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Curling, coherent rotation, and an appropriately defined buckling are proved to be the only three modes
which might yield numerically smallest nucleation field in ellipsoids of revolution (both prolate and oblate),
all the other possible eigenmodes yielding more negative nucleation fields. A lower bound for the buckling
mode in a prolate spheroid is calculated by neglecting the transverse magnetostatic self-energy. In contra-
distinction to the limiting case of an infinite circular cylinder, in which coherent rotation never takes place,
it is found that for prolate spheroid of any finite elongation, coherent rotation is the lowest eigenmode for
small enough radii. Upper and lower bounds are given for the critical radius under which coherent rotation
takes place, as a function of the elongation. Buckling is seen to take place at most in a rather small region
of sizes between curling and coherent rotation.

1. INTRODUCTION
' AGNETIZATIOX reversal in a previously

- ~ saturated ferromagnetic particle was shown by
Brown' to follow one of the eigenfunctions of a set of
linear partial differential equations with boundary con-
ditions. The reversal starts at a certain value of the
applied field, the so-called "nucleation field, " which is
the least negative eigenvalue of this set of equations,
and the reversal should follow the eigenmode associated
with this eigenvalue.

For the two limits of a prolate spheroid, namely, the
sphere and the infinite circular cylinder, Brown' could
guess two solutions, coherent rotation and curling. For
an infinite cylinder, Frei et al.' suggested another mode,
which they called "buckling. " They showed that the
magnetization could reverse by this mode more easily
than by coherent rotation. The mode they studied was
not an eigenmode of Brown's equation, which meant the
nucleation field it yielded could not be a minimum, and
a numerically smaller eigenvalue should have existed.
However, a rigorous calculation' showed the eigenvalue
was only about 1%smaller than the value yielded by the
buckling approximation, and the eigenmode highly
resembled the assumed function. This exact eigenmode
will, therefore, be referred to here as the buckling mode.

For an infinite cylinder, the whole eigenvalue spec-
trum of Brown's equations has been studied, ' and it was
found that only curling and buckling modes could yield
numerically smallest eigenvalues. The buckling yields
the numerically smallest eigenvalue when the cylinder
radius is smaller than about 1.1 A'"I, ' (where A is the
exchange constant, I, is the saturation magnetization),
while curling yields the lowest eigenvalue for a radius
larger than this value. In the other extreme case of a
sphere, it has been proved4 that the lowest eigenmodes

' W. F. Brown, Jr. , Phys. Rev. 105, 1479 (1957). For a more
complete list of references, see A. Aharoni, Rev. Mod. Phys. 34,
227 (1962).

~ E. H. I'rei, S. Shtrikman, and D. Treves, Phys. Rev. , 106, 446
(1957).

'A. Aharoni and S. Shtrikman, Phys. Rev. 109, 1522 (1958).' A. Aharoni, Suppl. J. Appl. Phys. 30, 70 (1959).

are coherent rotation and curling, where the former is
the lowest for a radius smaller than abouts. 4A'"I, ',
while the latter is the smallest above this radius.

The coherent rotation is an eigenmode for the general
ellipsoid, in particular, for the prolate spheroid discussed
here. ~ The curling is also an eigenmode of an ellipsoid of
revolution, and its eigenvalue has been calculated for
the general prolate spheroid, as a function of elonga-
tion. 4 In the Sec. 2, we shall show that just another
eigenmode, analogous to the buckling, should be added
to the picture, and all the other possible modes yield
eigenvalues which are more negative than these three,
so that they can never be reached. In Sec. 3 this buckling
mode will be treated approximately. This approxima-
tion will be seen to yield reasonably close upper and
lower bounds for the critical size for coherent rotation
("single domain" behavior), and a lower bound for
curling. Finally, in Sec. 4 some aspects of the analogous
problem in oblate spheroid will be outlined.

2. CURLING AND HIGHER MODES

Consider a prolate spheroid made of a ferromagnetic
material, and let its axis of symmetry be chosen as the
s axis. Let the external 6eld B be applied along the
s axis, which is also assumed to be an easy axis for
magnetocrystalline anisotropy energy, which can be
either cubic or unidirectional, with a coeScient E.Let
the direction cosines of the transverse magnetization, in
a cylindrical-coordinate system r, p, s, be n„and o.„,and
let U be the potential of surface and volume charges due
to transverse magnetization. It is then seen, by following
the derivation of the equations, ' that in cylindrical
coordinates the Brown equations are essentially the
same as for the infinite cylinder, except for including the
demagnetizing field due to surface charges in the
saturated magnetization state along s. The nucleation
field, H„, is thus the least negative eigenvalue, II, of the

