. (59)

This follows from the requirement that the perturbed
potential energy matrix at oP = 0, A+r, must be positive

Q
definite. Thus, for any nonzero vector V=, with u

in the space of y, and v in the orthogonal space, we
must have

0((U, (A+r) U)= (U,A (1+Gr)U). (61)

A general feature that holds for all perturbations is
the inequality,

1+cap(0) &0.

Now divide d'k into a piece d2Sq(uP) of the constant
frequency surface for polarization ) times dk, the
change of k in the direction normal to the surface. The
latter can be expressed as dk„=doP/~ d~2q2/dki. We now

carry out the integral over the constant frequency
surface. For example, Eq. (52) gives

We write the G matrix by Eq. (15) as

where g is in the space of p. Similarly, we write

(15)

d2S), (co2) (coskga —1)2(hg), ')2
~

dppu2/dk
i

'

=p), co2 coskga —1 ' Sg,' ' „2)„, 52'
where a is in the space of y. The condition I=AG gives

where we have used the mean-value theorem to express
the integral in terms of the value of the integrand at

~8 H. B. Rosenstock and G. F. Nevre11, J. Phys. Chem. 21, 1607
(1953)."P.A. Flinn and A. A. Mal.adudin, Ann. Phys. (N. V.) 18, 8).
(1962).

ag+HR= 1,
Hg+CR=0,
aR+HB= 0,
JIB+CD=1.

(62)
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Eq. (36) as
re„'e(l)e(l)

(re —reP)R~ (4eP)+SIC(40P)

+—I
lal

0
t

le'l

2v atm
l

1

or for the matrix element

re 'Lv(k'X')e(l)]Le(l)t (kX)$
(k')~'(l

~
B,) = . (65)

(oP—re P)E((4et,')+sIi(reP)

FIG. 1.Qualitative behavior of the real part of p, , the eigenvalue
of gy as a function of co'. The solid line represents proven func-
tional behavior as discussed in the text; the dashed line represents
a reasonable way of connecting the solid curves. Irregularities
should appear wherever the density of states p(sP) has a dis-
continuous change of slope (but not at the origin). These are not
shown.

I et I be an eigenvector of gy with eigenvalue p, and let

The contribution to the Born approximation result
(k'P'ly~ k)) from mode l is the numerator of Eq. (65)
times n. Thus, the resonance represents an increase of
the scattering probability by the factor

rr s(L(4es —reP)gg (4eP)gsyI4(&eP)s} r. (66)

%e can get some very rough estimates of the imagi-
nary part of p, (4e') as follows. For an odd mode, we get
from Eqs. (52), (52'), and (56),

Imp=2sre 'X ' P (coskta —1)'(hsq')'8(4osq' —a&')

so that
v= —C 'Bu, (63) = 24rre 'a'(Sw')-' P px(4o')((co k&a —1)'(h x')'). x.

u H I au Hv aN —Hc 'HN

This gives

For low frequencies we expand the cosine and further
suppose that the polarization vectors point along the
cube axes and that the Debye approximation holds with
a single sound velocity c. Thus, we can write

0( (U,A (1+GI') U) = (n, (a—IIC 'II) (1+np) n)
= (1+cry) (n, (a—FIC—'II)n) . (64)

and

p(40 ) = 2sG3/c

m=D
&

From the second of Eqs. (62) we have R= O'IIg, or-
with the first of Eqs. (62), ag HC 'IIg = 1—. This gives us
a relation for the matrix in Eq. (64): a IIC 'II=g '. —
This is positive definite because G and g are. Thus, we
have

0((1+4')(n,gn) Or 1+np(0))0.
This inequality coupled with the monotonic decrease

of n(oP) for co'(0 guarantees that there are no local-
mode solutions having an imaginary frequency. This
is another way of stating that the perturbed lattice is
stable against small displacements from equilibrium.

The condition (60) implies that the "strong coupling
limit" discussed in Sec. IIIC cannot exist for a
decrease in force constant where a&0. It can occur,
however, for large positive n. This corresponds to
hard-core scattering; i.e., scattering from a very stiR
substitutional impurity.

The qualitative behavior of Re@,(40') is shown in
Fig. 1. The resonance condition Rep(&e') =—1/n gives
a virtual mode at cv,' for negative u. Real local modes
are found at co~') ~ ' for positive n.

This gives
(kt4/k4) = (cos40) =

Imp= 2m&~'as(87rs) '2s-4ec 'ro4a4.

