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an iron ion of approximately twice its mass while the
associated state corresponds to replacing two Na+ ions
by an iron ion of about the same mass as the two ions
it replaces. A quantitative estimate of the magnitude
of these two effects will require a detailed theoretical
treatment of the problem, which has not yet been at-
tempted. The magnitude of the effect is so great, how-
ever, that even a crude calculation may be useful. It
is interesting that the data on precipitated CoC12
indicate a temperature dependence of f which is be-
tween that found for the two cases considered here
(see l).

The broad linewidth observed for the isolated iron
ions ( 1 mm/sec) may be the result of quadrupole
broadening from a Jahn-Teller type distortion or a
trapped hole in the vicinity of the iron ion, although no
noticeable narrowing was observed as the temperature
was raised.
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Baym's treatment of coherent scattering of slow neutrons by a crystal is examined and modified to
include e8ects due to the cubic-anharmonic term in the lattice potential to second order in the coupling
constant. Corrections to the Debye-Wailer factor and to the "one-phonon" resonance peak are obtained,
which appear to be negligible (=0.01 f&) for the case of a Bravais lattice and certainly (1%in other cases.
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~E would like to derive an expression for the
coherent scattering cross section for slow neu-

trons, in which the anharmonic terms in the lattice
potential are taken into consideration. Much work has
been done on the problem of scattering from a perfect
(harmonic) crystal, ' ' where it is found that the co-
herent part may be written as a sum of terms repre-
senting scattering with absorption or emission of a
number of phonons. The elastic term gives rise to peaks
in the energy spectrum of the scattered neutrons
(diffraction pattern) at the Bragg angles and the one-
phonon term in the expression also gives rise to a
5-function peak at the phonon energy. It has been
tacitly assumed that for a nonperfect crystal the one-
phonon peak becomes broadened by the interactions
into a I.orentzian shape whose width is the inverse of the
phonon lifetime. Such lifetime e6ects may be described
in terms of the phonon Green's function and it is the
purpose of this study to see to what extent the singular
features of the cross section are related to the Green's
function.

The contribution from scattering with multiple
phonon emission or absorption produces a continuous

* Supported in part by the U. S. National Science Foundation.
' G. Placzek and L. Van Hove, Phys. Rev. 93, 1207 (1954).
2 A. C. Zemach and R. J. Glauber, Phys. Rev. 101, 118 (1956).
3L. S. Kothari and K. S. Singwi, Proc. Roy. Soc. (London)

A231, 293 (1955).

background in the harmonic case and, by continuity
arguments, also in the weakly coupled case.

Experiments by Brockhouse et al.' have measured
large widths in scattering from lead at high tempera-
tures and some doubt has surrounded the form of the
Debye-Wailer factor. Although I have been unable
quantitatively to explain these large widths (the theory,
in any case, has treated the anharmonic nonmetallic
crystal) the form of the result shows that for tempera-
tures where such anharmonicities are considerable, one
should expect a departure from the simple Lorentzian
shape. This statement is very tentative because we have
assumed weak coupling, working to second order in the
coupling constant in a consistent manner.

The problem has been discussed by Brout, ' Baym, '
Krivoglaz, ' and Maradudin. ' Brout gives a general dis-
cussion of the energy spectrum of particles scattered
from a system in terms of the widths and shifts of the
states of that system. The approach of the other authors
is a direct investigation of the formula for the coherent
cross section. The present work follows on from Baym's
analysis. We show that his result is applicable to a
crystal with harmonic forces (including impurities and
va.cancies) but that it needs modification before being
applied to the anharmonic case.

4B. N. Brockhouse, T. Arase, C. Caglioti, K. R. Rao, and
A. D. B. Woods, Phys. Rev. 128, 1099 (1962).

5 R. Brout, Phys. Rev. 107, 664 (1957).' G. Baym, Phys. Rev. 121, 741 {1961).
7 M. A. Krivoglaz, Zh. Eksperim, i Teor. Fiz. 40, 1812 (1961.)

