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nuclear size seen. The absolute diamagnetic shielding
has been seen, perhaps for the first time, and verified
to about 20% Solid-state and chemical effects have
apparently been seen, but their meaning in this experi-
ment is not clear. Until these latter effects have been
elucidated, either theoretically or by further measure-
ments, they will serve to obscure a closer study of
nuclear effects. It may be that the solid state and
chemical shifts will become a subject for investigation
in their own right, the muon serving as a tool for
probing them.
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Asymptotic integral invariants are constructed for the electromagnetic and gravitational 6elds. The
integrals are taken over closed two-dimensional surfaces embedded in a null hypersurface. In the absence
of incoming radiation, the asymptotic behavior of the electromagnetic field Fob and the Riemann tensor
R b'" is such that the integrals formed with these quantities are independent of the particular space-like
surface of integration, as long as it lies in the same null hypersurface. Therefore, the integrals are related to
the multipole structure of the charge distribution and the matter distribution, respectively. This relationship
is shown explicitly for the electromagnetic field and for the linearized gravitational 6eld. It follows that
energy radiation as determined by the Einstein pseudotensor depends on the existence of a type III asymp-
totic behavior of the Riemann tensor. Finally, the asymptotic conditions are formulated under which the
superpotential U "' will also lead to asymptotically invariant integrals. It is pointed out that the linearized
gravitational field with retarded potentials satis6es these conditions as do the asymptotic solutions for the
Einstein 6eld equations R~b=0, which have been constructed by Bondi and Newman. The significance of
this result for the interpretation of the Bondi metric is discussed.

1. INTRODUCTION

HE classification of the Riemann tensor for an
Einstein space constructed by Petrov' was given

its preliminary physical interpretation by Pirani' who
identified certain of the special Petrov classes with the
existence of gravitational radiation. In the following
years, a distinction was drawn between the pure gravita-
tional radiation field, corresponding to plane waves in
the electromagnetic field, and an asymptotic gravita-
tional field which may result from a matter distribu-
tion. ' ' Thus, the existence of a pure gravitational
radiation field leads to one of the algebraically special
Petrov classes, in accord with Pirani, whereas a field
with explicit sources belongs to the most general Petrov
class and may become algebraically special at large dis-

*The major portion of this research was performed while the
author was on leave at Kings College, University of London, as a
National Science Foundation Senior Post-Doctoral Fellow.' A. Z. Petrov, Uch. Zap. Kazanskii Gos. Univ. 114, 55 (1954).' F. A. E. Pirani, Phys. Rev. 105, 1089 (1957).

~C. W. Misner, Proceedings Chapel Hill Conference on the
Role of Gravitation in Physics, 1957 (unpublished).

4 A. Trautman, "Lectures on General Relativity, " King' s
College, London, 1958 (unpublished).

s R. K. Sachs, Proc. Roy. Soc. (London) 264, 309 (1961).

tances. The purpose of this paper is to describe an
additional tool, namely, asymptotically invariant inte-
grals, for investigating the physical significance of
vacuum gravitational fields, G„&=0, particularly those
containing radiation.

There have been two diferent approaches to the
study of the asymptotic gravitational field, one looking
at the properties of the Riemann tensor and the other
examining the asymptotic behavior of the metric tensor.
The Petrov classification has been shown to be related
to the existence of preferred null directions at each
point of space-time. ' ' In fact, when the Riemann tensor
is algebraically special, there always exists a congruence
of shear-free null geodesics. ' " Sachs' used the prop-
erties of null geodesic congruences to discuss the propa-
gation of the Riemann tensor along the null rays. From
the explicit distance dependence in the algebraically

s R. Debever, Bull. Soc. Beige Math. 10, 112 (1958).
r R. Penrose, Ann. Phys. 10, 171 (1960).

P. Jordan, J.Ehlers, and R. K. Sachs, Akad. Kiss. Lit. Mainz,
Abhandl. Math. Nat. Kl. No. 1 (1961).Referred to in the text as
(JES 1961).