W. F, Brown, Jr. , Magnetostatic Principles in Ferromagnetism
(North-Holland Publishing Company, Amsterdam, 1962),Chap. 6.
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following set of equations:

(qfs —]—'—7rssh)n„—2t 'Bn /By 7—rSBu/Bt= 0) (1a)

(7"—t—'—srs'h)n, +2t 'Bn /By mrs—t 'Bu/By=0, (1b)

V"u= 2SPan„/Bt+t '(n—, Bn—„/Bs )),
inside the spheroid. Outside, the potential fulfills the
Laplace equation

V"N.„g=0.
On the boundary,

than the curling. One can, therefore, conclude that for
m =0 the lowest eigenvalue is obtained for u =n„=0 and
is the eigenvalue of (7).

For m~&2, when the transverse magnetostatic self-
energy is again dropped and (6) is substituted in (1) and
(3), one obtains the following two separate equations:

—Bs 1 B (m+1) Bs

+ + —srS'h (A &A,) =0 (8a,)
Bts t Bt t' Bp'

Here

where

Bn,/Brt= Bn„/Brt= 0,

Nln= lout p

2Sn~ =But~/Brt Buo&e/BN .

8 1 t3 1 8
+ + +

Bt' t Bt t' By' Bp'

t=r/Z, p=./Z S=m A 't"-. -

(3a)

(3b)

(3c)

(4)

with the boundary conditions

B(A„&A„)/Bn=O. (8b)

These equations are the same as the curling equation
(7), except for the factor multiplying t ', w—hich is
larger for m~&2 than for the curling. They, thus, come
under the following mathematical theorem proved by
Titchmarsh':

Let the equation

II A &V

h= +———,2l. I.' 2' 27t-A'"

-8' 1 8 1
+ + —srS'h A =0

Bt' t Bt ts Bp'
(7a)

with the boundary condition

BA „/Bn =0. (7b)

This is the equation for the curling mode, the eigen-
values for which have already been computed for the
case of a prolate spheroid, 4 and are reproduced in Fig. 1.
The other equations and boundary conditions, involving
A, and V need to be treated, since it is readily seen that
by dropping the positive term of transverse magneto-
static self energy, these equations reduce to (7). There-
fore, if this term is retained in the energy, the nucle-
ation field for this other mode cannot be less negative

E is the radius of the spheroid in a direction perpen-
dicular to s, e is the normal to its surface, and E is the
demagnetizing factor along s.

Because of the cylindrical symmetry, the p depend-
ence can be readily separated by writing

n„=A „(t,p) cos(m y —yp),

n„=A „(t,p) sin(m y yp), — . (6b)

u= V(t,p)cos(my —yp), (6c)

where m is an integer, so that the q dependence has the
necessary periodicity of 2sr. It is seen that by using (6),
the variable p can be eliminated both from the equa-
tions and the boundary conditions. They can, therefore,
be solved separately for every integral value of m.

If m=0, the equation for A„ is separated from the
rest and is

['V+X—q(xt, xs, )jr=0
be defined in any region E, with the boundary condi-
tions' B$/Brt =0. Then each of its eigenvalues, h, is non-
decreasing as q is increased, i.e., when q is replaced by
any other function of spa, ce Q(xt, xs, ), provided q~& Q
throughout L', .

In particular, in our case, —h for Eq. (8) cannot be
smaller than the corresponding —tt for Eq. (7). Thus,
for m~&2 no eigenvalue can be numerically smaller than
for the curling, even when the transverse self-magneto-
static energy is dropped, even less so when this energy
is retained.

It has, thus, been proved that for mA1 in (6), the
lowest eigenmode is the curling as given by (7). It
should be noted that the proof did not use the prolate
shape, although the cylindrical symmetry is essential.
Thus, the proof applies to oblate as well as to prolate
spheroids. It also covers special cases of it which were
proved separately for the cylinder, ' the unidirectional
cylinder' and the sphere. ' It also applies for the case
when E is a function of space and, thus, includes a
recent model for nucleation around dislocations, ' where
a special case of this theorem was proved numerically.

Besides the curling, one is, thus, left with the case
m= 1.In the infinite cylinder' this yielded two modes of
interest, namely, the coherent rotation and the buck-
ling. We shall, therefore, give the name "buckling" in
this case too, to the mode, orthogonal on the coherent

6 E. C. Titchmarsh, Eigenf Unction Expansions Associated with
Second Order Degerenteal Eqeatt'oes (Oxford University Press,
London, 1958), Part II, pp. 88—90.

