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Ultrasonic Attenuation in Superconductors for ql &1
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(Received 17 January 1963).

A derivation is given for the attenuation of both transverse and longitudinal ultrasonic waves in the
superconducting state for the case when the product of the ultrasonic wave vector times the electron mean
free path is smaller than one. It is assumed that the effect of electromagnetic Gelds is negligible in this fre-
quency range. For transverse waves it is found that the ratio of the ultrasonic attenuation coefBcient in
the superconducting state and the normal state is equal to twice the Fermi function of the temperature-
dependent superconducting energy gap, in agreement with experimental results obtained by Levy, Kagiwada,
and Rudnick. The same result is obtained for longitudinal waves.

INTRODUCTION

~'OR large values of q/, ql)1, where q=ultrasonic
wave vector and l= electron mean free path, ultra-

sonic attenuation of transverse waves experiences a
sharp drop when the temperature is lowered slightly
below T., the transition temperature of the super-
conductor. ' Usually, the magnitude of this drop is not
equal to the total attenuation due to electron-phonon
interaction in the normal state, the difference or residual
attenuation gradually decreases to zero as the tempera-
ture is lowered below T,. Morse' and Tsuneto' attribute
the sharp drop to the fact that the onset of the Meissner
effect screens the transverse magnetic fields proposed
by Pippard' in his derivation of ultrasonic attenuation
of transverse waves in the normal state. Morse and
Claiborne believe that the residual attenuation is pro-
duced by a collision drag interaction, that is, the as-
sumption that scattering produces a distribution which
is in equilibrium with the local ion motions accom-
panying the wave.

Recent experiments' on ultrasonic attenuation of
shear waves in the superconducting state when at&1,
indicate that the ratio of the attenuation coefficient in
the superconducting state and normal state, n, /cr, does
not experience the sharp drop that is observed when

q/) 1. Moreover, cr,/cr„appears to be a similar function
of the reduced temperature as is found experimentally
for longitudinal waves (see Fig. 1).

This paper will concern itself mainly with ultrasonic

attenuation in the superconducting state for transverse
and longitudinal waves when q/&1. It is proposed that
for transverse waves, because of the Meissner eGect, no
electromagnetic 6elds, in the sense of Pippard's fields,
will be set up, and that attenuation will be produced by
scattering processes only. For longitudinal waves it will

be assumed that potential gradients will be set up which
are produced by the density gradients which accompany
a dilatational wave. Again, any electric fields that are
produced by possible space charges, as postulated by
Pippard for the normal state, will be neglected. Their
effect will turn out to be negligible even in the normal
state. %ith these assumptions and using Boltzmann's
transport equation and the Bardeen, Cooper, and
Schrieffers (BCS) distribution function for the super-
conducting state, one may compute the rate of transfer
of energy from the superconducting electrons to the
lattice. This is equal to the rate-of-energy absorption by
the electrons from the ultrasonic waves, and, therefore,
yields the attenuation coefficient.
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' See, for instance, R. W. Morse, Progress inCryogenics (Hey. -
wood and Company Ltd. , London, 1959), Vol. I.' T. Tsuneto, Phys. Rev. 121, 402 (1961).' A. B. Pippard, Phil. Mag. 46, 1104 (1955). Pippard assumes
that the lattice vibrations produced by ultrasonic waves deform
the Fermi surface by setting up electric Gelds parallel to the propa-
gation direction. These electric Gelds may be produced, in the
case of longitudinal waves, by the fact that the small density
changes of the electrons and ions are not in phase and thus space
charges are produced. In the case of transverse waves, the elec-
trons do not follow the transverse lattice motion in phase, thus an
alternating magnetic Geld will be set up, which produces by in-
duction an electric Geld in the direction of motion of the lattice.