)translation: Soviet Phys. —JETP 13, 1273 {1961)j.
A. A. Maradudin and A. E. Fein, Phys. Rev. 128, 2589 (1962) .
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The corrections turn out to be small, but the variation
of the Debye-Wailer factor from the Gaussian form
which is predicted has been noted by experimentalists,
although no details are available.

II. FORMULATION OF THE PROBLEM

satishes, i.e.,
t

T,+»=T& z —TJ(t, t')Q SJ„(t') u„(t')T&+»(t', 0)dt'.

The first- and second-variational derivatives of ln(r
I
0)s

are

The coherent scattering cross section for slow-neu-
trons incident on a single crystal may be expressed as
the Fourier transform of a correlation function as
follows:

and

(.Iu, (t) lo&,
ln(rlo)g=

bJi(t)
=x, (t),

(l)' g exp —iK (a„—a ) dt exp[i~(t —t')]
n g fs

)&(exp —iK u„(t) expiK. u (t'))p. (1)

The interaction is represented by the Fermi pseudo-
potential and only single scattering is considered. Cer-
tain kinematical factors have been omitted as they do
not enter the discussion. The crystal is taken to have one
atom per unit cell, for simplicity, (l) is an average of the
scattering length over all the atoms, a and u are the
lattice vector to the site n and the displacement from
equilibrium of the atom at that site, respectively. K and
co represent the momentum and energy transfer of the
neutron due to the scattering.

Suppose that the Hamiltonian of the crystal is H.
Baym's variational derivative technique then follows
upon consideration of the development of the system
under the fictitious Hamiltonian

H+Q eiH!J,u e
—iHt

After time t= Rer, an eigenstate of H at t=o, i.e., I
0)

will have developed into the state

I
Rer) = exp (—iH Rer) Tz (Rer, o)

I
0),

ln(.
l o),

bJi(t) bJ (s)

(r I
r(u, (t) T(t,s)u. (s)) I

o),—x, (t)x (s). (3)
(r I 0)g

If the assumption is now made that the first variational
derivative is a linear functional of J, one obtains
Baym's result, namely, that

ln(exp[iK u (t)] exp[ iK—u (0„)])p
= —((K u)')p+(K u. (t)K u (0))p.

On intuitive grounds we are led to regard x&(t) as the
displacement of atom 1 under the influence of the ex-
ternal force J. If the atoms are bound in the lattice by
harmonic forces, then it is natural to suppose the
relationship should be linear; but, in general, this con-
clusion is not correct. It is possible to show the func-
tional dependence of x&(t) on J by writing down the dif-
ferential equation which it satisfies using the Heisenberg
equations of motion. One obtains

M,', (t)=i(rl[H+g. J„(t) u. (t), »(t)]IO),(rlO)&
—',

where p& is the momentum operator conjugate to u&, M &

is the mass of atom at site 1. Taking the potential energy
of the lattice to be

where 1 =k P Atsutui+p1i P 11~wutuiui, (4)

Ts(t, t') =P exp i P —J„(t") u„(t")dt"
n t

I' denoting the time-ordered exponential.
Defining the matrix element

(r I X(t)
I
0)g= Tre '~'Tg(Rer, t)X(t) Tq(t, o)

(Re7 )t) 0),

it is shown that the correlation function in (1) may be
obtained from the ratio (rl0)g)(rl 0)o on setting Jt(t)
=K(8 i8(t—t') —8 i5(t')} and analytically continuing
the variable r to iP

In view of the fact that in the harmonic case the
correlation function in question contains an exponential
factor, the Debye-Wailer factor, one writes down a
functional expansion of ln(r lo)q in terms of J. The re-
quired variational derivatives may easily be calculated
fI om the integral equation which the T operator

we see that for harmonic forces the equation for xi(t) is
simply

Mix((t)= —Ji(t) —Pi Al, (xi(t),

which is linear. We can, therefore, assert that Baym's
result is correct for a perfect crystal (harmonic) and
for one with impurities or vacant lattice sites provided
that the interatomic forces are still of "Hookes-law"
type. Metals are excluded since the coupling of the
conduction electrons to the lattice vibrations destroys
the linearity of the equations.

