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Influence of Localized Modes on Thermal Conductivity*
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The curves of the thermal conductivity versus temperature of some insulating crystals (alkali halides)
which are doped with certain impurity centers exhibit a distinct indentation. This suggests a relaxation
time of some resonance nature, which is independent of the temperature for molecular impurity centers
(KCl:KNO&, measured by Pohl) and temperature-dependent for monatomic disturbances (KCl:NaCl,
etc. , measured by Walker and Pohl). In this paper a theory is given for the influence of inelastic scattering
of phonons at localized modes outside the band and at quasilocalized modes inside. The calculated relaxation
time for the third-order process (kX)+(k'X') ~ (s), describing phonons and localized quanta, respectively,
has been tested on the experimental data in the preceding paper by Walker and Pohl; from the very good
agreement one may conclude that the indentation effect is quantitatively due to this scattering process.
The analysis is also done for the scattering of phonons by internal modes of molecular perturbations. The
relaxation time for the second-order process (kX) ~~ (o), (o) =internal quantum, is independent of tem-
perature and of resonance form as observed for KCl:KNO&.

7.. 1

(to 2 ~2)2+ (A/w)2~ 2~2
(1b)

Although the formulas (1a) or (1b) did fit the re-
spective measurements rather well, there was no
specific theoretical model which would support these
postulates. The aim of this calculation is to give an
atomistic model of the resonance-scattering process and
a theoretical calculation of the proper relaxation time.

*Supported by the U. S. Office of Naval Research.' R. O. Pohl, Phys. Rev. Letters 8, 481 (1962).'C. T. Walker and R. O. Pohl, preceding paper, Phys. Rev.
131, 1433 (1963).

I. INTRODUCTION

ECENT measurements by Pohl' have shown that
the thermal conductivity of KC1 crystals con-

taining small concentrations of KN02 exhibits a distinct
(resonance) indentation in curves of temperature de-
pendence, which changes with the N02 concentration
and is considerably different from the shape of the
"pure" KCl thermal conductivity. Figure 1 shows
experimental results.

Pohl suggested that a relaxation time r, of the form

A(o'
+S (1a)

(pop2 to2)2+(A/2r)2eop2to2

be assumed for the relevant scattering process, as
would characterize some resonance. With this phe-
nomenological assumption it was possible to explain
the structure of the curves in Fig. 1 by a suitable choice
of the constants A and coo, A can be varied over a wide
range A)0 without altering the result noticeably.
(Pohl found cop=22rX10" sec ' most favorable for the
system KCl: KNO2. )

There are, however, other systems, e.g. , KCl:NaCl,
KCl: CaC12, KC1:KI, etc. , whose thermal conductivity,
as measured by Walker and Pohl, ' show waviness
similar to Fig. 1. Here, the shape of the curves can be
described only by an additional relaxation time 7,
which is temperature-dependent, for instance,

c4T N

&total i &i (2)

cannot give any waviness in the temperature depend-
ence of the thermal conductivity. The indentation in
the curves and resonance expressions of the form
1(a), (b) must be ascribed, therefore, to nonelastic or
resonant-scattering processes where energy may be
scattered out of or into a particular part of the phonon
spectrum. An example is the resonance interaction
between phonons and the electron spin of paramagnetic

3 In his important paper of 1951,P. G, Klemens (Ref. 15) noted
that the thermal conductivity of elastic-phonon scattering proc-
esses at imperfections may be decomposed into two parts, g=yz
+x», both exhibiting a peak at possibly different temperatures,
if one takes into account the interaction of different polarization
branches /longitudinal (I) and transversal (II)g by means of
Normal processes. This superposition might possibly give rise to
an indentation in the over-all shape of the curves.

However, Klemens has stated that in the case of regular crystals
xz((zzz except for very low temperatures at about 2'K, so that
an indentation at about 10 K seems to be unlikely (Pohl, Walker).
Moreover, the decomposition xz+xzz can be done only by an
approximation which is often very poor, especially for relaxation
times, which vary strongly with frequency (mass differences,
e.g,), as pointed out by Carruthers (footnote 39 of Ref. 6). A
more accurate calculation of the Normal process is very compli-
cated and has not yet been carried out. If one neglects Normal
processes for all scattering processes which are connected with
imperfections, our statement holds, that for elastic-scattering
processes there are only monotonic-relaxation times.

P. G. Klemens, in Handbuch der Physik, edited by S. Flugge
(Springer-Verlag, Berlin, 1956), Vol. 14-1, p. 198.

P. G. Klemens, in Solid State Physics, edited by F. Seitz and
D. Turnbull (Academic Press Inc. , New York, 1958), Vol. 7, p. 1.

'P. Carruthers, Rev. Mod. Phys. 33, 92 (1961).
7 H. Bross, Physica Status Solidi 2, 481 (1962).
2 R. E. Peierls, Quantum Theory of Solids (Oxford University

Press, New York, 1955).
' J. Callaway, Phys. Rev, 113, 1046 (1959).

Until recently the existing calculations showed that
any elastic-scattering process of phonons has a mono-
tonic-relaxation time (T to rt negative or positive). '
Excellent presentations of these calculations are given
in the review articles by Klemens, "Carruthers, ' and
Bross~ and in a book by Peierls. ' A superposition of
such monotonic-relaxation times, r, , according to the
law'
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FIG. 1. Thermal conductivity of KCl doped with different con-
centrations of KNO2 as an example of the influence of inelastic
phonon scattering at localized modes. LMeasurements by Pohl
(Ref. 1).]

ions, which has been observed recently" "and analyzed
theoretically by Qrbach. "

As seen by the experimental results, ' ' the indentation
in the curves depends on the concentration of the
impurity centers in the host lattice, thus demanding
that the eGect be due to these impurities. This means
that in addition to the Rayleigh scattering of the
phonons at the impurity center" "with ~ co ' there
must exist another scattering mechanism. One is led
at once to suspect that we should consider the inelastic
scattering of phonons at localized modes.

These modes are unable to transport energy (heat)
and can make no contribution to the heat current.
Nevertheless, they inhuence the heat current because
they may be excited by annihilating phonons (which
reduces the heat current) or de-excited by creating
phonons (which increases the heat current). We can

m E. D. Tucker, Phys. Rev. Letters 6, 183 (1961).
"D.I. Bolef and R. B. Gosser, Proc. Phys. Soc. (London) 79,

442 (1962).' I. P. Morton and H. M. Rosenberg, Phys. Rev. Letters 8,
200 (1962).