The theorem is stated in Ref. 6 for boundary conditions /=0.
However, its proof uses only the condition that &8$/Be vanishes
on the surface of E, and can, therefore, be used for either one of
these boundary conditions.

A. Aharoni, E. H. Frei, and S. Shtrikman, J. Appl. Phys. 30,
1956 (1959).' C. Abraham and A. Aharoni, Phys. Rev. 128, 2496 I', 1962).
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rotation, which yields the numerically smallest eigen-
value when m= 1. This will be treated in the next part.

p
—$~(f 2 1)—1/2 (10b)

where &
= &o Lwhich is a prolate spheroid with radii 1 and

$O()o' —1) "', respectively, in the reduced t,p coordinate
system) represents the surface of the ferromagnetic
particle. The equations inside the material, i.e., for
$~&$o are then

{~'—4(e—")(1—")-'(e—1)-'
+c'($' —g') }Bg+~M(Lg —L2) V = 0, (11a)

3. MAGNETIZATION BUCKLING

Let (6), with m = 1, be substituted in (1), (2), and (3),
changing over from the parameters A„,A~ to

By=A„+2„, B2=A„ (~)

Let the cylindrical coordinate /, p, be transformed to
prolate spheroidal coordinates" according to

=( —n')'"(t'- )'"(to' —) "' ( oa)

Being an eigenmode, it should be orthogonal on all the
other eigenmodes of the set of Eqs. (11), (14), and (15).
The buckling mode, according to our definition, is thus
the solution of this set of equations, which is orthogonal
to (16), and yields the smallest eigenvalue c.

It is always possible to expand the solution as a series
in a complete orthogonal set of functions. We chose
these functions to be the eigenmodes of the homogeneous
part of (11a) and (11b) with the boundary conditions
(15a). This implies"

Bg PP a——
/,.S,„(c/.."&, g)R2„"&(c/.„"',P) (17a)

+=2 k=1

B2= 2 2 &a So (c/ «', n)~0."'(c~ "', 5)
n=l k=1

+Z 40Soo(c/, 0"', g)RMo& (c~o&'&, $) . (17b)
k=2

Here ck & ~ are the zeros of the derivative of R „"& in
increasing order, i.e.,

{V'+c'(P—
vP) }B2—md' (Lg+L2) V= 0, Ld&="'("-'"',5)/dHt «=o,=c~+~,-'"' c~-'"'. (Ig)

8 8 8 c)
~'= —(P—1)—+—(1—~')—,

8$ 8$ Bg Bg

—((2 ~2) (1 ~2)
—1/2 (P2 1 )

—1/2

(12a)

(12b)

L~= (8 1)'"(1 —n')'"(( ~—/~8 n~/&n), —(12c)

c'= vrS'h($—0' 1) ', —

M =S (pop —1) '".
In the same way, one obtains

(13a)

(13b)

{~'—(P—~')(P—1) '(1—~') '}V=0 k&ko (14)

and on the boundary, $= $o.

BB,/8( =BB2/8)= 0 (15a)

V; =V.„g (15b)
8 V;„/8$ BV,„t,/8—$

=M(B/+B2)(o($O 1) / (1—g2) / (15—c)

One solution of this set of equations can be written
immediately, namely,

81=0, 82——const,
V;„=(c2B2/27rM) (1 7p)'/ (p 1)'/ . (—16a)—

This is the coherent rotation. It yields, after using the
boundary conditions, the eigenvalue

—h„=$0{$0 '/'(&0' —1) 1nL(to+1)/(to —1)$}. (16b)

' Carson Flammer, Sphe~oidat S'ave Functions (Stanford
University Press, Stanford, California, 1957}.

{~'—(P—n')(~ —1) '(1—n') '}V
—3II{2LgBg+Lg(Bg+B2)}=0, (11c)

where

c=ck &" or c=Gk (2)

whereas the curling eigenvalue was4 in the present
notation,

C= C11~".

"The notations used here are according to Ref. 10.

It should be noted that in the second sum of (17b), the
summation starts with k =2, rather than k = 1. This
means that the term with c10(" has been excluded from
the expansion. However, c1o( ~=0, and

Rpo&'/ (O, t) =Spp(O, g) = 1,

which means that the term missing in (17b) is a con-
stant. Now, 82= const is the coherent rotation, and as
mentioned before, is orthogonal on all the other eigen-
functions, and can thus be treated separately. The
expansion (17) is, therefore, the most general form for
the solution of our set of equations, which does not
include the coherent rotation mode.

