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Coulomb Self-Energy of Axial Figures*
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A new method of computing the Coulomb self-energy of uniform axial figures is developed. The energy
is expressed as a sum of slice-slice interactions plus the self-energy of each slice. Analytical formulas are de-
rived for these energies and are presented in numerical tables. The method is tested numerically by com-
paring its results with the exact self-energies of certain simple figures.

'HE problem of the self-energy of an extended
body due to the gravitational attraction or

electrostatic repulsion of its matter is very oM. Be-
ginning with Newton, Clairaut, and Maclaurin the
subject' was'developed in connection with the figure
of the earth' and the equilibrium shapes of rotating,
gravitating liquid masses. ' In this study the Maclaurin
spheroids and Jacobi ellipsoids were found to be the
stable shapes for low angular momentum, and for these
figures the self-energy was integrated. Indeed, to this
day, uniform ellipsoids are the only solid figures for
which an exact self-energy formula is known. In this
early period the Legendre expansion for distorted-
sphere potentials was also developed. At the turn of
this century Poincare, Darwin, Liapounov, and Jeans
studied the "pear-shaped" figure which terminates the
stability of the Jacobi shapes for high angular momen-
tum. In this they used Lame expansions for the dis-
torted-ellipsoid potential.

In recent times the same problem has been studied
extensively in connection with the liquid-drop model
of nuclear fission. ' The same expansion techniques v ere
used to find the Coulomb self-energies of Legendre-
distorted spheres and spheroids. '4

Ke are not concerned here with the successes or
failures of liquid-drop calculations in explaining fission
but only with the accuracy of those Coulomb self-
energy calculations which use expansion techniques;
yet even this is di%cult to assess. The formulas them-
selves, which are power series in the distortion param-
eters, show very slow apparent convergence even for
rather small distortions. In addition, there are un-
answered questions on the convergence of the method
because of difficulties in determining the perturbed

* Supported in part by the U. S. Atomic Energy Commission.' I. Todhunter, A History of Mathematical Theories of Attraction
(MacMillan and Company Ltd. , London, 1873; reprint, Dover
Publications, Inc. , New York, 1962).' Reviews of this problem appear in: J. H. Jeans, Problems of
Cosmogony and Stellar Dynamics (Cambridge University Press,
New York, 1919); R. A. Lyttleton, The Stubility of Rotating
liquid Masses (Cambridge University Press, New York, 1953);
W. S. Jardetsky, Theories of Figures of Celestial Bodies (Inter-
science Publishers, Inc. , New York, 1958).

s N. Bohr and J. A. Wheeler, Phys. Rev. 56, 426 l1939l.
4 Many papers using Legendre distortions in Coulomb self-

energy calculations have been published since N. Bohr and J. A.
Wheeler. The most complete is that of W. J. Swiatecki, in Pro-
ceedings of the Second United Rations International Conference on
the Peaceful Uses of Atomic Energy, Geneva, 1058 (United Nations,
Geneva, 1958), Vol. 15, p. 651.

potential. In the fission literature this is not seriously
investigated' although the distortions of interest are
frequently large, whereas in the gravitational stability
studies' small distortions sufficed and terms beyond the
second order in the expansion coefficients were not
required. Even so, the history of the pear-shaped
figures records several mistakes arising from conver-
gence difhculties. It should also be noted that the
prediction of fission saddle points and trajectories
requires very high accuracy in the self-energy calcu-
lations because of the partial cancellation of the
Coulomb and surface-tension distortion energies.

These impressions, formed during attempts' to study
liquid-drop equilibrium shapes for nuclei with high
angular momentum, led me to examine a different
method of calculating Coulomb self-energies. This
method, named the slice method, is applicable to any
uniform solid body which is a figure of revolution and
is slicable into circles.

THE SLICE METHOD

Consider a uniformly charged body which is a figure
of revolution around the s axis. Suppose it to be cut by
planes perpendicular to s into X circular slices each of
thickness h. %ith no approximation, the self-energy is
given by the sum of the self-energies of the X slices
plus the sum of the interaction energies of each pair of
slices. Now replace each slice by a Oat, circular cylinder
of height 6 and radius equal to some average radius of
the slice. To some approximation its self-energy is equal
to that of the slice. In the slice-slice interaction the
same cylinders may be used or in a cruder approxi-
mation each slice can be replaced&by a midplane disk
onto which the total slice charge is uniformly spread.
To some approximation the cylinder-cylinder (or
disk-disk) interaction energy equals the true slice-slice
interaction energy.