4 R. W. Morse, IBM J. Res. Dev. 6, 58 (1962).
6 M. Levy, R. Kagiwada, and I. Rudnick, in Proceedings of the

Eighth International Congress on I.om Tempera&re Physic
(Butterworth and Co., Ltd. , London, 1962).
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FIG. 1.Ultrasonic attenuation coefBcient of transverse waves in
the superconducting state for pl&1. The dots are experimental
points obtained while the temperature of the sample was increased
in discrete steps and the crosses were obtained while the tempera-
ture of the sample was decreased. Of I. is the total attenuation due
to electron-phonon interaction that the ultrasonic pulse ex-
periences in one round trip while the sample is in the normal state.
It is a constant throughout this temperature range. The propaga-
tion direction is along (110).The solid line is drawn according to
Eq. (8). These data were obtained from Ref. 5.

s 6 J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev.
108, 1175 (1957).
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TRANSVERSE WAVES

A method similar to the ones employed by Pippard'
and Holstein~ will be followed. Let us consider a trans-
verse ultrasonic wave propagating in the s direction
with a velocity v&' and an angular frequency, ~. The
wave vector is then q=tp/s~' Al. l variables associated
with the wave are multiplied by e""' &-"& and, therefore,

Since one assumes that the disturbance of the dis-
tribution function is small, one may de6ne f=fp+4.

From Eq. (2) one obtains

Bfp

[1+i«pr sqp—r cosg][1+«ps(T)/«')'t' BE

After neglecting terms in' ~r

—=16) '
)

B—=—=0 )
Bx

8—= —'lg .
Bs

(Bf sqmp'ru sing cosg co+ Bfp

k Bt „u r[1 iqsr—cosg)[1+«(T)/«)'t' BE

Since this is a shear wave there is no density change
associated with the wave. The local particle velocity
assumed in the y direction will be u. We shall also
assume an average relaxation time, v.

In order to take into account the motion of the
lattice, the collision term in the Boltzmann transport
equation is modified to

The rate of heat production due to collisions is given by'

where the average is to be taken per cycle.
If one assumes phonon drag~ then the Hamiltonian

is given by

EI=-,'m(v —u)'= —,'m(p' —2vu sin8 cosP+u").

Bf Bf—+sg—+8 gladvf =—
Bt Bs

f f-—
where f„ is the electron distribution corresponding to Therefore,

an average electron velocity equal to the local lattice 00

velocity. The Boltzmann transport equation becomes Q=
m~'u' sin'8 cos'8 cos'P

2r[b +cos 8)[1+«(T)/«] t

Bfp dgdgd«
X

BE (5'/2m')

Bf Bf f
(2)

where v, is the s component of the electron velocity v
and a is its acceleration which we assume to be zero
since we have postulated that there are no electro-
magentic fields present due to the Meissner eGect.
Therefore,

where

s singdpdgd«
dv=-

m (/t'/2m')

The distribution function for the superconducting state
is given by'

Approximating —E~ by —~, observing that the re-
sulting integral is even in e, and that v is positive, and
integrating with respect to 8 and P one obtains

f 1/(~E/kT+ 1) (3)

where E= [«'+«p'(T))'t', « is the energy of the normal
Bloch wave referred to the Fermi level Er and 2«p(T)
is the energy gap. The equilibrium value of E in the
disturbed metal is given by

27rssQ

r(/ss/2m') „(7)

which yields

B p

s'[ '+b'+ (b+b') -tan '(1/b)] dE,
BE

L~'= [(-,'m (v —u)s —Er, )'+ «ps(T))'"

Expanding f„about its equilibrium value in the un-
disturbed metal fp, one obtains

mpu sin8 co+ Bfp

[1+«p'(T)/«')" BE

where 8 is the angle between the electron velocity and
the propagation direction, and p is the azimuthal angle,
measured from the polarization direction.

T. Holstein, Phys. Rev. 113,479 (1959).

mN .'V 3 3
1+ ———+ tan q/ fp(«p),

7 2(q/)' 2 q/ (q/)'

where iV is the density of electrons in the normal state,
vp is the Fermi velocity, and l=vp7.