III. INCLUSION OF THE CUBIC-ANHARMONIC TERM
TO SECOND ORDER IN THE COUPLING

Baym's result is, in fact, the leading term in the ex-
pansionofln(exp[iK u (t)] exp[—iK u (0)])inpowers
of K. Further terms of the series may be obtained by a
straightforward differentiation or alternatively by cal-



1422 B. V. THOM PSON

()
&rlu (&)ui(&) l0)~

Mixi(1) = —Ji(1)—P Astxs ——Q Bi;s
2 i, s (r ~0)~

From the form of the second-variational derivative of
(r~0), we have

(T ~u, (t)u&(&) ~0) r(r ~0)J ' ——x&(t)x, (1)+i xs(1).
5J, (1)

culating the higher terms in the functional expansion of
ln(r ~0)q. This last procedure can however be made to
give some useful identities concerning correlation func-
tions for the harmonic crystal.

The analytic behavior of certain expressions may be
found by going to the limit of zero coupling, e.g., there
occurs the Fourier transform of the correlation function
(K.u (t)[K u (0)]') which, for a harmonic crystal
factorizes into 3((K u)')(K u (t)K u (0)) whose trans-
form is a multiple of the single-phonon peak. We, there-
fore, conclude that the first function has a resonance
character in the fully interacting crystal.

Including the cubic anharmonic term in the Hamil-
tonian leads to the following equation of motion for
x) t:

By means of Fourier transformation and diagonalization
of the equations of motion which of course leaves the
functional dependence on J unaltered, they may be
written symbolically as

x= 1+1(xgx+—x
sJ

(5)

Here the asterisk denotes a convolution integral.
Iteration of (5) in powers of X shows that in the ab-

sence of the 6x/8 J term, x is a functional of J of degree ri
correct to O(X" '). The presence of the 6x/8J term does
not raise the functional degree of a given order in X, but
the term OP, " ') will contain, in addition to the part of
degree e, parts of lower degree. This means that the
expansion of ln(r ~0)q carried to the fourth-variational
derivative will be correct to order X'. Note that all this
refers to the cubic anharmonic term. It is easily verified
that the quartic term in the potential would only be
treated in first order by an expansion terminating at J4.

After some algebra one can obtain the equation

ln(exp[ —iK u (t)] exp[iK u (0)])
= —((K u)')+(K u„(t)K u„(0))+-',i(K u (1) (K u„(0))')——',i((K u (1))'K u„(0))

+1/24,'. 2((K u)') —4(K u„(t)(K.u„(0))')+6((K u„(t))'(K u (0))')—4((K.u (i))'K u„(0))—12((K u)')'
+24((K u)')(K u (t)K u (0))—12(K u (t)K u„(0))'). ({))

Consider erst the terms of fourth degree in K which may be regrouped as follows:

C =—'((K )')—l((K )')'

Cs ——((K u) )(K.u„(t)K.u„(0))——',(K u. (t)(K u„(0))')—-', ((K u. (1))'K u„(0)),
C,=-,'((K u (t))'(K u„(0))')—-', ((K u)')' —-', (K u. (1)K u (0))'.

In the harmonic approximation C~, C~, and C~ sepa-
rately vanish. However, when anharmonicities are in-

cluded, the time-independent C~ represents part of the
new Debye-Wailer factor

F=e p[—((K.u)')+ —,', ((K u)') —-', ((K u)')'+ . . ].
The Fourier transform of C2 will have a resonance
character as mentioned in the second paragraph of this
section. It is assumed that C3, being of "two-phonon"
character, does not contribute to the one-phonon peak.

At the moment it is not clear whether or not the
Fourier transform of terms of degree E' give a contribu-
tion to the one-phonon peak, because each term vanishes
in the zero coupling limit. We assume that there is a
contribution and this will subsequently be verified.