'3 R. Orbach, Proc. Roy. Soc. (London) A264, 458 (1961).
'4 P. G. Klemens, Proc. Phys. Soc. (London) A68, 1113 (1955)."P.G. Klemens, Proc. Roy. Soc. (London) A208, 108 (1951).

expect that these scattering processes are responsible
for the indentation in the curves of the thermal
conductivity.

2 Q ~n+n +2 Q +nm +n +m (3)
ni nmij

where M„=M for the regular atom and M =M, for the
disturbance in the center Li, j= 1, 2, 3; n =a (nr, ns ns);
n;=0, 1, 2 j.

The Schrodinger equation is solved if we know the
normal modes of the oscillating lattice. For the ideal
crystal we can find them as standing or propagating
plane waves by postulating (instead of the exact bound-

ary conditions) the well-known periodicity condition.
The solution for the defect lattice, however, is much

more complicated. In fact, very little is known quanti-
tatively about localized modes although a large amount
of important work has been done within the last
years. "" In principle, the problem is solved by the
fundamental work of Lifshitz ""on the one hand, and
of Montroll and Pot ts'~ on the other, but the explicit
calculations which have been published" " are re-
stricted to special simplified cases because of the im-

mense mathematical difficulties. At this writing there
are some new developments on scattering problems" '4

which, though apparently diBerent in approach, are
compatible with our development here.

Accordingly, we survey some general results" for
the normal modes of the defect lattice. Under certain
conditions which we need not consider here one has the
possibility of discrete-localized modes in the gap be-
tween the acoustic and the optical band and above the
optical band. These modes outside the bands are the
"true" localized modes.

Apart from these singular solutions the alterations
within the acoustic band are most interesting. Accord-

"I.M. Lifshitz, Nuovo Cimento, 3, Suppl. A1, 716 (1956)."E. W. Montroll and R. B.Potts, Phys. Rev. 100, 525 (1955);
102, 72 (1956).

' A. A. Maradudin, P. Mazur, E. W. Montroll, and G. H.
Weiss, Rev. Mod. Phys. BO, 175 (1958).

's J. A. Krumhansl, Suppl. J. Appl. Phys. BB, 307 (1962).
' I. M. :Lifshitz, Zh. Eksperim. i Teor. Fiz. 18, 293 (1948).
~' R. L. 73jork, Phys. Rev. 105, 456 (1957).
"H. B. Rosenstock and C. C. Klick, Phys. Rev. 119, 1198

(1960).
2' J. Krumhansl (to be published).
'4 M. V. Klein (to be published).

II. LOCALIZED MODES

To simplify the calculation as much as possible, we
assume the insulating host crystal to have cubic struc-
ture (which is the case for all crystals in which the
aforementioned resonance effect has been found) and
only one atomic mass (which is a fairly good approxi-
mation for KCl: MK ——39.1 a.u. Met=35. 5 a.u.).As our
physical system we can take a cubic region of N'
lattice points in the center of which is a point defect
of mass, M, . Then the Hamiltonian in harmonic ap-
proximation is given by
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ing to Iifshitz" the eigenvectors are no longer pure
plane waves; they contain also a term which is approxi-
mately radially symmetric to the imperfection center.
However, these Lifshitz solutions can still be char-
acterized by a wave vector k and a polarization X be-
cause of the plane-wave part, and because of the fact
that the new k values lie between the ideal k values in
such a manner that the density in k space is conserved.
Moreover, the spectral density is also unchanged /only
one solution a&(k) lies between two neighboring solu-
tions of the ideal latticej.

In most regions of the acoustic spectrum the plane-
wave part is predominant and we may still speak ap-
proximately of phonons. There may, however, occur
small regions within the band in which the localized
part is much more important than the plane-wave
part. "Very recent calculations of Krumhansl2' on the
one hand, and Klein'4 on the other, have demonstrated
this in great detail. They have shown that the scat-
tering cross section of the phonons may have a reson-
ance peak within the band. This means that the co-
herent second-order process

(kx) ~ (k'x')

is no longer a pure Rayleigh-type scattering and the
relaxation time is modified by a resonance factor.

However, the scattering process (4) apparently can-
not explain the experimental results of Walker and
Pohl on KCl: KI, etc., because the required relaxation
time must depend on temperature $Eq. (1b)]. It is
natural, therefore, to consider other mechanisms such
as a third-order process, but we then have to explain
why the second-order process (4) might be less
important.

The explanation is probably that in these systems
the mass or strain defect strength is not sufhcient to
lead to a pronounced resonant scattering within the
bands; whereas for Ii centers or U centers there would
probably be pronounced resonant scattering of the
elastic type.

Let (gkk, g,) be the exact set of eigenvectors for the
disturbed lattice (g, represent the singular localized
modes outside the bands). Then the heat current takes
the form,

Q Q Nkx&Nkxvkx' Akx q

kX

where Nkk is the quantum number of the mode (kX),
whereas vk), is the group velocity for the plane-wave
solutions of the ideal lattice. Q does not depend on the
singular localized modes outside the bands. The func-
tion Ak), gives the deviation from the ideal case which
depends on the exact scattering solutions. In the un-
disturbed lattice we have Akq=—1 and we are back to
the well-known expression of Peierls. " If there are
impurity centers, Akq has a minimum value & 1 in the

"R. Brout and W. Visscher, Phys. Rev. Letters 9, 54 (1962)."R.Peierls, Ann. Physik 8, 1955 (1929).

(&kk/&8) ~

The advantage of this conception is that we are now
back in the phonon picture in lieu of a description in
terms of the exact eigenmodes; this is necessary to set
up the Boltzmann equations, because it is dificult to
formulate the diffusion otherwise than in terms of
plane-wave packets. Yet, it is important to note that
the theory will contain two adjustable parameters, G,
and co„ the calculation of which is a task for future
investigations.

According to our concept we adopt as the basic sys-
tem the approximate eigenvectors,

(nkk"')+ (g.), (6)
where (it,) includes the true localized modes outside
and the quasilocalized modes inside the bands. Expres-
sion (6) is no longer an orthogonal set, but naturally it
has to be still a complete system in the 3S' space.

The interesting third-order processes are

(kx)y (k'x') ~~(s), (7a)

with the law of energy conservation,

(o(kx)+co(k'x') =a)„ (7b)
and

(kX)y (s) (k9,'), (Sa)

(a (kX)+co,= (u (k'X'), (Sb)

which latter is only realistic if co, lies within the band.

same region in k space where there is a resonance in
the scattering cross sections of phonons as calculated
by Krumhansl'3 and Klein. "

This consideration demonstrates that a third-order
process may produce a large e6ectively resonant in-
fluence because two modes (kX), (k'X'), lying in regions
where hk&=1, may combine to a mode (k"X") with
D~"q &&1, which reduces the heat current, and vice
versa.