9 J. N. Goldberg and R. K. Sachs, Acta Phys. Polon. 22, Suppl. ,
13 (1962)."E.Newman and R. Penrose, J. Math. Phys. 3, 566 (1962).
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special cases, he was able to formulate an asymptotic
condition on the Riemann tensor which implies the
absence of incoming (or outgoing) radiation. This con-
dition has been made more explicit by Newman and
Penrose' who have proven that the Riemann tensor
will fall off as 1/r if there exists a congruence of geodesic
null rays whose tangent vectors are asymptotically one
of the preferred null directions mentioned above.
Bondi, "on the other hand, has studied the asymptotic
behavior of solutions of the gravitational field equations.
His method is based on the assumption that in the
absence of incoming radiation, and for an appropriately
chosen radial coordinate r, the metric tensor has an
expansion in powers of (1/r). In the axially symmetric
case, to which he restricts his attention, Bondi is able
to show that a loss of mass (or energy) necessarily
results when a system which is initially at rest carries
out a time-dependent motion and then returns to rest.
Similar results have also been obtained by Newman and
Unti. "

Since both the Sachs condition and the Bondi metric
make statements only about the asymptotic 6eld,
neither can describe the matter distribution directly.
Therefore, it is of some interest to see whether one can
make invariant statements about the matter distribu-
tion, particularly in the presence of gravitational radia-
tion. The method used here to construct asymptotically
invariant quantities was suggested by the use of surface
integrals in studying the equations of motion for the
sources of the gravitational 6eld. '3 '4

Consider a two-dimensional closed surface S which
lies outside the localized matter distribution and form"

def

Btw j= 2 zv (—g)'/'G nn dS,
S

where m is an arbitrary vector function and dS is the
intrinsic element of surface area with the three-vector e
as the outward normal. VVhen the 6eld equations G "=0
are satisfied on 5, clearly /=0. However, in conjunction
with an approximation method these integrals may be
evaluated before all the 6eld equations have been solved.
When the zv are the generators for an infinitesimal
Lorentz transformation, one obtains the equations of
motion. " In the following, on the other hand, it is
always understood that the 6eld equations are satisfied
and, hence, g=O.

» II.Bondi, M. G. J.van der Burg, and A. W. K. Metzner, Proc.
Roy. Soc. (London) A269, 21 (1962).

'~ E. T. Newman and T. W. J. Unti, J. Math. Phys. 3, 891
(1962).

"A. Einstein, L. Infeld, and B. HoGman, Ann. Math. 39, 66
(1938).

'e J. N. Goldberg, in Gravttatioee, edited by J. Witten (John
Wiley 8r Sons, Inc. , New York, 1962).

'~ Latin indices have the range 0, 1, 2, 3, whereas Greek indices
have the range 1, 2, 3. The signature of the metric is —2.

' J. N. Goldberg, in Recent Developments in General Relativity
(Panstwowe Wydawnictwo Naukowe, PWN —Polish Scientific
Publishers, Warsaw and Pergamon Press Inc. , London, 1962).

with
2( g)1/2G n —p [ns] t n —0 (1.2)
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The existence of the skew superpotential is equivalent
to the contracted Bianchi identities which are satisfied
by the field equations. With the substitution of Eq. (1.2)
for the field equations, (1.1) becomes" "

U '' ve t "edS. 1.4

This equation is to be understood as a continuity equa-
tion: The rate of change of a certain ctuantity rt/ithin the

surface is determined by a corresponding fi'ux through the

surface. In general, the quantities

def
U&[iernj — rernU [ssv[n

will depend on the gravitational Geld as well as on the
matter within S. In order to describe properties of the
rnatter distribution alone, it is necessary to choose m so
that U' is independent of the particular surface of
integration, as long as the matter is wholly contained
within S. The condition for this surface independence is

(iO rn U' [nO [) () (1.6)

This condition may be satisfied if a Killing vector
exists. " However, in general, Killing vectors do not
exist and in the absence of additional assumptions it is
not clear what restrictions are implied by Eq.(1.6).From
the work of Sachs and Bondi mentioned above, one has
information about the behavior of the asymptotic gravi-

'7 J. N. Goldberg, Phys. Rev. 89, 263 (1953).
'8 J. N. Goldberg, Phys. Rev. 111,315 (1958).
» P. G. Bergmann, Phys. Rev. 112, 287 (1958).
~ J. N. Goldberg, in Les Theories Relativiste de la Gravitation,

Royalmont ZI-Z7 JNin, 1959 (Centre National de la Recherche
Scientifique, Paris, 1962).

Thus, in the above form Eq. (1.1) is trivial and can
give no information. However, the fieM equations can
be written in terms of a superpotential and the Einstein
pseudotensor as follows'~ "
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tational field. In the following sections this information
will be used to construct asymptotically invariant sur-
face integrals which may be related to the multipole
structure of an isolated distribution of matter.