The singular part of the inelastic cross section may be
thus be written

F(S„+ReSsi+((K u)')Sii ——,
' ReSis),

where

S„=Q exp[iK (a„—a )](—i) +

e"'dt((K u„(&))"(K u„(0))&). (8)

The elastic part is

F|'(~)
~ Q „exp(iK a.) ~

'.
IV. TREATMENT OF THE CORRELATION

FUNCTIONS

The correlation functions are obtained in this section
by finding the spectral representation of the related
Green's function. Details of the formalism may be found
in the literature (e.g. , Zubarev') and so will not be
reproduced here. Briefly the procedure will be to
calculate the Fourier transform of the retarded Green's

'D. N. Zubarev, Usp. Fiz. Nauk 71, 71 (1960) I translation:
Soviet Phys. —Usp. 3, 320 (1960)j.
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function G(a&) then evaluate

G (ld+ le)'G (ld Z e)
lim—
e -+0 —i(1—e ~)

For convenience, we define the operators

Afs=afs+a —fs p
+fa=afs a—fs ~

The Hamiltonian is

H=P ~t,at, tat, +e g b(fs, f's', f"s")AfgAf 8 Af 8

fs

for the spectral density function p(a&).
In terms of phonon annihilation and creation opera-

tors the atomic displacements may be expressed as

u„=P v(f, s)(2M(vt) '"(at +a, ,t)e "'", (l=l).
f, s

We first observe that the terms in this sum with s/s'
will be of second order since two "three-phonon proc-
esses" are required in order to change the polarization
index of a phonon. Defining the retarded Green's
function

G„.(t) = —iS(t)([A», (t),A», .(0)])e,

we write down the differential equation which it satis-
fies, i.e.,

d2

Ks Gss'

=2(a»,b(t)b«~ fld», 8—(t) p b(fis/ j f2$2) Es)
flf2

where
X([A„„(t)A„„(t),A». (0)]).

In addition to the new function

= —'0(t)([A „,(t)A „,(t),A .(0)]),
it is convenient to define

( ) (
S»(K,cd) =X' Q

2M(M»~CO»8~) t X(flsy, fgsg —Es )
= —iS(t)([&r ~ (t)&r."(t),A-». (o)])e.

X e '"'dt(A», (t)A», .(0))p.
Their equations of motion are

b (fs,f's', f"s")
=P B;, lv(fs)v(f' s')v(f"s")

X exp[i(f. a;+f' a,+f".aA)]
X(g~„,„, „,„„)vX(f, „s—f2 2, —Es')

Assuming cyclic boundary conditions, the dominant
contribution to the one-phonon peak becomes

K v Ks K v* Ks')

Q2

——+~~'+~2' IX(1~ 2i Es) = 2~,~,X—+a&,U~2(t)+~2V2g(t)
dt2

d2—+~&'+ld2' ~X(1, 2, Es) = 2'&co2X—+le&V2$(t)+G)2V12(t)
dt2

V»(t)—= V(f&s&, f2s2,' Es) = i8(t) Q——b'(q&j&, g2j2, —f&s&)((A„,,A„,,Ar„, ', A», )).
Ql Q2

The notation ((; )) represents the thermal average of the commutator. In terms of the Fourier transforms, the
solution to the above is

~&+~~ M ]—C02

X(1, 2, Es) =-,'[V»(~)+U2l(l—d)] +-', [Vlm(ld) —Vgg(ld)]

Replacing V»(ar) and V»(a&) by their decoupled forms we obtain, correct to second order

BC(1, 2, Es; &v) =2F(f&s&,f&s2, ar)g—b'( f&s& f2s2, Ej—)G, , (—~),

where

Writing now

4)]—C02

F (1, (2o) (n, +0+21=) +(n,—e,)
M —4)] M2 GP —(Ml Me)

R(Es,ld)=aP co» '—2(u», Q F(1,2,—cd)
~

b(1,2,Es) ~'=oP —(v» '—2co»,C», (ld),
flf2

(10)
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the equation for G(co) may be written as

R(Ks,u)G, , =2~z„b„+2~z, P F(1,2,~) P b(1,2,Es)b*(1,2,Ej)G,, (~).
)+8

Upon setting s'=s, the Green's function on the right-hand side of (11) involves polarization changes so that those
terms contribute a fourth-order effect.