From these preliminaries we are led to suggest a
simple conceptual device which allows us to simplify
the mathematical description and make contact with
the standard formulation of a Boltzmann equation.
We introduce the following approximation:

(a) We define a region of G, modes around the reso-
nance frequency co„ for which we put Ak&=0.
Then these modes do not contribute to the heat
current and may be considered as "quasilocal-
ized" modes because of this similarity to the
true localized modes outside the bands, and their
eigenvectors q, have no longer a traveling part.

(b) Outside the defined region we take the ideal
phonon solutions gk), (') instead of the real modes
and put, Aky = 1.

Thus, the heat current can be written in the old form
of Peierls, but the G, k values in the defined vicinity
around co, have to be rejected from the summation,

Q Q NkXAMkkvkk (Sa)



1446 M AX KAGN ER

III. THE HAMILTONIAN

For the Hamiltonian (3) we introduce the substitution,

Ho o Q ~ooked (akim akk+akkakk )
kP

+-', P Aoo, (a,ta, +a,a,t) . (12)

H;„,"' includes (a) the Rayleigh scattering (k,X) +~
(k'X') at the imperfection which is already well known'4 "
and need not be considered here; (b) the scattering
(kX) &~ (s), which is not able to conserve energy ac-
cording to our model; (c) the scattering a,mong the
quasilocalized modes (s)+~ (s'), which might be of
some secondary influence on the processes (7, 8), if
these. latter differ strongly for two quasilocalized modes
s and s', but this is not to be expected in view of the
fact, that the modes s have the same radial symmetry;
and 6nally (d) double creation or annihilation of both
a phonon and a localized quantum, which strongly
violates the energy conservation.

It is necessary, of course, to make sure, that H;„&&"

can be treated as a perturbation. This question has to
be investigated for each special kind of impurity center
in detail, but we will postpone this analysis for later
study.

If H;„t,&') is much smaller than Ho, our conception is
justified, and Ho gives rise to the following commuta-
tion relations":

6k'&gk'X' g =uk''ukk'

where all other commutations are zero.

(13)

27 G. Leibfried, in IJandbuch der Physi&, edited by S. Fliigge
(Springer Verlag, Berlin, 1955), Vol. 7, Chap. 1, pp. 196, and
especially 290 ff.

The basic set (6) does not diagonalize the ma, trix h„'&
exactly. Projecting the Cartesian coordinates $,' onto
the basis (6) we get an expression in the normal coordi-
nates qkq, q„which are connected to the standard
creation-annihilation formalism by the definition-"~

qkk= (&/2~k')'"(akk'+a-»); q. = y/2~. )'"(a."+a-.)
(10a)

jkk ——i(hcokk/2)'"(akkt —a kk); j,= i(A/2co, )'"(a,t —a,),
(10b)

where —s means that member of the set [g,(ni)] which
has the same eigenvalue as q, (ni): &u,

o =oo,o or q,*=g, ;

if there is no such member, i.e., if q, (ni) is real, —s has
to be replaced by s, assuring that in this case q, is real
too. (This follows from the fact that the variables $„'
are real. ) With these substitutions the Hamiltonian (3)
is transformed to

H =Ho+Hant, "',
where H;„&&'& is the nondiagonalized part and Ho is
given by

Up to this point we neglected those terms in the
lattice energy which are of higher order than the second;
of these the cubic terms are most important and will
be the basis of our analysis. They include the scattering
processes (7) and (8).

The cubic terms in the defect lattice can be written
in the form

1
H;„,"&=—p;, k P(n, m, m')H'&" (m, m')

3 I nmm'

X $n $n+m $n+m' ~ (14')

H'&'(m, m') are the coeffrcients of the ideal lattice'; they
depend only on the two vectors m and m' defining a
triangular region somewhere in the crystal, but they do
not depend on the absolute position within the lattice
space, marked by the lattice vector, n. The factors
P(n, m,'m ) give the deviation from the idealistic be-
havior and destroy the translation invariance; they
turn to unity if the region (n,m, m') is far away from
the center of disturbance.

Carrying out successively the projection onto the
basic set (6) and the transformation (10a, b) and quan-
tizing according to (13) we arrive at an expression of
the form

Pkkk'x' [akk ak'k' a +akxak'k'a ]
kk'X'A' s

+ Q Pkk8 [akim a8 ak'V+akkasak'k' ]
kk') X's +, (15)

where we have written down only the parts which be-
long to the processes (7) and (8). H;„,"' includes also
the well-known normal and umklapp processes and
some processes which are of no importance. The cor-
relation factors p»k ),"and p», "'"' depend on the sym-
metry of the crystal and the symmetry of the localized
modes.

The symmetry of the lattice already assumed to be
cubic, we may specify the localized eigenvectors to be
of a spherically symmetric form:

g, (r) =grady, (r)
=C, (r) (cos8 cosoo, cos6 sing, sin6) . (16)

These are perhaps not the only localized modes, but
they are certainly the most important (and the ones
which are localized most strongly). There is no difficulty
in extending the concept to modes with a more com-
plica, ted point symmetry (e.g. , p, d symmetry, etc.),
but to simplify the calculation we will consider only
those of the form (16).

With these two presuppositions on the symmetry it
is evident that the functions p»k &

s can only depend
on the absolute amounts

I
k

I
and

I

k'
I

and on the angle
6 between the two wave vectors k and k':

»~kk"=»k (Ikl Ik
I

~)
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1
Hint g /kiack'Vga

3 t kk'XX'8

XP P P(l nl) i, (r)en"s+ ""ZH'~ "(m,m')'
ijk n

X jrikk(m j)rik k (m'k)+rikk( —m j)rik k (m —m'k)

+rikk(m —m'j)rlk k. (—m'k) )+terms not be-

longing to the processes (7) and (8), (22)

thus making the summations over n independent of
m, m'.

IV. LATTICE SUMMATIONS

Considering Eq. (22) we have to manipulate first
summations of the form,

P(l nl)ri, (n, j)e""+ ''" (23)

and, as the process (7) is symmetric in both involved
phonons (kX) and (k'X'), we must have

p) k& (k1k i 8') pkk~ (k )k i 8 ) (18)

which means an extremal value for k=k'. The coefFi-
cients pkq,

k'"' are identical with pkqk q
' as will be

proved later on.
The general properties (17) and (18) are insufficient,

however, for getting the final result in a form where it
is comparable to the measurements. To calculate the
interaction factors of Eq. (15) in explicit form one has
to analyze the deviation factors P(n,m, m'). Very little
is known about them, and they depend sensibly on the
special impurity center. Their exact form is too compli-
cated for further computational use.