In order to compute the cylinder self-energies and
the interaction energies only one basic formula is
needed; a formula which gives the interaction energy
of two uniform disks. All other energies are integrals
of this interaction. When this formula is obtained the
accuracy of the slice method can be tested with spheres,
spheroids, and sets of nonintersecting spheres. Of

' It. is, however, noted by Swiatecki (Ref. 4).' R. Beringer and W. J. Knox, Phys. Rev. 121, 1195 (1961).
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course, with very large T the method will be accurate,
but since the number of interaction terms is 2X(—E 1)—
the calculation will become very laborious. The practical
question is whether the errors are small for moderate
values of X. We guessed that the total error would be
small because of compensating errors in the geometry
of the method, and this is the fact.

It is clear that the slice method amounts to nothing
more than a particular arrangement of the double
summation which defines the self-energy. It would not
have appeared attractive or even reasonable before the
era of high-speed computers. On the other hand, the
method is completely general. Results are as ea,sily
obtained for one figure as for another and the accuracy
should have little dependence on the shape of the 6gure.

r
V(r, 8) =22rgiRi 1——Pi(cos8)

R$
00 r 2"

+ Q C2n — P2 n, (cos8)
n=S

where r is measured from the center of disk. , C2„are the
binomial coeKcients of x2" in the expansion of (1+x2)"',
and P2 (cos8) are the Legendre polynomials. The
interaction energy of the two disks is

tan 1(R2/I )

E,(disk-disk) = V (r,8)2 .
2rLo' 2sin8 cos '8d8,

which can be integrated term-by-term to give a power
series in R2/L with coefficients which are themselves
power series in L/Ri. When this expression is rearranged
as a series in ascending powers of R2/Ri, the coe%cients
of these terms are recognized as products of binomial
coeScients and hypergeometric series,

g2n+2

E,(disk-disk) = 42r'0 20.2Ri' ——g'+ p
2 n 22 (22+ 1)=

THE DISK-DISK INTERACTION

The interaction energy of two coaxial and parallel
disks of radii R~ and R., uniform surface charge densities
0.

~ and 0.2, and spacing I. is obtained by integrating the
potential due to one disk over the charge on the other.
Considering the larger disk, Xo. 1, as the source, the
well-known potential convergent inside the hemisphere
r ~&R„0~&-,'~ is

expression written as,

E.(disk-disk)
g2n+2 (1+l'22) 2n—+~

= 42r'0. 20.2Ri' ——g'+ Q2' =o 2 (22+1)

XC,„P,.(0)F( n—, —22+1, —,', —k2)

This formula has several virtues: (a) By its arrange-
ment in powers of g, the coefficients of the series are
polynomials in k2 and thus exact. (b) The formula
converges to the correct value not only within the
hemisphere but for all R2(R~ and, thus, a separate
far-field solution is not needed. (c) The formula is
convenient for high-speed computers.

The convergence is very rapid for k)0 if g(1. Only
in the region k 0, g 1 is the convergence slow.
However, the value of E, at 0=0, g= 1 is known from
the analytic solution of the self-energy of a single
disk' which may be thought of as the self-energies of
two coincident disks plus their interaction energy.
This gives

E,(disk-disk) = (162r/3)0&0.2R22

THE FLAT-CYLINDER SELF-ENERGY

For. extremely Rat cylinders the self-energy is that of
a single disk, (82r!3)a2R2, but for cylinders of finite
height it is smaller. An accurate value can be calculated
with the disk-disk interaction formula. This is con-
veniently carried out by fitting an integrable function
to E(k,1) and performing the double integration

E,(cyl) = 42r2p2R' E(k, 1)dkdp,

where p is the volume charge density, R the cylinder
radius, and 6 its height. It was found that a fit with
a maximum residual of 0.01%%uo in the range 0&~k ~&0.5
could be arranged with the semiempirical formula

for k=0, g=1.
The disk-disk interaction energy has been calculated

for various g and k by hand and with electronic com-
puters. A short table of the interaction function
E(k,g) =E,/42r'o ~o2Ri' is given in T.able I.