G„((u)= 2(uz, {R(Ks,(o)) '.

If s'Ws, the dominant term of (11) is the one with j=s', therefore,

(12)

G„(~)=R, (&u)G, , (~) P F(fifq~)b(fif2 Ks)—b( fi —f K«—s). (13)

Strictly, this method of approxiination is valid only provided that R(K,a&) is 0(1).Near ~=~z, this is not the case,
but it may be shown that then the solutions are still well approximated by the above formulas.

before calculating p(co) from the prescription stated above (9), we first notice that (12) may be expressed (to
second order) as

G„(~)= [1+(uz, 'Cz—, (cu)]t [co ~z. Cz (~)? [&+&z +Cz (~)]

If Cz. (u&+i«) = 6 z(~) iT'z—, (~) in which

Dz, ((u) =P Q F (f)s, f«s«, (u)
~
b(fisif«s«Ks)

~

',

I'z, (a)) =-', «r Q ~
b(fisif. s Ks) ~'((ni+n. +1)[.8(«« (ui —(v ) —b((u+—(ui+a&2)] (14)

We obtain for pz, ((u)

+(ni n2)[b (~ ~1+~2) b (~+~1 &~2)]) ~

21'z.[1—( —z,)/ z,] 2I',[1+( + z.)/(uz, ]
(1—e ') ' +(~ '"—1) '

4&—&z —~z.) +I z. (&+&z.+~z.) +I z.
(15)

In the limit of zero coupling this reduces to the familiar
result

2«rb (co cuz, )(nz—,+1)+2«rb (co+u&z.)(nz ) .

Assuming that D(o&) and I'(a&) are slowly varying func-
tions of &v, then p(a&) is seen to be a sum of two modified
Lorentzian curves, each of width F~, centered about the
points W (a)z,+Az, ).

The expressions, resemble closely the second-order
perturbation energy correction and a transition proba-
bility, respectively. If we were to write expressions for
the energy correction 5z, for the mode (K,s) and the
total transition probability pz, for this mode due to the
"three-phonon processes" then we should 6nd that in
place of the expectation values of the number operators
in (14) there would appear

nz(n, +1)(n2+1)—(nz+1)n&n2

and

nzni(n2+1) —(nz+1) (ni+1)n2

so that

6z, 8(nz, +1) 5(n——z,); I'z, =—y (nz, +1)—y (nz, ),
which is a particular case of Brout's result.

A. First-Order Correction to the
One-Phonon Peak

This is given by

K v(q,s,)
F Im P Q— D(K q q)D*(K+—q )—

«&«2«3 ~ (2M(u«;, ;) t

e'"'dt(A «(t)A „,(t)A «, (0))p. (16)

The diffraction-pattern functions lead to wave-con-
servation requirement:

I=qi+ q«, I=—q3.

It is now apparent that we have to deal with
3C(qisiq2s2 —Esa). Correct to second order BC(~) has been
calculated in the previous section to be

2F(qlslq2s2~)b( qlsl q2s2Ks3)Gsgs8(~) ~

The presence of the last factor G(co) relating to a phonon
(K,s3) justifies the assertion that 5»(K~) contributes to
the "one-phonon" peak. In (16) evaluation of the
summations over q&, q2 for co just above the real axis will
give

ez.-, (~)—4 z.,(~),
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where
K'v 1$1)K'v 2$2)

2E (q1$1 q2$2u))b (-q1s1 q3—$2E$3)
(q (q

8r&„(~)=. & P
4i 4~. 2M'((u „,p) „,„)'"

K v(q1si)K. v(q2$2)
q»„(~)=~ P— b (—q,s,—q.s2Es, )

231( „„„„,,)'~'

)& {(231+232+1)fb(CO Cu1
—Cu.—) 8(—~+Cu1+Cu2)]+(221 23—2)[5 (&u

—~1+~2) —8 (~+CO1 M2)] }.