Fortunately we can avoid the difFiculty by a very
plausible approximative assumption. We know that the
ideal coefficients H'&'k(m, m') are significant only for
small values of

l ml and lm'l, thus ensuring that the
region (n,m, m') remains small; we may, therefore,
mark it by a vector R(n, m, m') which is some average
of n, n+m, n+m' and replace P(n, m, m') by a func-
tion of R, which has, of course, to be spherically sym-
metric with respect to the origin,

P(n, m, m')=P(lRl), R=s(3n+m+m'). (19)

This approximation implies that P(R) is practically
constant within the region (n,m, m'), the extension of
which is determined by the nonvanishing coefficients
H"'&k(m, m'); hence,

P(&)=P(i nl)=P(l n+ml)=P(ln+m'I) (2o)

Using this simplification and the well-known relation
for the ideal eigenvectors ri», (rj),

gkk(n+m, j)=ri»(mj)e'"'. (21)

The third-order interaction energy (14) is written in
normal coordinates as

where the localized eigenvectors ri, (n,j) are of the
spherically symmetric form (16).

Without any further special statement on the func-
tion p, (r) (Eq. (16)) it is now possible to simplify the
summation over n greatly. First we replace the sum-
mation by an integration:

1
r' sin8drd8d p

n 7 p

(24)

(rs ——volume of the unit cell of the lattice. ) Then we

may carry out the integration over p and 8, if we use
for the latter the formula"

2g' 1
R, (s) = — rdr P(r)C, (r)Jt(sr).

Tp 8 p

(27)

The formula (26) is the analog to the law of quasi-
momentum conservation in the theory of normal and
umklapp processes' ' (p 5kyk+k' ).

For the evaluation of (27) we need the explicit struc-
ture of the functions P(r) and C, (r) which requires a
detailed investigation of the changes in the lattice
produced by the special kind of impurity center. This
detail would extend the inquiry unduly and obscure
the essential features; therefore, we postpone the ques-
tion for future study. To get some (in fact, quite good)
estimate we put

P(r) =1, (28)

which means that the third-order correlations are not
at all affected by the disturbance. Even in this case
there are processes of the form (7) and (8) suggesting
that the alterations of third-order coupling constants
are not so very important for these processes because
of the fact that the existence of localized modes is
caused by the alterations in the harmonic terms. For
the function q, (r) l Eq. (16)$ we choose a behavior
which is suggested by the characteristic radial vibra-
tions of a homogeneous sphere in the theory of elas-
ticity, "modified, however, by a decreasing exponential
factor, paying regard to the disturbance in the central
region and establishing with this independence of
boundary conditions,

sinPr d
v, (r) =a(n, p) e-."; C', =—ip, (r),

pr dr
(29)

"I.M. Ryshik and I. S. Gradstein, Tafeln (VEB Deutscher
Verlag der Wissenschaften, Berlin, 1957), p. 195. J1(s) is the
Bessel function of the first kind."L.D. Landau and K. M. Lifshitz, Elasticity (Pergamon-Press,
Inc. , London, 1958), p. 102.

sin% cos(l k+k'l r cos6)d8

=vrJ (l k+4'lr)(lk+ k'lr. (25)
We get

(k+ k'),
P P( lnl) ii, (nj)e'&k+k'~ "=R,(l k+4'l), (26)

lk+1
l

where R, (s) is given by
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where the constant a(n, P) is defined by the normaliza- the so-called Griineisen" constant. Klemens' ' gives the
tion condition for r/s(ni) as formula,

Q7p
(30)

3f2"=+s(3 )"' Yroro'ro" ~k+k'+k" i
Gv

(38)

With the choice (28) and (29) we can perform the
integration (27),

4rr'a(n, p)n
R, (l k+k'I) = — [(ri+r )'—4p'j '", (31)

where the formula"

e- "sinprJs(lk+k'Ir)dr

(r/=sound velocity) whereas in the result of Leibfried
and Schloemann" the numerical factor (3!)'/' is re-
placed by 1.23.A typical value for & is 2 (e.g. , &Koi ——1.6).

We use the approximation (38), which is also well

accepted in the theory of normal and umklapp proc-
esses, , although it is rather bad. More accurate but
more complicated expressions would burden the further
calculation too much.

With (38) and the two approximate assumptions,

2nP and
t.(rr+rs)' —4P'j "' (32)

ro(kX) = r/kl k I, ("acoustic appronrnation") (39a)

(39b)

has been used, and r~, r2 have the meaning,

rrs=n'+ (p+ I
k+k'I)' r,)0

rs'=n'+ (p —
I

krak'

I)' rr) 0.

which are both usually in the theory of heat current' '
and already included in (38), the scattering Hamil-
tonian for three quantum processes finally takes the

(33) form

i Mv'
When (26) is substituted into (22) we are left with the II,„,&»=—(3!)'/s p Q R, (l k+4'I)
summation problem, G

xlk+k'Ilkllk'lv»v"v. , + ", (4o)

&
~ (k m+ k' m ' )Ifijk (rn m') (34)

«ij=»!Ikl. (36)

Moreover, we have used in (34) the abbreviation,

and two other summations P'" and Q", but it can
be proved after some elementary transformations that
both are identical with P& '. The ekkj are the unit
amplitudes of the modes (kX), keeping in mind the
definition of the eigenvectors gkq,

rl», (rj)=G '/'ekkj exp(ik r), (G=A/'). (35)

In particular, P = 1 indicates the longitudinal wave, i.e.,

which may be written in the creation-annihilation form
(15) by means of the transformation (10a). Doing so,
we find the concrete expressions for the interaction
factors pzpz p", pzz, ""', namely,

O, , e
P

k'x' s2
—s/r (3 !)1/2G—1(j!/I~ )

—i/sr/f/8/2~

xR, (Ik+1'I)I 1+k'Ill
I

/ Ik'I . (41)

Expressions which are very similar to these were de-
rived by Klemens'4 when he calculated the anharmonic
attenuation of a singular localized mode outside the
bands; yet they are not identical, because he used
another form than (29) for the localized mode.

The coefficients (41) evidently satisfy the relations
(17) and (18) and are independent of X, X'. From now
on we suppress the indices X, X' at all quantities which
do not depend on them, especially

k"= —(k+ k') . (37) ro(kX) —=co(k) =co(k), (39c)

The summation (34) appears also in the case of the
ideal lattice. An accurate computation yields extremely
complicated expressions. 'r To approximation, (34) can
be expressed in terms of the elastic constants of the
crystal; we refer to the book by Ziman. "The simplest
possibility is to express (34) by one single constant y,

which follows from (39a, b).