Before discussing the gravitational field, the electro-
magnetic field will be considered. This case is simpler
and permits an explicit analysis of the Geld equations
and the corresponding surface integrals. It will appear
that those properties of the electromagnetic field which
permit construction of asymptotically invariant surface
integrals are analogous to the properties of the Riemann
tensor which were used by Newman and Penrose as
suitable conditions on outgoing gravitational radiation
fields. "Accordingly, in Sec. 3, the corresponding inte-
grals are constructed from the Riemann tensor. Finally,
in Sec. 4, it will be shown that if U "' and t "have cer-
tain algebraic properties, then reasonable conditions
exist for w such that the surface integrals (1.6) are
satisfied asymptotically. For the Bondi metric" the
superpotential and pseudotensor have the necessary
algebraic properties.

Integrals of the form (1.5) are usually identified with
the generators of the invariant transformations of the
theory. ""In general relativity these are the coordinate
transformations. The integrals to be constructed here,
however, are embedded in null hypersurfaces and, in
general, they are not constants of the motion. As a
result, their role as generators of canonical transforma-
tions is not clear. Therefore, in this paper only the
construction of the integrals is undertaken, as their rela-
tion to the transformations requires further study. "

2. ELECTROMAGNETISM

Maxwell's equations for the electromagnetic field may
be written in Minkowski space as

F~', s+47rj, F *',
p
——0+~F"'=0, (2.1)

Pa*b I
O'er

bcdP cd )

where j is the charge-current density, and e'b'd is the
totally skew tensor with &1234 E "'=1. The gauge
identity, F,b,=—0, leads to the conservation of charge

j „=0. If the Geld equations are multiplied by an
arbitrary scalar function m, they may be rewritten as

(wF& &") s
—w sF& &"=4vnvj

def

F(—& a s Fa b+ ~Fe—+ s

Integration over a closed two-dimensional surface wholly
enclosing the charge-current distribution yields surface
integrals corresponding to (1.4):

d
mF( )' m dS= — m „F& ~ "n dS. 2.2

dx'

FIG. 1. The projection
into the g-y plane of two
concentric spheres, showing
that they lie in difFerent
null cones.

The quantity

Q'iw] = (1/4 &fwP ' "'n.dS

is a functional depending on the arbitrary function m.
The question is whether w can be so chosen that Q'
measures intrinsic properties of the charge distribution.
Clearly, Q'[1$ is just the total charge. In order to de-
scribe other properties of the charge distribution and
not of the electromagnetic field, one requires that Q' be
independent of the particular closed surface; hence,

(uF& &' ), =0. (2 3)

FIG. 2. The projection of .

difFerent closed two-dimen-
sional surfaces which lie in
the same null cone.

From Eqs. (2.2) and (2.3) it is clear that the surfaces
of integration being considered all lie in the space-like
surface x'=const. This problem has already been ex-
amined both in electromagnetic theory and in linearized
gravitational theory. '~ One Gnds that a modiGcation of
Q' can be constructed which describes the essentially
static part of the electric multipole moments. That only
such information should be available from one hyper-
surface x'= const is reasonable. Two different concentric
spherical surfaces embedded in the same hypersurface
of constant x lie in different null cones (Fig. 1).There-
fore, if integrals taken over these surfaces are to describe
the same physical property, all inhuence of the radiation
field must be removed and only that part of the Geld
which is determined on the hypersurface itself can be
used to construct such properties.

To obtain information about the radiation Geld,
hence, about the dynamical part of the multipole struc-
ture, it is necessary to consider surfaces of integration
which lie in the same null cone. Then one can ask for
properties which are unchanged as the surface of inte-
gration is slid along the null cone or distorted while it
still lies in the same null cone (Fig. 2). However, in this
case one must be able to distinguish the radiation Geld
from the near Geld. Therefore, one can expect to obtain
significant results only from the far, or asymptotic, Geld.

2' P. G. Bergmann and R. Schiller, Phys. Rev. 89, 4 (1953)."A. Komar, Phys. Rev. 127, 955 (1962l.
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r=const. Therefore, the normals to the surface are
k and n, =r,= l, .—From Eq. (AS) in the Appendix
one 6nds

The retarded. electromagnetic 6eld from a localized
charge distribution has the asymptotic form"'4

g(—)ab III(—)ab

P l—&u b + +O(r-3)
r2

00 dN+1
( ~ ) P( l~-bk ub —q+ Q (++2) Q~b:i~b'&v lb(l )

p2 N~p dg

where OS( )' and pIII( ' are skew tensorsindependent
of r and with the important property that there exists
a null vector k such that

st&r'& &"kb——0, bIII& &'kb ——Qk~, k k.=o. (2.5)