In principle, (17), (14), and (15) determine uniquely
the potential V, both inside and outside of the spheroid.
When substituted in (12), one should, therefore, obtain
a set of algebraic linear equations in the parameters
ak, bk, then obtain an equation for the eigenvalues by
equating to zero the determinant of the coe%cients of
ak„and bk . However, this is cumbersome. Instead, we
shall get just a lower bound for the buckling eigenvalue,
by neglecting the transverse magnetostatic sen-energy.
It is readily seen from the derivation of the equations,
that neglecting this energy means writing V=O in
(11a), (11b) and disregarding (11c), (14), (15b), and
(15c).In this case the determinant is diagonalized, and
one obtains for the eigenvalues
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According to the theorem of Titchmarsh, mentioned
in Sec. 2,

smallest es„&"&~smallest oj,„&'l &~ smallest cs„lsl, (19)

so that one need consider only the smallest of the eigen-
values

I4

I.2

I.O

c=cg~, e~&1, or c20 (2o) 0.8

[since otstsl has been excluded from (17), before neglect-
ing the magnetostatic energy).

In the analogous treatment of the sphere, 4 all the
eigenvalues analogous to (20) were not smaller than the
curling eigenvalue [this does not contradict (19), since
the smallest eigenvalue has been rernovedj. For the
sphere, therefore, the buckling eigenvalue is larger than
the curling one, and can thus be ignored. This is not the
case for prolate spheroid, where (20) yields eigenvalues
smaller than those of the curling. Using tabulated
spheroidal functions, and their expansions' the smallest
eigenvalue, cia(", was computed. It is plotted in Fig. 1
as a function of the elongation, m=$s($s' —1) '", to-
gether with the curling eigenvalue for comparison.

It is seen from Fig. 1 that the buckling eigenvalues
are always smaller than the curling ones (except for the
sphere, m=1, where they are equal). However, this is
only a lower bound, and the actual buckling eigenvalue
should certainly become larger than the curling ones, at
least for large enough S. It is even possible that for
certain elongations the buckling eigenvalue would turn
out to be larger than the curling one for every S, as is
the case for the sphere. Near the sphere, i.e., for not too
elongated particles, the difference between the two
curves of Fig. 1 does not justify going into detailed
calculations of the complicated buckling mode. When
1/m~0, i.e., for very elongated particles, the difference
between the curves becomes much larger. However, in
this region the behavior cannot be essentially diferent
from that of the infinite cylinder, where it is known'
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FIG. 1. The reduced nucleation 6eld h„ in terms of the reduced
radius S, both defined in (5), as a function of the reciprocal of
elongation, 1jrN, for a prolate spheroid.
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Fn. 2. Upper and lower bounds of the critical reduced size S,
de6ned by Eq. (5), for coherent rotation, as functions of the
reciprocal of elongation, 1/ra, in a prolate spheroid. The possible
modes in the three regions separated by the curves, are marked on
the figure.

that the buckling eigenvalues are very close to coherent
rotation, so that again detailed calculation does not
seem necessary.

The siinplest mode to treat theoretically after nucle-
ation is the coherent rotation, and has, therefore, been
used in many calculations. From Fig. 1 we can get upper
and lower bounds for the size for which these calcula-
tions are valid, by equating each of the modes to the
coherent rotation eigenvalues. The results are plotted in
Fig. 2. In this figure the lower curve represents the size
in which coherent rotation nucleation fields just equals
that of the lower bound for buckling. Below this curve,
therefore, the coherent rotation is the lowest mode. The
upper curve represents the radius at which nucleation

by coherent rotation equals that by curling. Above this
curve, therefore, coherent rotation can no more take
place. Again, the upper and lower bounds are reasonably
close together to give a good approximation for the
critical size, especially since the two extremes (m=1
and m= co) on the lower curve are exact. In particular,
it is seen that for the range of superparamagnetism" the
use of coherent rotation is justified, except for the very
elongated particles.

Above the upper curve in Fig. 2, either buckling or
curling can take place. However, for the infinite cylin-
der, the turn over from buckling to curling is only very
slightly above this curve, and for the sphere no buckling
takes place at all. It can, thus, be assumed that just
above the upper curve, curling gives the lowest nucle-
ation, thus restricting the buckling to part of the region
between the curves, which can be regarded as an in-
significant transition region between curling and co-
herent rotation.