V. MOLECULAR VIBRATIONS

So far the mathematical description has been re-
stricted to the case where the impurity center is mon-

~0H. Bateman, Tables of Integrable Transforms (McGraw-Hill
Book Company, Inc. , New York, 1954), Vol. II, p. 10.

s' F. M. Zirnan, Electrons and Phonons (Clarendon Press, Ox-
ford, 1960), p. 131.

3' E. Griineisen, in IIandbuch der I'hysik, edited by H. Geiger
and Karl Scheel (Julius Springer, Berlin, 1926), Vol. 10. p. 1.

"G. Leibfried and E. Schloemann, Nachr. Akad. Wiss. Gott-
ingen Math. Physik. Kl. IIa 4, 71 (1954).-

'4 P. G. Klemens, Phys. Rev. 122, 443 (1961).
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atomic, i.e., a regular ion of the lattice is replaced by a
foreign one. The treatment of polyatomic or molecular
impurity centers, where more than one irregular atom
occupy a single unit cell of our (monatomic) lattice, is
simpler in some senses.

Let us assume that there are p foreign masses in the
unit cell (0,0,0), or 3(v—1) new degrees of freedom; and
let us, further on, alter the meaning of the lattice
vector n:

(kX) ~~(o) (43)

with a strong inhuence on the thermal conductivity.
To describe this process we use the basic system"

(n "&)+(n.), (44)

which includes all the 3E' ideal eigenvectors q~), (')

together with 3(v—1) localized vectors rt, which repre-
sent the molecular vibrations. They are solutions of the
eigenvalue equation

P h„&'&'&st. (mj )= (&d) o(rnti), (45)

where h (')'& is identical with h '& in the neighborhood
of the origin (i.e., for small Inl, lml) and zero for
larger values of

I
n I, I

m
I

in order to assure that » is
strongly localized. The interaction Hamiltonian then
takes the form

+1
I

RX&r &e& &

X L()& x'"&r&
&

t&r +II& & a,t&r» ,$+, (46)

where we have suppressed those terms which belong to
double creations or annihilations and those of the

~5 The eigenamplitudes gory for the points n0('), n0"), - are all
the same and identical with qq&, (0,i) in the 3N -dimensional
description, q&r&, (np&'&i) =»a&, (np&'&i) = ~ ~ =»gi(0, i).

n=a(n&, ns, np) for nis+nss+npPWO, n;=0, 1, 2,
= n&&&", np"' . np&"& for n '+ns'+ns'=0 (42)

Then we have again to look for the eigensolutions of
the matrix h„'& which is now of a higher rank. There
are once more the "lattice modes" discussed in Sec. II,
in which the molecule acts (roughly speaking) as a
unity with mass 350,' for them the spectral density is
unchanged. But in addition one has 3(v—1) new modes
either outside the bands or inside. In the case of the
system KCl:KNO2, for instance, the internal vibra-
tions of the free NO2 atom are practically unchanged
in the lattice and lie high above the lattice modes,
whereas the rotational vibrations of the NO2 center
lie in the acoustic band.

We are only interested in the new modes within the
acoustic band. They may well lie in spectral regions,
where the "lattice modes" are phonons, i.e., where the
heat current is given by the Peierl's formula. Then we
have the possibility of the second-order process,

VI. THE SCATTERING PROCESS

The scattering Hamiltonians for two and three
quantum processes being established, we may turn to
the formulation of the scattering process. We have to
look for the alterations in time for the occupation
numbers Egg, S„and E,which are due to the respective
scattering process. Starting with an initial state lt, each
of the scattering processes (7), (8), and (43) defines in
a natural way two final states pr&'& and it f "& (occupation
numbers either unchanged or changed by &1). The
time derivatives ¹ )., etc. , are then the difference of
gain and loss per unit time, where gain and loss are
given by the transition probability to one of the two
final states, respectively, the transition probability
being determined by the interaction Hamiltonians.

All this is standard procedure4' and need not be
reproduced here in detail. For the second-order process
(43), however, there arises a strong implication be-
cause of the quasi 6 behavior of the transition proba-
bility W,t(t) as given by elementary quantum me-
chanics. " Namely, it is customary to go the limit
t —+ ~ and use the formula'~

lim sin'&rt/&rt&r' = l& (&r) (48)

which, of course, is physically of no sense, taken literally,
because it would imply that the change of any state,
caused by the perturbation, would be vanishingly small
for infinite times. Nevertheless, one can use (48) in all
cases where the limiting process does not influence the
result essentially, i.e., if there is a summation over a
dense spectrum. Yet in the second-order process (43)
the expression for ¹ q contains a summation over a
small number of discrete (molecular) frequencies &p

only.

"E.g. , L. I. Schiff, Qs&o»t&c»& Jfecku»ics (McGraw-Hill Book
Company, Inc. , New York, j.955), p. 197 G."L. D. Landau and E. M. Lifshitz, QNuntung 3IIgghenks
(Pergamon Press, Inc. , London, 1958), p, 146,

processes (kX) +~ (k')&') and (o-) &~ (a'). Moreover, some
additional contributions to the process (43) are negli-
gible according to the relations,

l(»lh" l~)l»l(»lh-h"
I )I,

l(~lh"'I») l&&l(~lb —h"'I»)
I

(47b)

and not written down in (46). Dki' is the scalar product
of the two vectors q~q(') and q, .

The rank of the matrix h ( "& is a small number,
although larger than 3(v—1), and there are, therefore,
no practical difFiculties for the evaluation of &ps(&r) and
rt (ni). For the set (44) we choose the most localized
solutions. It is not necessary that the solutions remain
localized if we go to the limit h„("&=—h„'&. Hence, the
molecular vibrations, represented by the most localized
solutions of (45), are possibly not stationary eigen-
vibrations of the lattice at all, but they are quasi-
stationary vibrations with a long decay time.
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which demonstrates that r, in fact does not depend on
A'; this is plausible as no third-order effects were in-
cluded. For the third-order processes (7) and (8) there
are no implications concerning the limit t~ ~, and
for the scattering (7) we have

—Ng), (t)
dtF, d(A(u)

w(Aor)d(Ao)) =-
m. (A(o —A(v.)'+F.'

(49) U or

l&'((o» i ~ ) I2 st'd6'dp'
(2m)' A' n' ~"

where A(A~), =F, is the so-called breadth of the dis-
]ribmtioe around the central value @or, and is given as
some average over the breadths of the quasistationary
states ( N+1) A~„N A&u„(N —1)Ace„namely

X[N, (N~)+1)(»~ ). +1)—(N,+1)»w»~ ~ ],
(55a)

d—N, (t)
(50)F.= 2F(N.).