Since the ultrasonic attenuation coefficient is given
by

n = 2Q/pe'u',

One may neglect terms in our since the electrons that will be
involved in the electron phonon process are close to the Fermi
level and in this case cur = (p'/pplq/, where pp is the Fermi velocity,
which is usually about 300 times larger than the sound velocity.' E. I. Blount, Phys. Rev. 114, 418 (1959).
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where p is the density, one obtains for transverse waves

n„= (2m'/2/, 'p2. )L1—g$ fo(eo), (5)

where the subscript t refers to transverse waves, and

3 — 1
g= —+ tan 'q/ —1

2 (q/)' ql (ql)'

Finally, for pl&1,

n, l = (2m%/52l2'pr) (q/)2fo(ep) . (6)

For the normal metal ell ——0 and fo(eo) =—„therefore one
obtains

l2„,= (mE/52/l'p2-) (q/) 2.

This result agrees with Pippard's result for pl&1. The
ratio of the ultrasonic attenuation in the two states is
therefore given by

e2„/cx„,= 2fo(eo) =2/(e"/"r+1) . (8)

The solid curve in Fig. 1 is plotted according to Eq. (8)
using the BCS temperature dependence of the energy
gap. It is plotted for a zero-temperature energy gap,
2eo(0), of 3.5kT, .

Since neglecting the electromagnetic fields still gives
the proper value for the attenuation coefficient in the
normal state, one may conclude that its e6ect is negli-
gible for q/(1. It is probable that it has a noticeable
effect on the total ultrasonic attenuation in the normal
state only when ql& 1.In this instance one might expect
that in the superconducting state the screening due to
the Meissner effect would inhibit that part of the at-
tenuation which would be produced mainly by the mag-
netic fields. Assuming this to be the case, one may And

the magnitude of the drop near T, for q/&1 by sub-
tracting the value we have obtained for the whole

range, neglecting the electromagnetic fields, Eq. (5),
from that value obtained by Pippard for the attenuation
in the normal state,

1—
g cVm

g pit, y

thus, we would obtain for the drop hl2. =L(1—g)'/gj
X (Em/p2l&'r). This is the result obtained by Morse and
Claiborne using the Boltzmann equation and the
London equation. They felt that since the region of
interest for the attenuation drop is very close to T„ the
super conducting behavior could be reasonably ac-
counted for by use ~f the London equation. Their meas-
urements in aluminum for 0.8&pl&4.0 verify this re-
lationship. The ratio of the residual attenuation in the
superconducting state to the attenuation in the normal
state is

u„/n„, =2gfo(eo).

The ratio of the drop to the attenuation in the normal
state is given by 1—g, this is proportional to the fre-

quency squared for small values of q/' and approaches
unity for large values of q/. This is consistent with
Tsuneto's calculations for ql))1 which indicate that the
attenuation of transverse waves should drop to a very
small value near T,. For ql))1 the residual attenuation
according to Eq. (5) becomes independent of the fre-
quency. This result should not be too surprising, since
Pippard Ands that this condition occurs in the normal
state when the electromagnetic fields fall to a low value.
However, in the normal state this happens when the
skin depth becomes larger than the wavelength or when
cur becomes much larger than unity, while in the super-
conducting state it has already occurred when ql))1.

LONGITUDINAL VfAVES

For longitudinal waves the Boltzmann transport
equation becomes

Bf Bf
+2/s ++ gradwf =

Bt Bz
(9)

where f,„is the distribution function for the electrons
having an average velocity u in the z direction and
undergoing a small density change, e.

The acceleration produced by the density gradients
may be computed as follows:

1 gL'p sgvp~s
8= ———

m 8z 3Ã
cos0

ml/u cos8—(m222/ll2/3 V) 8fllf..=f0
L1+e 2 (2 )/62)l/2

From the continuity equation we know that the electron
current density is —can&', and since there are no space
charges set up it must cancel the lattice current density,
el'. Therefore, 22= Xu/2//', the subscript i refers to
longitudinal waves.