XC2nP2n (0)F(22+-'„22—
—2,)

—',, —k2)
4

E (&,1)=— '0+8k' Ak' Ink, —-—
37rwhere k=L/R, , g=R2/Ri, and F(a, b, c, —k') are

hypergeometric series. 7 The series can be transformed
to hypergeometric polynomials and the resulting where 8=0.257729, A =0.155241 were determined by

7 E. T. Whittaker and G. N. Watson, Modern Analysis (Cam-
bridge University Press, New York, 1958), Chap. XIV.

A. S. Ramsey, Theory of Ãeztonian Attraction (Cambridge
University Press, New York, 1940).
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TABLE I. The (disk-disk) interaction function R(k, g) . The larger disk is of radius R& and the smaller of radius Rs.
k =disk separation/R, , g =R&/R&

0
0.1

. 0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.5
3.0
3.5
4.0
4.5
5.0
6.0
7.0
8.0
9.0

10.0
15.0
20.0

0.1

0.004994
0.004519
0.004093
0.003715
0.003380
0.003086
0.002827
0.002600
0.002400
0.002224
0.002069
0.001931
0,001809
0.001699
0.001601
0.001513
0.001433
0.001361
0.001295
0.001235
0.001180
0,000963
0.000811
0.000700
0.000615
0.000549
0.000495
0.000414
0.000355
0.000311
0.000277
0.000249
0.000166
0.000125

0.2

0.019899
0.018001
0.016301
0.014792
0.013460
0.012289
0.011261
0.010358
0.009565
0.008866
0.008249
0.007702
0.007215
0.006780
0.006390
0.006038
0.005721
0.005433
0.005171
0.004932
0.004712
0.003846
0.003242
0.002799
0.002461
0.002194
0.001980
0.001655
0.001421
0.001245
0.001108
O.QOQ997
0.000666
0.000500

0.3

0.044488
0,040220
0.036410
0.033033
0.030060
0.027449
0.025160
0.023153
0.021389
0.019835
0.018462
0.017245
0,016161
0.015192
0.014322
0.013539
0.012831
0.012188
0.011603
0.011068
0.010578
0.008640
0.007286
0.006292
0.005532
0.004935
Q.004452
0.003722
0.003197
0.002801
0.002492
0.002244
0.001498
0.001124

0.4

0.078366
0.070792
0.064052
0.058101
0.052876
0.048299
0.044292
0.040781
0.037697
0.034981
0.032580
0.030449
0.028551
0.026853
0.025328
0.023953
0.022709
0.021579
0.020549
0.019608
0.018744
0.015325
0,012932
0.011171
0.009826
0.008765
0,007909
0.006614
0.005681
0.004978
0.004429
0.003988
0.002663
0.001998

0.5

0.120961
0.109153
0.098699
0.089514
0.081480
0.074464
0.068333
0.062966
0.058254
0.054102
0.050429
0.047166
0.044257
0.041652
0.039310
0.037196
0.035281
0.033540
0.031952
0.030499
0.029165
0.023875
0.020162
0.017427
0.015333
0.013682
0.012348
0.010328
0.008872
0.007775
0.006918
0.006231
0.004161
0.003122

0.6

0.171486
0.154540
0.139643
0.126639
0.115322
0.105471
0.096880
0.089365
0.082765
0.076946
0.071794
0.067212
0.063120
0.059451
0.056148
0.053163
0.050456
0.047992
0.045742
0.043681
0.041787
0.034258
O.Q28958
0.025044
0.022045
0.019677
O.Q17763
O.Q14861
0.012769
0.011191
0.009958
0.008970
0.005991
0.004496

0.7

0.228893
0.205942
0.185971
0.168686
0.153730
0.140755
0.129457
0.119575
0.110891
0.103226
0.096428
0.090373
0.084956
0.080092
0.075705
0.071734
0.068128
0.064841
0.061835
0.059078
0.056542
0.046435
0.039293
0.034007
0.029950
0.026743
0.024148
0.020210
0.017369
0.015225
0.013549
0.012205
0.008153
0.006119