The subscript "0" to the left means that the quantities
are constant along the null rays with tangent vecor k .
This null vector is the propagation vector for the electro-
magnetic Geld in the wave zone. Furthermore, it is
hypersurface orthogonal and, therefore, defines a family
of null surfaces I=const, k =I,. As suitable surfaces
of integration in Eq. (2.2), closed two-dimensional sur-
faces, wholly contained in these null hypersurfaces, will

be considered. Therefore, Eq. (2.2) may be rewritten
In a covariant manner:

dN+1

i Q—(/+2) Q"':&"»v.lb(l„„) +O(r ').
p dl N+1

De6ne
def

M(~N& (l ) (2.9)

where co('» is a set of constants with the properties

~(AN-I) tV —~ (~N—2) t —(jt t

~ttI ~ ~ ~ ttN —&(ttI ~ ~ ~ AN)

The collective indices are defined in Eq. (A4). Sub-
stituting the above expression into Eq. (2.6) one has
for zv=1,

wp& &'bki, nb&dS= — w bF& &'bn, dS. 2.2'
The round brackets imply complete symmetrization in

~ ~

~ ~

the indices enclosed. Thus, one has

The condition that the asymptotic integral

Q[wj=lim —
~

wpi ' 'ki nb&dS
yahoo 4 )

(2.6)

(cV+1)! d~
Q[w~j= (—1)~ v.

Di;(Ã) du"

X [Q~~N: (~N—1& jQ~*~ir: l~b —
i&1@i

(n—
~

—w bkb+w bO(r ') =O(r ').
r2

The requirements on m implied by the above relation are
clearly

w, .=O(r '), (2.8a)

w g&=O(r—s). (2.8b)

These requirements may be satisfied by choosing m to
be a function only of suitably defined angular coordi-
nates on the null surfaces.

In order to identify the quantities Q[wf, an explicit
representation of the electromagnetic field is needed.
This calculation is carried out in Appendix 1; the nota-
tion used in the following discussion is taken from there.

The surface of integration is defined by I= const and

~R. K. Sachs, in Recent Developments in General Relativity
(Panstwowe Wydawnictwo Naukowe, PWN —Polish Scientihc
Publishers, Warsaw, and Pergamon Press, Inc. , London, 1962).

'4 J. N. Goldberg and R. P. Kerr (unpublished).

shall be independent of the two-surface embedded in
u= const becomes, in place of (2.3),

(wF' ' ') bk, =w bp' &"k.=O(r '). (2.'7)

The current-free 6eld equations have been used. From
Eqs. (2.4) and (2.5), this condition becomes

[a bj ij[c d] (3.1)

When geodesic rays exist, Sachs shows that (except in
certain degenerate cases which are not of interest here)

Thus, for appropriately chosen sveighting functions,
as defined by Eq. (2.9), Q[wj measures certain time
derivatives of the electric and magnetic multiple mo-
ments. From Eq. (2.2') one sees that the rate of change
of Q[wf is determined by the null part of the asymptotic
Geld OS( ) b. This result is interesting because it is the
null part which contributes to the energy-momentum
tensor in the wave zone and, thus, determines the energy
radiated bv the system. In the absence of electromag-
netic radiation, all the quantities Q[u j are constants of
the motion. However, in all cases Q[1] is a constant of
the motion, as follows from (2.2'). This, of course, is
merely a restatement of the law of conservation of
charge.

3. THE RIEMANN TENSOR

In a remarkable paper, ' Sachs has carried out a
penetrating analysis of the propagation of the Riemann
tensor along geodesic rays. According to Sachs, a vacuum
metric, R, b

——0, has geodesic rays if there exists a vector

field k' which is tangent to a congruence of null geodesics
and satisfies the algebraic condition'r
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@abed IIIabcd Dabcd Ia bed

+ + + + (3 2)
r3t2

the Riemann tensor has the following expansion: These relations may be written succinctly as"

Its (—)abed 0cd )

R ( )a—bed R—a bed+ &Ra bcc d (3 6)

where r is an affine parameter along the null rays. Each
of the numerators possesses all of the symmetries of a
vacuum Riemann tensor. Therefore, each belongs to a
particular Petrov class (with respect to the sante null
vector k") which is indicated by pX pIII, pII, and pI;
the subscripts "0" indicate that the numerators are
constant along the ray direction, as before.

In general, a metric cannot be expected to have
geodesic rays. A somewhat weaker requirement is that
one of the null directions satisfying Eq. (3.1) be asymp-
totically geodesic; that is,

Thus, w, bR& &' '", w, b, an arbitrary bivector, plays
the same role as mF & & ' in electromagnetism. From the
field equations (3.6) one can construct the integral rela-
tions corresponding to Eq. (2.2'),

w b(
—g)'I'R& & '"u nddS

dl

—
g

1f2R( ~)abcdnddS. 3.7

The requirement that
k'. bk'b=O(r ") n&2.