It is, therefore, necessary to take account somehow
of the finite decay time of internal vibrational excita-
tions of molecular defects, which are of a quasista-
tionary character. This is done in elementary quantum
mechanics" by replacing the discrete energy by an
energy distribution in the vicinity of the discrete value.
In our case we write the law in the form,

F(N, ) is related to the average lifetime r(iV ) of the
state N Ace, by r(N, ) =A/2F(N, ). This lifetime r(N, )
is de6ned by the scattering process (43) itself, if we put
Ãg), =0 in the formula for¹, V or

aPd(o sinad8d(p
(2~)' A' n' &~

X l
p'((o»', 8') l' sin6'd6'dy' (55b)

d N, (t)—N.(t) =—,(Ngy=0).
dt r(N, )

(51) X [(N,+1)N„)N~, „,—N, (N„~+1)(N„,„,+1)]~

where

~ ~ ~

(2m)'
~ . d'k

We multiply now the expression for ¹zwith w(fur)
Xd(A&u), as given by (49), and integrate over A&a. Then
the limiting process t —+ ~ no longer critically in-
Auences the result, whence we may use it. Let us,
further on, replace summations over k by integrations
in k space (V= volume of the system),

/
or =o)g or. (56)

or, —org &or &kg for or, &c g (57a)

This condition follows from the integration over the 5

function and is nothing but the law of energy conserva-
tion already written down in (7b). The two-phonon
frequencies must be in the acoustic band (co, cu'&co,
= acoustic boundary; we may put or, =or&= Debye fre-
quency). Whence, (55) is correct only if we make the
restrictions

alidU 1
oP sin8d(uddd q, (52)

(2 3 3
0 +or d'or, for o), =or, + (org. (57b)

and summarize the results in explicit form. For the
second-order scattering (43) we get

d F,(P(k)—N~x(t)=2 & lfl~x l'
dt ' (&u(k) —cv )'+ (1' /A)'

U or 4—N. (t) = Q

ling),

((o(k) =(u,) l'
dt (2n.)' v'

where, by means of (50) and (51),

m) v

Otherwise the right-hand sides of (55a, b) are zero.
Not included in the result (55a, b) are double crea-

tions or annihilations of the mode (kX), which occur in
the special case kX—=k'X'. But as the additional con-
tributions from this process to ¹ )„¹,contain one
summation over the k space less than (55a, b), we rray
neglect them.

X[»»~~], (53a) In the same way we may establish the equations for
the scattering process (8), but it turns out that this
process is of no physical significance because its re-
laxation time has a monotonic functional behavior. This
is quite plausible as (8) is not symmetric in both in-
volved phonons. Moreover, (Sb) yields a&'&&o, which
shows that (8) becomes effective at higher temperatures
than (7), where both co and &u' are below co, .

U or 4
Pl

F.= =A P lQgg'(~(k) =(u.) l'
7. E, 2~' ~'( ) ( )

X sin8d6d p (54)
E.g. , D. I. Blochinzew, Grzsndl. d. Qmantezzmechueik Pj'EB

Deutscher Verlag der Wissenschaften, Berlin, 1953),p. 360.

VII. THE BOLTZMANN EQUATIONS

The further mathematical description conforms to
the other work done on thermal conductivity and is
indicated in the fundamental work by Peierls. " We
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C,k(~) M Ffr
(v, VT)

'
y»o

'
(»o —»o,)2+ (I' /It) 2

vk=gradk»o(k) = vk/~ k~ . (58)

X [22.—nk(k)] (66)Their density distribution Nkk(r, t), given as a function
of space and time, depends in our case on both the
scattering and the diffusion process. In the steady state
the total rate of change of the distribution function per
time must vanish

with the subsidiary conditions,

~Qkk (fd=»o, ) ~'[22&, (k) —n, ] sin»Mdd22=0,

(59)Nkk]sca»»+Nkk]diff (&o =»o.) . (67)

may, therefore, be very brief and refer to the review (53a) and (61) into Eq. (59) and (53b) into Eq. (60b)
articles by Klemens ' and Carruthers. ' we have for the second-order process (43),

We look at the phonons as particles moving with the
group velocity

These are the Boltzmann equations in our special case.
But they are incomplete yet. The localized quanta are
not able to transport energy in one direction and
cannot be taken as particles. Their total rate of change
in time is given by the scattering with phonons, and in
the steady state we have, therefore,

N, ]„,»»=0, or N.]„,»»=0, (60a, b)

respectively, which is to be considered as a subsidiary
condition to the Boltzmann equations (59).

Nk&„N„N.]cc,»» are given by the appropriate expres-
sions of the last section, whereas Nkk]d'ff is usually
taken in the convenient but also rather accurate
approximation,

Nk&, ]diff = —(vk' V T)Cvh(»o)/A»»&» (61)

where Cvk(»o) is the contribution of the mode (k&) to
the specific heat,

The corresponding equations for the third-order process
(7) are found, if one inserts (55a), (61) into (59) and
(55b) into (60a),

C»(~)
(vk '»/T)

PLM

V o)"
~
p'(»o, »o';fl»')

~

' sin»7'd2&'d y'
(22r)2 f222&' &".

X [N, (1Vk"'+Nk. &'&) —/2k (k) (1Vk f'& —1V,»'&)

nk (k') (Nk&o& ——N, "&)+high. terms] (68)

with the subsidiary conditions,

»o2d»o sin»'tdf/d»p
~
p'(»o, »o', 8')

~

' sin»7'd2/'d 22'

(It~)2 cora/kT

C,k(»o) =
PT2 (ef»(a//»T 1)2

(62)
X[22k. (k') (1Vk"' —N, "&)—22,1Vk&'&+high. terms) =0,

(69)

g~(0) —g (0)

and for the third-order process (7),

(65a)

1V &"& (N k '"&+1) (1Vk.&'&+ 1)
(1V o +1)N, o Nk, o (65b)

and is, in both cases, a consequence of the law of energy
conservation.

Using the foregoing expressions, the Boltzmann equa-
tions (59) with the appropriate subsidiary conditions
(60) can now be established in explicit form. Inserting

"Cf. for example, Ref. 31, p. 264 ff.

The essential quantity for describing the heat current
is the deviation of the quantum numbers Ek)„E„Ã,
from thermal equilibrium

Nk'"' ——[exp(h»o/k T)—1] ', etc. , (63)

and we write
Nkk 1Vkfo&+——ffk (k), etc.