0.8

0.291764
0.262025
0.236538
0.214710
0.195931
0.179681
0.165536
0.153155
0.142259
0.132623
0.124059
0.116416
0.109564
0.103397
0.097826
0.092774
0.088177
0.083980
0.080137
0.076608
0.073357
0.060361
0.051141
0.044298
0.039035
0.034869
0.031495
0.026371
0.022670
0.019874
0.017689
0.015935
0.010647
0.007992

09

0.358092
0.321016
0.289965
0.263649
0.241090
0.221574
0.204564
0.189643
0.176478
0.164804
0.154403
0.145094
0.136728
0.129181
0.122347
0.116137
0.110475
0.105298
0.100549
0.096180
0.092151
0.075988
0.064470
0.055895
0.049285
0.044046
0.039798
0.033338
0.028667
0.025137
0.022376
0.020160
0.013473
0.010113

1.0

0.42441$
0.380594
0.344746
0.314425
0.288378
0.265771
0.245994
0.228579
0.213159
0.199436
0.187168
0.176154
0.166228
0.157248
0.149096
0.141671
0.134888
0.128672
0.122960
0.117697
0.112836
0.093262
0.079245
0.068774
0.060685
0.054262
0.049047
0.041107
0.035359
0.031010
0.027609
0.024876
0.016630
0,012484

least squares. The integration gives

Sx
E„(cyl)=—p'6'R' 1———

3 8 R

7
+—— B+ /1 —2 ln——

8 R 12 R

The terms following unity are corrections to the disk
value. This E,(cyl) formula is believed to be accurate
to 0.005% in the range 0 &~6/R ~& 0.5.

CALCULATIONS %ITH THE DISK-DISK
INTERACTION

In the simplest slice-method calculation the disk-disk
interaction replaces the true interaction. As indica, ted
earlier, the calculation consists in (a) slicing the 6gure
into N slices of equal height 6, (b) evaluating the
self-energy of each slice by replacing it with a cylinder
whose volume is that of the slice, (c) adding to this
the interaction energy of each pair of midplane disks
having charge density o =pd and the radii of (b). In
step (c) it is convenient to evaluate the interaction
terms in order i starting at one end of the figure and

to include an intera, ction with disk j if R;)R,.. This
automatically counts each interaction only once.

It should be mentioned that with the method as
described no volume or charge renormalization is
required. In some early ca,lculations midplane radii
were used for the disks and cylinders, but no simple and
accurate volume renormalization of the final answer
was possible.

In our earliest calculations we used tabular values of
E(k,g), but it was not possible to find simple formulas
for the two-dimensional interpolation. In the calcu-
lations reported here each interaction term was com-
puted for the k and g values which occurred. A complete
calcula, tion of E,, for forty slices takes about thirty
seconds on an IBM-7090 computer.

Table II lists results for the sphere and other 6gures
for which exact analytical answers are known. It is
seen that the accuracy improves fairly rapidly with the
number of slices jthe errors vary quite accurately as
1/1V(Ã —1)]but for a given number of slices the errors
are higher for figures which are long in the axial direc-
tion. Also, all of the computed answers are low.

There are several inherent sources of error in the
slice method and particularly in the approximation
which uses disk-disk interactions. These errors were
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studied for the figures of Table II and for other figures,
in particular, cylinders within the range of validity of
our E,(cyl) formula. It was concluded that for X&~20
the predominant source of error is the disk-disk approxi-
mation to the slice-interaction energy. Errors arising
from the replacement of the slice by a cylinder are
much smaller. To improve the calculation an inter-
action-energy formula for Qat cylinders was developed.

Figure
Including 82K/Bk2 terms

N &c Error ( jo)

Including 82P/Bkm and
84L&/Bk4 terms

Ec Error (%)

Sphere 10 0.598501 —0.250
20 0.599602 —0.066
30 0.599819 —0.030
40 0.599897 —0.017

0.598512
0.599606
0.599821
0.599897

—0.248—0.066—0.030—0.017

TAnLE III. Self-energy calculations with the (cyl-cyl) inter-
action. The 6gures and procedures are the same as for Table II.
The columns list calculated self-energies and errors with two
di6erent degrees of approximation to the true (cyl-cyl) interaction.