The Debye frequency is defined by

-'= a'(Ss') —' p(oP)doP,

ol
1= reD'a'/(2~'C') . (67)

Our estimate then becomes

Imp = 8.4(re/4eg))". (68)

For the even mode the imaginary part of p, can be
written from Eq. (53):

Imp (4e') = 2sreDs/(3X) P (sinkga hg)+ sinksa Bs)P

((coskta —1)'(Bay')')„~y=4(kr'a')a~=~~~. 2=cd'a'c '/20&

where we have estimated the angular average for the
case of isotropy,

D. The Scattering Amplitude

For our simple example of changed force constants y
is diagonal in the eigenvectors of gy. This allows us to
express t near a resonance in mode l approximately by

+stnksa Bsy')'6 (res)P —oP),

=2s&eg&'a'/(24tr') Q pg(oP)(sinkraBsg'

+sinksah()s+sinksaBles)')„~, g .
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Under the same assumptions used in the previous case
this becomes

((sink ra B~q'+ sink 2a hqq'+ sink sa h I &,')') =-',k'a' = 2~'a'/c.

Then we have

Imp= ss~nsas(8ss) r2s~c s2oPa2= 15.2((o/(un)~. (69)

The real part of the denominator is not easy to
estimate, even roughly, without a realistic model of the
unperturbed lattice. We can use Eq. (58) and note that

f(oP) = s. ' Imp((u') = 0 ((u/(an)' or O((u/(un)' (70)

for even and odd modes, respectively. Very rough esti-
mates indicate that for (~/con)'((1, con'dLRep(oP)/d~']
is less than but of the order of unity for both even and
odd modes.

The numerator of Eq. (65) is cu ' times the numerator
of Eq. (48), which is given by Eq. (50). At low fre-
quencies the contribution of the odd modes is of order
(on (M/QJn)'& and that of the even modes of order
con'(M/a&D)'-. The latter modes in Born approximation
give Rayleigh scattering with a scattering probability
proportional to co'. We see from the above considerations
that the matrix element, Eq. (65), is about the same
size for both even and odd modes near resonance. In
fact, we can write

COD M MD

where s, s'=O(1), and v=2 for even modes and m=4
for odd modes. At resonance the square of the matrix
element is given by ~1~' rdD'co~ ', in contrast with the
Rayleigh result, l, t ~' n'a&r'. The resonance peak is
(s&n/~)' times higher than the Rayleigh scattering
expression.

The width of the resonance will be about hop/~P
(a»/con)" ' and, hence, is narrower by a factor of

(a&~/&uD)' for the odd modes. The value of
~
f ~' integrated

over the resonance will be smaller by the same factor.
Even for the odd mode, the integrated scattering should
be much larger than Rayleigh scattering.

V. DISCUSSION

A. Future Needs

We have made a general formulation of phonon
scattering by an impurity in terms of the dynamic
Greens-function matrix of the unperturbed lattice.
Clearly, one of the first tasks to be done is to compute
some numerical values of G(oP+is) for simple models
of monatomic and diatomic lattices. Then one can fill

in the details of a plot such as Fig. 1 of the eigenvalue
of gy as a function of cv', given a particular model of the
perturbation y.

One should then investigate the effect of a nonlocal
change in force constant around a point defect in the
lattice. In many cases, this can be calculated in terms

of the anharmonic coupling constants and the static
strain Beld around the defect. "' It is important to
investigate whether or not the long-range changes in the
force constant qualitatively affect the results presented
in this paper.

B. Implications for Thermal Conductivity

The theory of Sec. II formally solves the problem of
elastic scattering from a defect that has only changes
in mass and changes in force constants. At present, it
cannot handle the introduction of new degrees of
freedom by, say, a molecular impurity. It can handle
the removal of degrees of freedom as for a vacancy.
Here the perturbed force constants must be such that
all bonds to the vacancy site be broken. In a realistic
model one would expect rearrangement of the near
neighbors so that there would be at least changed force
constants between nearest neighbors of the vacancy
site that are nearest neighbors of each other. One could
make a first approximation to the virtual local modes
by neglecting this latter effect altogether.

If one can further restrict the broken bonds to be
central bonds to nearest neighbors, the eigenvectors for
the modes are given in the discussion following Eq.
(47) for the case of (100) neighbors and in the Appendix
for (111)neighbors. In both cases, the t-matrix element
near a resonance in the /th mode is given by Eq. (65).
Knowing e(l) we can calculate the numerator of the
right side exactly in this model; this is not useful
unless the Green's functions needed to compute the
denominator are known. We must be content at present
with the estimate (71). The effect of this resonance on
the reciprocal relaxation time can be obtained from
the usual expression" for isotope scattering by replacing
(d,m/m)'cv4 by the square of the absolute value of (71).
This gives the estimate

as~ s(~/~ )sn

(72)
kl C E($ (M —Mp) MD 4+S~&(M(/(gD)& "+2]

where u' is the atomic volume, c the velocity of sound,
and e/E the fractional concentration of defects.