We adopt also the principle of detailed balance, "which
reads for the second-order process (43),

where»o' is given by (56).
The Eqs. (68), (69) are nonlinear integral equations.

It is customary" (but also necessary) to linearize such
equations in transport theory, which we do by neglect-
ing the terms of higher order in 22„nk(k), assuming the
deviations from thermal equilibrium to be small. The
equations for the second-order process, on the other
hand, are exactly linear, as the second-order terms
ff,nk(k) cancel.

The quantity 0&), is the scalar product of the two
basic vectors g~), and g„ it takes the form,

+ p 2/kk*(ni)f/. (ni), (70)
ni

(n ~np(p))

where the first term on the right-hand side is inde-
pendent of k according (35). Looking at ~Qkk ~' as a
function in k space, this function is radially symmetric
to the origin if the amplitudes 2/, (ni) outside the mole-
cule (nano&», /2=1, 2, v) are radially symmetric in
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I~I»'I'= I~i ( ) I'.

Doing so, it is evident that the ansatz

(71)

n space; this is not exactly true for the single molecular
impurity. But it is true in a statistical sense, i.e., if we
average over a large number of impurities, and we put,
therefore,

where X(k) and n(k) are defined by (61) and (64),
respectively, [X(k)=—1V(k)„,«] and P„P2, are
integral operators transforming the set n(k), then it
can be shown" that the total relaxation time is given
by the superposition (2). 7, is the relaxation time of one
single scattering type, following from the equation,

(78)X=P; n,n =0, n&, (k)=n&, (co)(v&, V' T) (72)

is compatible with the subsidiary conditions (67), and
from (66) we have

(,) '= —X(k)/n, (k), (79)

if n, (k) is the solution of (78).The relation (2) is exactly
true, if all the Eqs. (78) have the same solution, apart
from some constant multiplier. Otherwise, (2) is only
a good approximation. It is closely connected with the
Matthiessen rule (Matthiessen, 1862) but more ac-
curate as this.

C,h(~)— GO F
2 0i'(~)l'

2AM (&u
—(u,)2+ (I" /fi)2

(73)

as solution of the Boltzmann equations for the second-
order process.

For the third-order process it is clear by considera-
tion of (68) and (69) that n&, (k) cannot depend on the
polarization X of the phonons; replacing summations
over X by the factor 3 we can drop this index. Apart
from that we try an ansatz similar to (72),

A. The Second-Order Process (5)

Inserting (73) and (61) into (79) we have for the
relaxation time,

(r~(~)) '=+2K l~i (~)l' (80)
((u —(u,)'+ (I',/k) 2

(74)n, = 0, n(k) =
(n&u) ( vs'T),

which is of a resonance structure. But to be comparable
to the experimental results one has to know the func-
tional behavior of IQ&'(co) I', which is only possible if
one analyzes the molecular vibrations in the special
case. We postpone this question for future study.

which satisfies the subsidiary conditions (69), and after
some elementary transformations the system (68) is
reduced to the simple form,

C,&, ((o)= —Q Pi'((o)(0 "[1V("(a)') —1V,('& jn(a&)

Q p2 ( )
' [1V(o& (M) 1V~(0 j (a ) .

6) = Cps —CO

B. The Third-Order Process ('7)

By defining

(75)
Pi= Pi((u, u)") = ——P pi'((0)(u" [1V"& ((o') —1V,("]0„,

with the abbreviations,

3V
Pi (~)=

I
p'(&0, (o', 6) I

' sin8d0, (76a)
27IA V p

3V m'

P '(~)=
I
p'(&o cu'; 8) I' sinVd8 (76b)

2' PP'v p

This system of linear equations for the set n(&0) is
easily solved; we have only to write down the parallel
equation with co, co' interchanged obtaining then two
equations with the two unknown quantities n(co) and

M =PS Go& co

|A'e prefer, however, a somewhat simpler procedure
to get the relaxation times, which consists in the separa-
tion of the Boltzmann equation (75) into two parts.

VIII. THE RELAXATION TIME

If we write down the general Boltzmann equation in
abstract form,

X((u)
(r2(~, T)) '= —P2(~', ~) =Z P~'(~')f2'(~, T),

X(o)')
(82b)

where

f '(M T) =M"[1V("(Co')—1V,"']
eked'/kT(~h(o/kT 1)

=M
(/lido/kT ] ) (gh4I'/kT 1)

C g(co)
f '((o T) =coco' [1V('&(M') —1V ('&]

C h((0 )
(83b)

(&a'= (o,—(0), (81a)
P —=P (, ")= -Z P ( ) "[1V"&( )-1V."&]~...-,

(81b)
we may divide (75) into two equations of the form (78)
which yield, according to (79), the two relaxation
times,

(ri(~, T)) '= —Pi(~,~)=2 P&'(~)fi'(~, T) (82a)

X= (Pi+P2+ . . ) n,
X= (X(k)), n= (n(k)), —(77)

~8 e4a/kT(ekcu'/kr 1)

(gaol//kr ] ) (eAGI//:T 1)



LOCALIZED MODES ON THERMAL CON DUCTI VITY 1453

.28 ~ —'f (cu,T)
cu, T~

.24
(D)

.28
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FIG, 2. The functional behavior of
the functions fI(co,T), f2(cu, T), given
by Eq. (105a). They represent, apart
from the less important factors pI'(co),
p2'(co), the two relaxation times of the
three quantum process (kX)+ (k') ')~
(s). A, T=T,/10; 8, T=T,/5; C,
T=T„D, T~ ~. (kT, =Aor, ).
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The functions f, '(to, T), fs'(~, T) which determine the
temperature dependence of the relaxation times are
shown in Fig. 2. It is seen that fr' has always a maxi-
mum; it goes to co =2', at high temperatures. The
function fs', on the other hand, has a (small) maximum
only at low temperatures, whereas it exhibits a mono-
tonic increase at higher temperatures.

Next we consider the temperature-independent fac-
tors in (82a, b). According to (76a, b) and using (41),
(31), and (30) we can write them in the form,

Pr'(~) =Q.lr'(~), Ps'(~) =Q.ls'(~) (84a, b)

they are transformed to

I,'(~) =

I,'((v) =

g dg

s—k'[ rl rs ((rl+rs) 4P ]
(88a, b)

q' sine) (q,co)dq

~ ~
~

«P«PL(rt+«2) 4P]

The two integrands are drawn in Fig. 3. It is easily
seen that both integrals are symmetrical about the
point co=-,'co„have the value zero at ~=0 and ~
=&o, ( I

k —O'
I
=

I
2a& —co,

I
/5 ~ cu, /v) and that always

The constant Q, has the value" 11 (co) +~& (+) or Pl (ro) +P2 (~) ~ (89)

Aron
Q.,= s~'~.V'

Mo),e

It'(&v) has a maximum at co= racy. for the simple reason,

where p, is the concentration of defects (i.e., the number
of impurity centers per volume).