Sachs conjectured that under these conditions the ex-
pansion (3.2) still holds, but k'a is no longer a ray vector
for the numerators. LA ray vector is a null vector
satisfying Eq. (3.1}).However, in keeping with the
notion of a space with asymptotically geodesic rays
there must exist a congruence of null geodesics with
tangent vector k which represent the asymptotes for
the rays k' . Furthermore, if the behavior of a space-
time with geodesic rays is to be realized asymptotically,
one may expect that k is the ray vector for the first four
nunserutors, but not for the fifth; that is,

dof
MLwabf=lim w b(

—g)'t'Ri —i "'u,nddS (3.8)
f'~00

be independent of the surface of integration, as long as
it is a space-like section of I=const, leads to the
condition

w, b. dR& ' ""k,=O(r 4),

where Eqs. (3.4) and (3.6) have been used. From the
asymptotic behavior given in Eq. (3.2) and the prop-
perties (3.5), this condition becomes

kt+, ),,ipd)k'k&=O(r ') . (3.3)
Jab

w, b, d k" +O(r—') =O(r 4).
r'

(3.4)

and I=const de6nes a family of null hypersurfaces.
From the properties"

gabcdI 0 IIIabcdg PcI ab (3 5)

one sees that the Riemann tensor has similar asymptotic
properties to those required for the de6nition of asymp-
totic invariants for the electromagnetic 6eld. How about
the field equations? From the Sianchi identities one has

gabled;e] —
Q ~~@abc*d

d
—0I

Newman and Penrose' have shown that if there
exists a hypersurface-orthogonal ray congruence satisfy-
ing Eq. (3.3), then the expansion (3.2) follows. Only
such 6elds will be considered here. Therefore, in the
following, the null vector satisfying (3.3) is a gradient

Thus, the requirements imposed on m, b, corresponding
to those of Eq. (2.8), are

w. b., d ——O(r—'),
w~, dkd=O(r ').

(3.9a)

(3.9b)

def

Wab WMab cfaecb]: (tc3C) c
(4tu) g (3.10)

These conditions may easily be satis6ed by choosing
m b to be a function of suitably defined angular coordi-
nates, as was done in the previous section for the weight
function, m.

In Appendix 2 the linear weak Geld approximation
to the Einstein Geld equations is considered. From Kq.
(A16) one sees that all the asymptotic information may
be obtained with the weighting tensor m, b chosen to be

gabc+d & ~cdijgab. . ~ „/
2 ijp 1234—"~ ~

+abed —0

with cob:&'~& a set of constants with the same properties
on the indices s; as in Eq. (2.9) for e~&'~& (the colon is

When R,b= 0, the first of the above equations reduces to used to emphasize this relationship).

sb R. K. Sachs, Z. Physik 157, 1462 (1960).
~ J. Geheniau and R. Debever, Bull. Classe Sci., Acad. Roy.

Belg. 42, 252 (1956).
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With this choice one obtains from Eq. (3.8)

dN+3

M[W)bj. b]= —2&ob. ('~) Q (1V+4)lb.
N=O duN+'

8 d'
M[w b]= (db —[Mb'& iM' b"—]r) ()

5 dQ
(3.12a)

16 d'
M[ w&. ]b= ——(db;„[M""" iM"""']—v, etb, (3.12b)

15 dl'

16 d'
M[wb. b]= (b, ' „—, [M. ""& iM"'"—*&](),(),

35 dl
(3.12c)

Clearly, (3.12c) can always be made to vanish by
choosing cob. b.„,=0. Since the contraction of any pair
of indices on the multipole moments vanishes, without
loss of information, one can impose the additional
condition

Zg b(8M—I)—0b: (3.13)

Eq. (3.12b), on the other hand, is related to the dual of
(3.12a). Therefore, by algebraic means one can eliminate
this contribution. It is easy to see that all integrals
involving higher multipoles will have a similar structure.

Therefore, in those space-times in which the Riemann
tensor has the expansion (3.2) and the metric tensor
approaches the Minkowski metric as r ', a physical
interpretation for the integrals (3.8) exists. Certainly,
the existence of the expansion (3.2) for the Riemann
tensor does not guarantee that the space-time admits a
metric which is asymptotically Minkowskian. For ex-
ample, the Robinson-Trautman metrics do not have
this asymptotic behavior except for the type D metrics. "
It is not yet clear, however, whether an interpretation
can be given for these cases as well.