Expression (16) becomes

where

K v*(E$3)
F lm—~Y2 Q c» "'(~)

83 (2M(d», 3)'~2

p» (1) (~) =
[(a&—&u», —6» )2+I'» ')(1—e

—e") [(~+~»,+a», )2+r», 2) (e-e-—1)

28 -,I',[1—( —(u,)/~, ]+y,. ((u —4d, —6,) 28,1',[1+((a +co») /~ »]—q», (4d+4e», +6», )

-(4d —&u», —A», )(1—e
—e )-' (co+co»,+A», )(e e —1)-—

p»,, '" (~) = 8» ,p», (~)+ v.~».
(&—&».—+», ) +I »,, (~+~»,+&»,)'+ I'».'

Higher order terms involving 6' and I' have been neglected in the numerators. Because of the algebraic property of
Lorentzian-type expressions, p», &'(a&) is given to a good approximation by

='8»8p»s(~)+ p»a&»s(~) ~ (17)

The one-phonon peak is accordingly represented by

K v(Es)
I

(2Mco», )"
F.'V2 Q— 1 —Im 8», p», (4d),

2%40», K v(Es)

which may be interpreted by saying that the Debye-
%aller factor for the "one-phonon" part of the spectrum
differs from that for the elastic part by the factor

1—Im(2M'&» )'~'[K v(Es)] '8» (18)

now depending explicitly on polarization through a
correction term which is first order in the coupling
constant.

We have so far neglected the terms in 22», (40) which
involve the function of o.»„(a&). This part has an asym-
metric character which tends to distort the I.orentzian
shape of the main curve. The width of the curve is only
affected in higher order, but there will be a contribution
to the height of order q~, . Thus, when the anhar-
monicities are appreciable it is clear that the profile will

no longer be a simple I.orenz shape.

B. Second-Order Corrections

In view of the remark at the end of the last section, it
might seem that a discussion of second-order corrections
to the "one-phonon" profile is rather academic; how-
ever, for a Bravais-type lattice these first-order correc-
tions vanish identically so that it is the second-order
corrections which may be important. These will come
from the off-diagonal Green's functions G„(~) in (13)
and also from the fourth derivative of 1n(r

~
0)g which we

consider first, i.e.,

F [((K u)')S11—-',S13]. (19)

—(d'/dt. '+C01')G~4~ =M,h(t)((B1) A,A3A, ))

+401 p b(q1q2 —fi)H(qiq2f2f3f4) .
gl 4I2

(20)

As before, it is convenient to define the functions

H(qiq2f2f3f4) = —28(/)((A „A„;A r,A f,A y,))

E(qiq2f2f3f4)= 28(~)((B.B—. Af Af Af))
H and E satisfy differential equations similar in form to
(9), but we now find extra terms from the nonvanishing
of certain expectation values.

(d2/dP+44112+(g22)H

= 2~1cv2E+G)1U12+4d2U21+8(&) {~,(A 2[B,)A f3A f3A f4])

+co2(A1[B2,A r,A f,A f,))}, (21)

—(d2/d /2+ a)12+a) 22)E
2~1&2H+ ~1U 21+~2 U12+8 (~){~1(A 1[B2)A f2A f3A f4])

+(o2(A 2[Bi,Af,A f,A y,])}

+j 8(t)([B,B2,AI,A g ,Ar—4)), (22).