The two integrals

')tI(q), gq(q)
60

I
'

I

I

I I

~r" (~) = IkIIk'I
I
k+k'I' sine)dd'

(86a)
r r'rs'[(r r+r s)' 4P']—

Is'(")= Ikllk'I
I
1+k Is sinecure

(86b)
r r'rs'L(rr+rs)' —4P']

sop

give the frequency dependence. With the substitution,

q'= IkI'+ Ik'I'+2Ikllk'I cosa, (~'=~,—~) (87)

U is the volume which contains one single-impurity center.
G the number of unit cells in it, or V =G~0, which is used in (85),
It follows that (1/U) is just the concentration p, of impurity
centers/unit volume.

0
0 Q5p l.5p

Fro. 3. The integrands yq(g), y2(g) of (110a) and (110b), re-
spectively, for the special case n=P/10, co, =sP. y2(q) depends on
co, A, o) =0.8(o, , B, a) =0.6', .
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(1 1.8 (n/p) =0.01.
( 1y (1+4r2/p)
)(ln(1+4a/P/4a/P))/

'/g

.2

0
0 .2 .6 .8 l.0

0
0 .2

and the inte-
'

n interval is maximathat the integration
I,.(~), on the other hand,rand does not depend on co. I~' co, on

To illustrate the properties somew a
we make the approximation,

r 2r,2t (r,+r2)' —4P'7
= 4p'n'(p' —q'+4np)

2 2)8+ 1{jn8P8 for p' —q' &0, (90b)4(q p

))o. this isws from (33) by assuming P))n,
py yq't

1 ii 1, hrelation from elastici y;
in s here the constant p is con-problem of the vibrating sp ere e

nectea wid 'th the frequency or, by"

4 I.O

where

(r»'(~ T)) '=&f(~ 2')g(~),

5TOO.

~= yam' Ps+2 2 GS )

~Cog V

(93)

(94)

&a«-'=("-)' -('—) —
—.

l ft with the express'on (toneglectit. The
h f ct that the quasi-Further pn we

band lie in the
consider t e

inside the acoustic a].oca].ized modes insi
nd there is nP harm inean fre uency, ancinity of a mea

ence, we may sufrequency, w

stitute the summat'o o
'

side the band, pri}pea}ized mo es insinumber «quasi o
'

d utside the regulare localized mpfor the tru
'th the anal resultThus we are left wit t espectrum.

(91)p= e2s/2' ~ —4—1——,((o =n),= nv (95)
O)s usu er limit of the integrals (88This means that the upper imi

is just p, and, using (90a) they are easi y

4n) kk'+np
4kk'+P2I 1+—

~

ln
pi np

Ir'(~) =
8n2p2

a, b)
'

en
'

83a . This result
'

en b the expression 83a .
hl fo di i hwas used by Walker and Po or

(92a) perimental data.

I '((v) =
8n2P2

p'+4np—kk'+
kk'

( 'i
(92b)X kk'+2nPi 1—1+

np

The result is shown in Fig
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occur in the case of polyatomic impurity centers, where
there is a molecular frequency (internal mode) within
the phonon spectrum. The relaxation time for this
scattering process does not depend on temperature and
has a resonance behavior, in accord with the experi-
mental results of Pohl. ' It has a factor which is given
by the scalar product of the eigenvectors of the lattice
modes (phonons) and the molecular modes and cannot
be determined without investigating the latter in detail;
this is a task for future study.

(3) For monatomic-impurity centers which are not
extremely strong mass or strain defects the third-order
processes are dominant. The computed relaxation time
divers radically from monotonic behavior for the proc-
ess (kX)+(k'X')+~ (s) and is given by Eq. (93). Its
temperature-dependent factor is given at low tem-
peratures by

f(u), T) = ((o,—co)2 expI h((—u, co)/—kT5

with its maximum value proportional to T' at (a&,—~~,x)
= 2kT/h, and at high temperatures by

f(a), T) = (kT/hem, )(o((v, (o)—
with its maximum proportional to T at co = ~co,. The
temperature-independent factor g(a&) has a broad maxi-
mum at +=-,'co, and is symmetric about this point. The
functional form of the expression (93) has been tested
by Walker and Pohl in the preceding paper' and found
to be in very good agreement with the experimental
result.

To assign a second-order scattering process to the
effect in the system KCl:KNO2 and a third-order
process to the eGect in the monatomic systems KCl:
NaC1, etc. , could have been guessed without introducing
a specific model, because the indentation in the curves
of Pohl' (Fig. 1) for the former lies below the maximum
in a region where other second-order processes become
predominant (e.g. , the elastic scattering by the strain-
field and the mass-difference of point defects' "").The
indentation in the curves of Walker and Pohl, ' for the
latter, on the other hand, lies above the maximum where
normal and umklapp processes have their greatest
importance.

There is no contradiction in our consideration of
second-order interaction for lattice waves and molecular

modes and of the third-order interaction between pho-
nons and the true localized modes outside the bands.
But there is some question in taking the form (16) or
even (29) for the quasilocalized modes within the band,
and defining a fixed number G, of them.

Inside the band all the modes consist of both a
travelling and a localized part. Usually the latter is
negligible and one has phonon solutions; but in certain
regions of the spectrum the localized part is pre-
dominant. "To define a fixed number G, of localized
modes, it is necessary to invoke physical plausibility;
we could take the expression (Sa) by Peierls for the
heat current, with unchanged (ideal) group velocities
then we would have to reduce the density of phonon
solutions in the vicinity of cv, down to zero for co=co,
itself. The total number of plane-wave solutions thus
removed is just the number G, of localized modes which
have been put in instead. This definition allows us to
neglect the travelling part of the G, quasilocalized solu-
tions around ~„and one is left with eigenvectors of the
general form (16).Specifically, in the case of third-order
interactions one may well use the single eigenvector
for the mode with &a=a&„which has (practically) no
travelling part at all; this is justified by the fact that
the maximum interaction takes place with phonons
with cv~-, co„which is far from the co, of quasilocalized
solutions.

As to the special choice (29) for the localized eigen-
vectors in the band, there is no other justification but
physical plausibility. Future calculation may reveal a
different formula for g, ; that would change g(&u) some-
what, although very slightly. Yet, the more important
factor f'(~, T) LEq. (83a)] does not depend at all on
the form of the localized mode.
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