'2 C. P. Bean and J. D. Livingston, J. Appl. Phys. 30, j.20S
(1959).
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4. REMARKS ON OBLATE SPHEROID

The calculations of Sec. 2 apply to oblate as well as to
prolate spheroids. In this case too one has therefore just
the curling, represented by (7), the coherent rotation
which is known, and the mode analogous to the buckling
treated in Sec. 3, which can be readily represented by
transforming (11), (14), and (15) to oblate spheroidal
coordinates. The fact that the curves in Fig. 1 cut at the
sphere shows that for oblate spheroids the mode shown
in Fig. 1 is higher than the curling, since it seems un-
likely that the curves would cross again. However, it is

possible that one of the other eigenvalues, which is
larger for prolate spheroids, would also cross these
curves at the sphere, and would thus become smaller
than curling for oblate spheroids, so that there still
exists the possibility of a third mode. For lack of ade-
quate tabulation of the oblate functions, this possibility
could not be checked.
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Measurements are reported of the dependence of the resistance (at 4.2'K) of high-purity polycrystalline
indium wires on the wire diameter. Data, which were taken on recrystallized wires extruded through dies
of various sizes, and also on a single extruded wire gradually reduced in diameter by etching, are compared
with those of Olsen. It is pointed out that any variation of the bulk electron free path over the Fermi surface
must be taken into account in the analysis of size effect data on wires unless they are extremely small in
diameter. A calculation of the size effect at O'K in monocrystalline wires and in "unidimensionally" poly-
crystalline wires having a diameter large compared to the mean free path is made for an arbitrary Fermi
surface and free path anisotropy. The result of the calculation for the polycrystalline case, which is limited
to metals having isotropic bulk conductivities, is similar to the Fuchs-Dingle result for the isotropic case
except that the effective resistivity is much more strongly size dependent when a large mean free path
anisotropy exists. It is concluded on the basis of this derivation that the size effect data on indium wires
and anomalous skin effect data can be reconciled if a large anisotropy in the mean free path exists.

INTRODUCTION

HE dependence of the resistance of circular wires
on diameter has been studied theoretically' ~

and also experimentally' ~ for several metals. Experi-
mental data of this type have frequently been analyzed
by means of the Nordheim-Fuchs-Dingle' ' formula,

Pen = Ps+rrPat! d,

which (assuming diffuse surface scattering) expresses

*Present address: Department of Physics, Ohio State Uni-
versity, Columbus, Ohio.

' K. Fuchs, Proc. Cambridge Phil. Soc. 34, 100 (1938).' R. B. Dingle, Proc. Roy. Soc. (London) A201, 545 {1950).' E. H. Sondheimer, Suppl. Phil. Mag. 1, 1 (1952).
4 B.Luthi and P. Wyder, Helv. Phys. Acta 33, 667 (1960).' F. J. Blatt and H. G. Satz, Helv. Phys. Acta. 33, 1007 (1960).
B. N. Alexandrov and M. I. Kaganov, Zh. Eksperim. i Teor.

Fiz. 41, 1333 {1961))translation: Soviet Phys. —JETP 14, 948
(1962)j. The result appearing here differs from ours by a factor
of A because we consider the Fermi surface in ff: space rather than
the similar surface in p space.

M. Ya. Azbel' and R. N. Gurzhi, Zh. Eksperim. i Teor. Fiz,
42, 632 (1962) Ltranslation: Soviet Phys. —JETP 15, 1133
(1962)7.

s J. L. Olsen, Helv. Phys. Acta 31, 713 (1958).' f, , R. Weisberg and R. M. Josephs, Phys. Rev. 124„36 ()961).

the effective resistivity, p, ff, of the wire in terms of the
bulk resistivity, pb, the mean free path, /, and the diame-
ter, d. n is a dimensionless function of f/d which is
unity in the Nordheim formula and varies from 0.75 to
1 as f/d goes from zero to infinity in the Fuchs-Dingle
formulation. Equation (1) is often used to calculate the
product phd and the mean free path from size effect
data. ' The value of pbbs obtained in this way is usually
considerably larger than the value derived from
anomalous skin effect data on polycrystalline samples.

The purpose of this paper is to report measurements
of the size effect in polycrystalline indium wires and to
point out that Eq. (1) is not applicable to these data.
An equation similar to (1) fEq. (1c)$, which is believed
to be valid for the residual resistivity of thick "one-
dimensionally" polycrystalline wires of metals having
arbitrary Fermi surfaces and an arbitrary dependence
of the free path l(kf) (averaged over all ftnal wave
vectors), on the initial wave vector is derived. This
formula is probably more appropriate to the case of
"annealed" polycrystalline wires than is Eq. (1).

' J. L. Olsen, Electron Transport in Metals (Interscience Pub-
lishers, Inc. , New York, 1.962), Chap. 4, p. 84.