THE CYLINDER-CYLINDER INTERACTION

The interaction energy of two parallel and coaxial
cylinders of radii E& and E2, thickness 2, uniform
volume-charge density p, and midplane spacing mA

=kpRt can be found by a double integration of the
disk-interaction function E(k,g)

b, /BI kP+y

Tmo equal,
toucl'ling
spheres

Prolate
spheroid
of 2:1
axis ratio

Oblate
spheroid
of 2:1
axis ratio

20 0.535289 —0.0332
40 0.535411 —0.0103

10 0.571838 —0.513
20 0.574028 —0.132
30 0.574446 —0.059
40 0.574593 —0.033

10 0.575751 —0.0163
20 0.575807 —0.0067
30 0.575825 —0.0035
40 0.575832 —0.0022

0.535294
0.535414

0,571800
0.574040
0.574448
0.574597

0.575756
0.575807
0.575825
0.575832

—0.0323—0.0098

—0.519—0.130—0.059—0.033

—0.0155—0.0067—0.0035—0.0022

E,(cyl-cyl) = 4rr'p'Rts L(k, g)dkdp,
0+p—b, /B]

The integration can be performed formally and results
in a correction to E,(disk-disk) which can be arranged
as a power series in 6/Rr=kp/m. The same formula is
obtained more easily by the double integration of
E(k,g) written as a Taylor expansion around (kp, g).
The resulting formula is

E,(cyl-cyl)

tives yield hypergeometric polynomials which can be
transformed into those already appearing in the disk-
disk interaction, and the resulting formula is no more
difficult for calculation than the disk-disk interaction
formula. Including terms in B'E/Bk',

E,(cyl-cyl) = 47r'o'Rr P —rs kg'+ —', (1+k') '~'g'

1 ko' O'E,
=4 ' 'RP E(k, g)+ (

—
, ) (

—
)

g2 %+2

+ P C,„F,„(0)
2 (v+1)

~g2n P2—

6 m-"

3X5X4!km) (Bk')„,
~ ~ ~

) X(1+k') '"+'F(—e, —e+1, —'„—k')

where a is the disk charge density, a= pA. The deriva- or including terms in B'E/Bk' and B'F/Bk',

TAszE II. Self-energy calculations with the (disk-disk) inter-
action. All figures have unit charge and the volume of the unit
sphere. N is the number of slices. Flat-cylinder energies were
computed with the volume-average radius. The (disk-disk)
interactions used these same radii. In the (disk-disk) interactions
the series terms in E(k,g) were computed until two successive
terms were less than 10 or until n=50 was reached.

(cyl cyl) —4~2o2R 3 lkg2+ r (] +k2)1/2g2

—(1+k') "'g' ——— —+ 2 (=s-&s.(o)
2gg2 gP

Sphere

Figure Error

10 0.596335 —0.611/0
20 0.598948 —0.175
30 0.599508 —0.082
40 0.599715 —0.047

g2 6+2

X
2 (e+1)

eg'" k' e'(n —1) k'
g2A 2

6 m' 45 nz'

X (1+k')-'"+IF(—m,
—n+1, -'„—k')

Two equal, touching spheres 20 0 533921 —0 288 jo
40 0.534999 —0.087

Prolate spheroid of 2: 1 axis ratio

Oblate spheroid of 2: 1 axis ratio

10 0.566265
20 0.572193
30 0.573545
40 0.574059

10 0.575077
20 0.575612
30 0.575734
40 0.575779

1.482 jo—0.451—0.216—0.126

—0.133%—0.041—0.019—0.011

The procedure can be extended to higher order deriva-
tives but we have not found it useful to do so.

Slice-method calculations with the (cyl-cyl) inter-
action are considerably more accurate than those with
the (disk-disk) interaction. Table III lists results for
the 6gures used in Table II. As in Table II the errors
vary inversely as the number of interactions but the
shape-dependent errors of Table II have been reduced.
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DISCUSSION

As now developed, the slice method is accurate enough
for studies in liquid-drop nuclear fission. This is being
done and preliminary results will be published shortly.
With its extension to elliptical disks the method should
also be useful for further calculations of the equilibrium
shapes of liquid-drop nuclei with high angular momen-
tum' ' and for the dynamics of close binary stars.