After neglecting terms in cur, we have

/8 f iump2/ cos'8 —(2/0'/32l) j 8f,
E R „,ll 2.Lb —i cos85[1+e (T)/e )'~ BL'

Now the rate of heat dissipation may be computed
according to Eq. (4). After integrating with respect to
8 and lt and neglecting higher order terms

AN'm

r (5'/2m')

Again let f=fo+f and, since f is small, grad, P may
be neglected and one obtains for f from Eq. (9)

—m2/u cos8+ (m222/02/31V) (1—iq22. cos8) 8fo

[1+g(dr 2q2/T cos8)$1+ e 2(2 ) /&21I/2 8j&
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which gives

and, 6naHy,

(qi)'fo(eo)
15p~)'&

For the normal state,

ot„t ——(ql)'.
15p'V~ 7

4N'mE
Q= (ql)'fo(«(T))

157.

between long-wavelength sound waves and electrons in
a metal is mainly electromagnetic. A similar result was
obtained by BCS for longitudinal waves for q/)1 by
computing the net rate of absorption of energy in the
superconducting state produced by direct absorption
and induced emission of the imposed acoustic phonons.
Since our result for the attenuation coefficient of longi-
tudinal waves is similar to that obtained by Pippard,
we may assume that the effect of the space charges may
be neglected even in the normal state for ql(1. How-
ever, when ql&1, the above derivation which neglects
space charges would not give the correct lilnit for 0.„.

This attenuation agrees with Pippard's result for longi-
tudinal waves for pl&1. Again the ratio is given by

~,t/~. t= 2fo(eo).

Tsuneto has obtained the same result by using a matrix
density formalism and assuming that the interaction
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Phonon Scattering by Lattice Defects*
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The Green s-function matrix method first developed by I. M. Lifshitz is applied to the problem of the
scattering of phonons by a localized perturbation in the lattice. The scattering can be described by a t matrix
that is localized to the same extent as the perturbation and has similar symmetry properties. The t matrix
can be written in terms of the perturbation matrix p and the Green s-function matrix g, perhaps most easily
in terms of the representation formed by the eigenvectors of the matrix g7, y; these vectors can often be found
by symmetry considerations. Two cases are of particular interest: (1) a "singular" perturbation which
leads to a t matrix independent of the strength of the perturbation, and (2) resonance scattering from a
low-frequency virtual local mode. The latter case is discussed for the example of decreased central-force
constants between (100) nearest neighbors and the impurity site. Some implications for thermal conduc-
tivity are mentioned.

I. INTRODUCTION

' 'I a series of papers that are as much as twenty years
~ ~ old, I. M. Lifshitz formally solved the dynamics of
a crystal perturbed by a defect. ' ' He assumed that the
normal modes and frequencies were known for the
unperturbed lattice, and by the use of the dynamic
Green's-function matrix was able to reduce the number
of degrees of freedom of the perturbed problem to a

~ Work supported in part by the U. S. Atomic Energy
Commission.

' I. M. Lifshitz, J. Phys. U.S.S.R. 7, 211, 249 (1943); 8, 89
(1944).

I. M. Lifshitz, Zh. Eksperim. i Teor. Fiz. 17, I01/ and 1076
(194/).

I. M. Lifshitz, Zh. Eksperim. i Teor. Fiz. 18, 293 (1948).
4 I. M. Lifshitz, Suppl. Nuovo Cimento 3, 716 (1956). This

English review article contains more references than those given
above.

manageable size, essentially equal to the number of
changes induced by the perturbation.

Subsequent work has been devoted mainly to one
aspect of the perturbed problem, namely, the appearance
of discrete frequencies belonging to lattice modes
localized around the impurity. ' ~ The Green's-function
matrix method may be readily applied to the electron
impurity problem if Wannier functions are used, as
shown by Koster and Slater."In this case, the local
modes correspond to bound electronic impurity states.

Lifshitz also discussed the problem of the remaining
modes which still have running wave character. '4 As

' M. Lax, Phys. Rev. 94, 1392 (1954).
6 E. W. Montroll and R. B. Potts, Phys. Rev. 100, 525 (1955).
7A. A. Maradudin, P. Mazur, E. W. Montroll, and G. H.

Weiss, Rev. Mod. Phys. 30, 175 (1959).
e G. . Koster and J. C. Sister, Phys. Rev. 95, 1167 (1954).' G. J. Koster, Phys. Rev. 95, 1436 (1954).