We discuss the equation satisfied by the Green's func-
tion G&4'(/)

G&4~ (t) = —z8(1)((A, ; A,A,A,)),
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where

U&2(t) = —io(t) P b(fsf's' q—rj &)

Rewriting (13) as

44«Ksc«Ks' Q F(flf24«)b(fif«ES)b*(f~f«ES')
flf2

)&((A „,,AS,Ar;, Ar„,AS„,Ar„,». G„(c«)=
(c«c«Ks 2)g)K)GKs) (c«c«Ks' 24«Ks'GKs')

Using the dehnitions

y=([B„A„+A„B„,Ag, AS,Ag,]),
s= (rtB „B„,A S,A r,A r,j),

we obtain just as in Sec. IV A by decoupling U»(c«)

H(c«) =2F(q)q«c«)Q b( —q&
—q«f j)G,&'&(c«)

we make use of the algebraic identity

4ab(x' —a') '(x' —b') '

2b 1 1 2u 1 1

a' —b' x—a x+a a' —b' x bx+—b

(cs) «)+c««2)y+ c«s 1 c«s

2 ~2—(~ +~.)' 2~2—(~ —~ )'

The index j refers to the polarization of f in

G;"=G '(fj; f«s«f3$3f4$4).

Correct to second order, Eq. (20) becomes

R (f,s,,«))G„'4) (co)

to obtain the approximate relation

(23) G., (c«)G, , (co)

= 2 (c«Ks c«Ks' ) (c«Ks'Gss c«K)Gs's') ~ (2g)

We are justified in neglecting certain second-order cor-
rections to the factors multiplying G„and G, , in (28)
since the whole expression is to be further multiplied by

c2ss (40) = P F(f)f2&)))b(fqf«ES)b*(f4f«ES').
flf2

In exact analogy with the derivation of (17) and. the
discussion of (26), the density function corresponding to
n« t"„ is given by

=~a (L&i ~ AS.AS Ar j&+2~i). 2 b(q~q2 —f~)
Ql Q2

—(c«„+c«„)y+c«s c«s

X
~2 ~ ~ 2 ~2 ~ ~ 2

) ss'PKs(C«)+ 3 ss' )rKs (C«) )(24)

where v«and v«
' are the real and imaginary parts of

The first term in (19) is cancelled by the first one on the 42„(c«+i«). On inserting this last expression into (27)
right side of (24). Thus, we obtain for (19) one obtains as the second-order contribution to S»(Kc«)

K' v(Es))
-', ReFtV2

s)fsfsr4 (21lIIC«K, ,)
4 Kv (fs)

xpK„~'&( ) p . (25)
;=2 (2~4«t ))t2

K v(Es)K v*(Es') c«Ks~

41P Re
2~(4))K)4«Ks') ~Ks 4))Ks'

X[»., PK, (~)+~„'~K,(~)j.
SUMMARY AND CONCLUSION

pK, &" (4«) is the density function corresponding to We have seen that while Baym's treatment is inexact
for a crystal with anharmonicities, it does represent a
good approximation and is correct for a nonmetallic
crystal with harmonic forces. A method of dealing with
the case of a crystal with impurities has been indicated
by Krivoglaz, although he appears to neglect certain
erst-order effects associated with the phonon correlation
functions (at(t)a r(0)& and (an't(t)a yt(0)&. By con-
sidering primarily the operators 3 f, these terms are
easily included as in the present work.

Generally, the elastic scattering peak is multiplied by
a new Debye-Wailer factor

(c««1+4««I) y+c«s
b (qyq2

—Es)
«)«2 c«2 (4« i+4« l)2

R (Es,c«) '. (26)—
C2 2-

By the usual argument we find

pK."'(~)=p(Esf«f«f4)~) pK. (~)+p'(Esf«f3f4)~)«. (~) )

in which t4K, (c«) is the principal part of the numerator in
(26) and t4K, '(c«) is its imaginary part.

The other second-order effects come from the off-
diagonal Green's functions in S»(E&«), i.e., from the
density function corresponding to

expl:—((K n)2&+ —'((K u)'& —4((K n)2&2+

where the corrections in the exponent are of second
order for the particular anharmonic interaction we have
considered. It is possible to continue the exponent, in
which the next term. isK v(Es)K v*(Es')

G„(40) .
21'�(4g)Ks)g)Ks')

(27)
( i360) t ((K n)'& —~((K u)'&((K. u)'&+ ((K.u)'&'3
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but this represents a fourth-order effect in the present
case.