It is interesting to note that the time derivatives which
appear above are of the same order as those which con-
tribute to the energy transport as calculated by the

27l. Robinson and A. Trautman, Proc. Roy. Soc. (London)
A265, 463 (1962).

[Mevn;(rN) iMutj n:(rN)]

&(r)„k,k, (l,„)(l,j(r) sin0dgd&p. (3.11)

A study of the integrand of the above equation, together
with the integral relations given in Appendix 1, shows
that for a given Sf, one gets contributions from 3f "&:&"~'

with E=3f—1, M —2, and 3f—3. Therefore, these
integrals do not produce a clear separation of the
multipole moments as was true in the electromagnetic
case, However, the third time derivatives of the quad-
rupole moment is singled out by 3f=1. To show the
complexity of these integrals, Eq. (3.11) will be evalu-
ated for the case where only a quadrupole moment
exists; that is, the sum under the integral sign contains
only the term S=O.

Einstein pseudotensor, " whereas the time derivatives
which appeared in the electromagnetic example are of
one order lower than those which appear in the energy
transport as calculated by the Maxwell stress-energy
tensor. This results, of course, from the fact that the
analogy between the Riemann tensor and the electro-
magnetic 6eld is not complete. E. ""involves second
derivatives of the gravitational potentials (the metric
tensor) whereas F~b involves only first derivatives of the
vector potential. In both cases, however, energy is
calculated by an expression which is quadratic in 6rst
derivatives of the corresponding potentials. The Max-
well stress-energy tensor is homogeneous-quadratic in
the Ii '; thus, its coefficient of r ' arises from the
asymptotic null field The E. instein pseudotensor, on the
other hand, is an expression which is linear in the
Riemann tensor and from which the second derivatives
have been removed by means of the superpotential. "'
Thus, the coegcient of r ' in the pseudotensor, which
describes the radiation of energy, necessarily depends on
the asymptotic type III field and not the null field

However, the asymptotic null Geld is important for if
it vanishes the quantities M[w, b] will be constants of
the motion. This result follows easily from Eqs. (3.8a)
and the conditions in (3.10). A vanishing null field,
therefore, implies that energy is being radiated at a
constant rate. If the constant rate is zero, that is, no
energy is radiated, the quantities M[w, b]=0

The null field is also important for the existence of the
superenergy tensor de6ned by Bel and Robinson. .

' ""
This tensor is quadratic in the Riemann tensor and,
therefore, is closer to the electromagnetic analogy than is
the pseudotensor. The structure of the Bel-Robinson
tensor has been discussed in some detail by Trautman"
who concludes that it is not suitable as an energy tensor.
However, from the discussion in the previous paragraph,
it is clear that the Be/-Robinson tensor is related to the
rate of chaege of the radiation field, though not to the
radiatioe fieLd itself

4. THE SUPERPOTENTIAL

The success in the construction of asymptotically
invariant integrals with the Riemann tensor prompts
one to inquire about the conditions under which the
integrals of Eq. (1.5) may also be asymptotically in-
variant, Therefore, dehne

def 1
U[w ]=lim w U„,("'k(„n,)dS, (4.1)

r ~ac

where r is a suitable parameter defined along a family of

'8 J. Boardman and P. G. Bergmann, Phys. Rev. 115, 1318
(1959).

~ L. Bel, Compt. Rend. 248, 1297 (1959).' I. Robinson, in Les Theories Relativiste de la Gravitation,
Royattmortt Zl —Z7 Jttttt, 1t)5() (Centre National de la Recherche
Scientihque, Paris, 1962).

~' A. Trautman, in Gravitation, edited by L. Witten (John Wiley
R Sons, Inc. , New York, 1962).
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V
dS'=

~

e'e e—'"r—'U' ~du'+2P&dudr+2e'&r'Udud8
r )(wmU [ns]) k —0(r—

4)

r'(e'—rd8'+e 'r sin'8dto') (4.5)
Using the field equations G,b=0 and Eq. (1.2), the
above condition becomes

y =c(u,8)/r+
(4 2) U=r '(c,s+2c cot8)+ ~

V=r—23'(u, 8),
P= c'/4r'+—

(4.3a)
Bondi refers to c s(u, 8) as the news function. It is com-
pletely arbitrary except for its behavior in the neighbor-

(4 3c) hood of 8=0, n-:

wm U [ns]k +wmt nk 0(r—4)

From the previous integrals constructed, one sees that

wm 0(rs)

wm 0(r—i)

w", ,k'= 0(r-')

null geodesics which generate a null surface asymptoti- metry, Bondi writes the metric as
cally, in the sense of Eq. (3.5). Asymptotic invariance
then requires that

t "k„=g(r-4). (4.4b)

From Eq. (A18) in the Appendix one sees that condition
(4.4a) is satisfied in the linearized theory. Condition
(4.4b) is automatically satisfied there since t„"contains
no linear terms.