9 B. C. Carlson and Pao Lu, in Proceedings of the Rutherford
Jubilee International Conference, 3fanchester, 1961, edited by
J. B.Berks (Academic Press Inc. , New York, 1961).

ACKNOWLEDGMENTS

It is a pleasure to acknowledge the invaluable
assistance of Joseph N. Vitale who progra, mmed and
computed, at the Yale Computer Center, all of the
results of Tables II and III and numerous other
studies of the slice method mentioned in the text. I
also thank Lois Frampton for programming the early
work which appears in Table I. I also thank Professor
R. L. Gluckstern who assisted in the analysis which
led to the disk-disk interaction formula.

P H YSI CAL REVIEW VOLUM E 131, NUM B ER 4 15 AUGUST 1963

Computations of Radial Distribution Functions for a Classical Electron Gas*

DAVID D. CARLKY

University of Florida, Gaineseille, Florida

(Received 5 April 1963)

The radial distribution functions g for a classical electron gas computed using the Percus-Vevick (PY)
equation, convolution hypernetted chain (CHNC) equation, and the Broyles-Sahlin (BS) method, have
been compared with the Debye-Huckel (DH) theory. The quantities E=—U/Nkt and I' —=p/nkT have been
computed from these g's. Computations have been made for values of 8 of 20, 10, 5, 3, and 1; e=kTa/q',
where a is the ion sphere radius. The PY and BS results show the best agreement, particularly at 0(3.
The BS method has been of particular value in this study of a long-range potential. In the range of 0 studied,
g never exceeds one, that is, there is no oscillatory behavior of g.

I. INTRODUCTION
" 'N a classical one-component fluid having an average

number density n=N/V, where 1V is the number of
particles and V the volume, the average number
density n(r) about a given particle is, in general, not
constant. The radial distribution function g(r) is the
factor by which n(r) differs from n and is defined by
n(r)=ng(r). As a result of the Maxwell-Boltzmann
classical distribution law, g(r) may be written, in the
limit as S approaches in6nity, as'

g(r)= V'Z ' e ~~s drs dry,

z=

where U is the potential energy. In the following, U
will be assumed to be the sum of pair potentials P(r)

The radial distribution function is important because

thermodynamic quantities can be calculated once g(r)
*This research was supported in part by funds from the

U. S. National Science Foundation.
Terrell L. Hill, Introduction to Statistical Thermodynamics

(Addison-Wesley Publishing Company, Inc. , Reading, Massa-
chusetts, 1960).

and p(r) are known. Of particular interest here are the
relations for the pressure and mean potential energy, '

E= U/cVkT=2rr—n(kT) ' rk(r) g(r)r'dr,

d~()P=P/nkT=1 —2s—.n(3kT) ' r'g(r) dr. (3)
0 dr

' J. K. Percus and G. J. Yevick, Phys. Rev. 110, 1 (1958);
J. K. Percus, Phys. Rev. Letters 8, 462 (1962); J. L. Lebowitz
and J. K. Percus, J. Math. Phys. 4, 116 (1963}.' E. Meeron, J. Math. Phys. 1, 192 (1960};T. Morita, Progr.
Theoret. Phys. (Kyoto) 23, 385 (1960); J. M. J. Van Leeuwen,
J. Groeneveld, and J. DeBoer, Physica 25, 792 (1959); M. S.
Green, Tech. Rept. Hughes Aircraft Corporation (unpublished).

U/Jt/, the mean potential energy per particle, is often
referred to as the correlation energy.

A direct evaluation of Eq. (1) to determine g is not
practical and, consequently, several approximate
methods have been developed; there are four methods
which are of interest here. Using a collective coordinate
technique Percus and Yevick' formed an integral equa-
tion (PY) for g. A second integral equation was ob-
tained by a summation procedure of Mayer-type
diagrams and has been given the name convolution
hypernetted chain equation (CHNC). ' A third method,