In order to discuss the features of the inelastic scat-
tering one requires, in addition to the one-phonon
Green's functions, higher degree correlation functions if
the anharmonicity is to be consistently included to any
given order. Because of the wave-vector conservation
property of the lattice potential it is found that these
corrections are associated with a particular phonon
wave vector and contain "resonance-denominators. "
We are thus justified in regarding them as corrections to
the "one-phonon" peak.

Although the higher correlation functions contain the
resonance factor p(&u), they also contribute an asym-
metric correction term tT(a&). The Lorentzian profile of
the cross section is, therefore, distorted and it is no
longer strictly correct to regard its width as a direct
measure of the phonon lifetime.

The first-order correction to the one-phonon peak,
which depends on the integrals 0 and q, will vanish
identically for a Bravais lattice with a center of sym-
metry since the polarization vectors v(f,s) and the
coefficients b(fsf's'f"s") are real in that case. In the
case of a more general type of lattice this term need not
vanish. In order to estimate the size of this correction
for the general case and also the size of the second-order
correction which persists even in a Bravais lattice, we
recall Eq. (t). This expresses the zero-, first-, and
second-order terms of the cross section, respectively, as

Sll «S12 ((K'u) )Sll 3 «S13
where the quantities S~, are defined in (8).

In the Appendix it is argued that the orders of
magnitude of these expressions are in the ratios of the
quantities

((K «)') ((K «)'): l((K «)4)—((K «)')'

Taking a linear anharmonic-oscillator model represented
by a particle in the potential

V(x)=Ax' —Bx3,

we obtain for the above ratios, using Boltzmann
statistics

1:(15/4) ~E~BP 'A '. (5/2)~E~'B'P 'A '.
The quantity k~BA ' is the coefficient of linear ex-

pansion, which is of order 10 ' to 10 ' per 'C, so that

i
E

i
BP 'A '=10 'T

i
E

i
a.

"a" is the interatomic spacing (~ E
~

= a '). For
T= 300'K, the ratios become

1 10 '(10 ') 10 4(10 '),
showing that the correction terms contribute 1% or
less to the one-phonon peak. This figure is certainly a
generous upper limit for the first-order term because the

fact that the first correction vanishes in the case of a
Bravais lattice means that in other cases it might still
vanish or at least be smaller than the quantity

~ S13 .
We can conclude that while the corrections discussed

in this work exist they appear to be very small for
dielectric crystals. In particular, for the Bravais lattice
the correction is negligible ( 0.01%).
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APPENDIX

From Eq. (8) and using at,+a f,+——A t„we can write

Sl,——(—i)'+& p exp[ iK—(a„—a )j

f, s

K.v(fs)
exp(if a„)

(2M40f, ) 't'

X(Ar, (t)(K u (0))")ttdt. (A1)

Substitution of these expressions in (A1) gives for the
peaks, corresponding to phonon emission,

(—t)&+' P exp[—iK (a.—a )]

xP
(ttt 40K +K ) +I K

K v(fs) exp(if a.)
(ar.(K «-)")

(2M(uf, )"3

The order of magnitude of this quantity is unaltered on
replacing af, by A fs in the expectation value. Making
this replacement and averaging the sum over f over
polarizations we obtain for the (E,s') phonon peak

(—i)t'+" Q exp[ —iK. (a„—a„)$

X —(K u„(K u„)&)

(~—OVC, —&K.)'+I'K.'

I Ks=E 0((K u) ~')
(4tt 4ttK t-tK ) +IK

Now the Fourier transform of the phonon Green's
functions is consistent with the following time depend-
ence for the annihilation and creation operators:

af (t) =af, exp[ —iT f,
~

t~ i(tdf +Df )tj.—