Trautman4*" has shown that when m is constant the
integral (4.1) exists with the assumption of certain out-

going boundary conditions; namely,

gab r]ab+0(r ) s

g.i...=i,bk, +0(r '), i b=g(r '), k k.=0,
(i.b

—-', r].bi)kb=0(r —'), i= r]"i.b.

These conditions, however, are not strong enough to
establish (4.4).

Bondi and his co-workers" have constructed an
asymptotic metric with the following assumptions:

(1) There exists a family of null surfaces, u= const,
which is generated by a congruence of expanding null

gcod esics.
(2) Each null ray lying in a given surface u= const is

uniquely de6ned by spherical angular coordinates 8
and ttt.

{3) One chooses a coordinate r along the null geo-
desics such that the area element of the two-dimensional
surfaces u= const, r= const is simply

dS=r' sinododq .

(4) All relevant physical or geometrical quantities
possess an expansion in r ', this statement contains
essentially the restriction to outgoing radiation. "

With the further simplification of cylindrical sym-

"R.K. Sachs, Proc. Roy. Soc. (London) (to be published).

are reasonable conditions to impose on the weighting
vector w . Assuming (4.3), one finds that (4.2) requires

U ["']k„=r 'sA k'+0(r '), (4.4a)

g.b, ——[ca,b)+ [cb,a]=gb; +g.;
ag bg

A brief calculation then gives

m

U [ns] ( g) I/sg gstkr

~stkr ~tskgtr gsr~tk

+ gtnkr+ gnskr (4 6)
tr tr

The pseudotensor is already expressed in terms of the
Christoffel symbols in Eq. (1.3b).

The transformation properties of U &"'& and t " are
determined by those of the Christoffel symbols, which
are not tensorial. However, the difference between two
different sets of Christoffel symbols will transform as a
tensor. "Assume that x are asymptotically rectangular
coordinates; that is, the metric tensor is asymptotically
Minkowskian in a Cartesian frame. Consider the trans-
formation to any other system of coordinate x '

gm' gmr (gm) (4 7)

which need no longer be asymptotically rectangular.

ss A. Einstein, Berlin Ber. 448 (1918).
34 P. G. Bergmann, Introduction to the Theory of Relativity

(Prentice-Hall, Inc. , Englewood CliGs, New Jersey, 194'/).

c(u, 8)
~
e=e,.——0(sin'8) .

The function 3II(u, 8) is closely related to the mass;
indeed, for the Schwarzschild metric, M is the mass.

There is one difhculty with the metric in the form
(4.5). The pseudotensor t " and, hence, the super-
potential, has been shown to be meaningful only when
the coordinates are asymptotically rectangular. "How-
ever, one can avoid transforming the metric by the
following ruse. From Eq. (1.3a) it is clear that U "' is
homogeneous linear in the first derivatives of the metric.
These first derivatives may be expressed in terms of the
Christoffel symbols as'4



1374 J. N. GOLDBERG

The Christoffel symbols transform as follows:

n2

0

.0

I
sin8 cosy
sin8 sin@

cos8

0
r cos8 cosy
r cos8 sing

—r sin8

0
—r sin8 sing
r cos8 cosy

0
(4.13b)

Bx

Bx

nj p

However, in the transformed frame (4.7),

n g p

BX
(4.8) With the help of these relations it is an easy, though

BX somewhat laborious, matter to prove that (i) the Bondi
metric satisfies the Trautman boundary conditions"

APPly this transformation to Minkowski SPace. n the and/iii ther ui t l t d E '44' 6an ~iig t e requirements iste in Eq. j4.4j are satisfied.
Therefore, with the weighting vector limited by(4.3)m =0. the integrals defined by (4.1) are asymptotically
invariant.