It is fitting to inquire whether a resonance such as
Eq. (72) has already been observed experimentally.
Pohl" used a similar expression to fit his data on
nitrate-doped KCl. One suspects, however, that in this
case any virtual local modes would come from internal
degrees of freedom of the molecule. Such low-lying
energy levels might be quantum mechanical in nature
(an example is the inversion in NHs), and would not be
included in the classical formalism presented here.
The "dip-" or "high-"temperature resonant-like be-
havior found by Walker and Pohl" for monatomic
impurities such as I and Na+ in KCl occurred at the
same temperature in all cases. The position of resonance
in the theory given here is quite sensitive to small

"H. Bross, Physics Status Solidi 2, 481 (1962).
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details of the perturbation, and it is hard to imagine
how such a theory could predict resonances at the same
place for dissimilar impurities. An interesting suggestion
has been recently made by Wagner" to explain the
results of Walker and Pohl; he discusses a three-phonon
scattering process in which a running-wave phonon is
inelastically scattered from a true local mode.

Gebhardt" found a very large low-temperature
thermal resistivity in KBr that was x-rayed at low

temperatures and thus contained negative ion vacancies
together with the anticenter, presumably an interstitial
halide ion. When the anticenter was an interstitial H
ion, the resistivity was an order of magnitude less.
The simplest explanation is that the anomalously
high resistivity was due to the interstitial halide ion. If
this be true, there could be no resonant scattering from
virtual modes because the expected changes in force
constant should be large and positive. This brings up
the possibility of hard-core scattering and the approxi-
mation of Eq. (34). The iz& in the denominator would
have a strong enough frequency dependence to give an
anomalous (i.e., non-Rayleigh) frequency dependence
to the relaxation time. Another possibility is that the
negative ion vacancy has one or more low-frequency
virtual modes that are somehow quenched by the
nearby presence of an interstitial H ion but not by a
nearby halide ion.
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TABLE II. Character table for the reducible representations
formed by even and odd combinations of displacements along the
12 (110) directions in the group 0.

Even
Odd

E 8C3 3C2 6C2 6C4

0=F2+L&+A1
0=F1+F2

splitting, which we take to be (110), (110), (101),
(101), (011), and (011). The eigenvectors are found
to be

Even Fs. 2 '[E(110)—E(110)],
2 [E(011)—E(011)],
2 *'[E(101)—E(101)].

Even A r. 6 i[E(110)+E(101)+E(011)+E(110)
+E(101)+E(011)].

Even F~: 3 '[E(110)+E(110)]—12 i[E(011)
+ E(011)+E (101)+ E(101)],

-', [E(011)+E(011)—E(101)—E(101)].
Odd Fs. —,'[O(011)+O(011)—O(101)+0(101)],

-', [—O(011)+0(011)+0(110)+0(110)],
—,'[—O(110)+0(110)+O(101)+0(101)].

Odd E&'r . -', [0(011)+O(011)+0(101)—0(101)],
sr [0(011)—0(011)+0(110)+0(110)]&

-', [0(110)—0(110)+0(101)+0(101)].

The eigenvectors e(z) are the coefficients of E(i) or
O(i) in the above expressions. The eigenvalues zz of gy
can be obtained from Eqs. (47), (48), and a slight
generalization of Eq. (50) in terms of the e(z). The
expressions to use are

Even Modes:

APPENDIX: EIGENVECTORS OF gT FOR CHANGED Zz(co' —ze)=2~ 'X 'p [p sin(k az)(8~&, z)e(z)]'
CENTRAL FORCE CONSTANTS TO (110) i

NEAREST NEIGHBORS && (s)gg' —(a' —ze) '. (A1)

We begin by the parity splitting of Eq. (46), where
now z refers to any of the 12 (110) directions. The
character table for the even and odd modes is shown
in Table II. Ke need only six directions after the above

"Max Wagner, Phys. Rev. 131,47 (19&3).

Odd Modes:

zz(&e' ze) =2&—u„'E ' P {P [cos(k az) —1](S~q z)e(z)}'

&& ((op)P aP ze) '. (A2—)——

Again, a represents the nearest neighbor separation.