Although one knows from Trautman's work" that
when iv is constant the integrals (4.1) define the total

I energy and momentum of the system, it is instructive to
(4 9) examine the linear approximation to see how the multi-

poles come out. Using Eq. (A18) from the Appendix,
one has that

Taking the difference between (4.8) and (4.9) one has
that the difference

Qef m

d%+2

U[iv~"7= —4(o' ' (l,„) mv, + g—
~-p du&+2

n2 n2
(4.10) XM1'"" " k;v„l, (l„N) singdgdp, (4.14)

transforms as a tensor and in the asymptotically
rectangular coordinate frame x, one has simply

n2 n2

Therefore, maintaining the distinction between
primed and unprimed coordinates introduced above Eq.
(4.7), the superpotential and pseudotensor in the asymp-
totically rectangular coordinate system may be written

U [ns] g fn' g n,g s,U, [n'8'] (4.11a)

(4.11b)

where the superscript asterisk. means that the substitu-
tion defined by Eq. (4.10) is made in (1.3b) and (4.6).

The transformation involved for the Bondi coordi-
nates requires removing the null coordinate u=x' —r
and transforming from polar coordinates to rectangular
coordinates. If x '=(N, r, g,p), then

m —~m; ie~) (l ) .

( 1)M+1M [

U[w~ 7=
ot(M)

a: bC(g~ 2)

dM

X (M+1) M.b":&.11' »v
duM

dM+1

+(M+2) M-1': & ~-»v;v, . (4.15)
du~+'

U[ivo'7 = —&o,mv',

d2

U[W1 7= bG7a;b M vfvj.
du

the constants co:&'~) have all the symmetries in the
indices (s~) as listed in Eq. (2.9). Carrying out the
integration explicitly with the help of (A4), one finds

Thus,

1
0
0.0

—sin8 cosy
sin8 cosy

cosg cosy/r—sin p/r sing

—sin8 sing
sin8 sing

cosg sing/r
cosy/r sing

g'= I+r,
x'=r sin8 cosy,
x'=r sin8 sing,
x'=r cos8. (4.12)

—cos8
cos8

—sing/r
0

(4.13a)

In particular, one has U[ivb'7, as expected, contains the
total energy and momentum of the system; U[w1~7 con-
tains only the vibrational quadrupole moment; but in
general, U[wM 7 contains both the vibrational and rota-
tional multipole moments of order 2~ and the vibrational
moment of order 2 +': These vibrational moments may
be separated out by considering U[wtr~1~7 with ~,. i,~+11
=v cv(,~+~). It is fortunate that this separation can be
carried out at all, for certainly the significance of the
dual of the superpotential is unclear, even though it
does satisfy a conservation law.

"F.A. K. Pirani (private communication).
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For the Bondi metric one finds that

k„r,
= —r 'A™{0P L

—4M+(1/sin0)
)& (c,p sin0+2c cos0),2)

0s—„,r(c,,+2c cot0) }+0(r ') . (4.16)

Therefore, for the invariant integrals (4.1), one has

U/wpj= — (~pM —~pM cos0j sin0d8d p,
4m.

1
ULw, j=— (&oP, p2M cos0—~'..i(2M —c) sin'8 cos'y

Sx

—u', p(2M —c) sin'0 sin'y

Q7 3(2M cos'0 —c sin'0)} sin0d0dy.

The higher multipole moments are obtained by weight-
ing (4.16) with the appropriate spherical harmonics.
Actually, it is not the multipole moments themselves,
but various time derivatives of the moments, which are
defined by these integrals. As in the case of the electro-
magnetic field, these time derivatives are each one lower
than those which determine the energy transport by
means of the pseudotensor. The additional time deriva-
tive results from the time dependence of 3f and c.The
rate of change of the quantities defined by U is given
by the right-hand side of Eq. (1.4) in the limit of r ~ ~.
In particular, when+ =co =const, one has the energy-
momentum transport given by

L(CPM —a)'M cos0) sin0d0d y
4m- dN

1 f dc)'
~

—
~
k,&P sin0d0d&p. (4.17)

4~ Equi

It is clear that the quantity which is identified with the
total energy, the coeScient of co', is necessarily a
decreasimg fumctiom of time as long as the news function
c p(u, 0) does not vanish. Since c is independent of p,
the momentum components can change only along the
axis of symmetry. However, it is clear that there need
not be a change in the total momentum; for example,
c= f(u) sin'0. One can show, furthermore, that all of the
quantities defined by Eq. (4.1) are constants of the
motion unless the news function does not vanish.

The most important of the above conclusions that
concerning the energy, was already obtained by Bondi.
He used the Bianchi identities to arrive at the "supple-
mentary condition"

2M p= —2(c p)'+(1jsin0)Lc, p sin0+2c cos0), p ~ (4.18)

By multiplying this equation by sin8 and integrating,
he was able to conclude that if c,o/0 during a finite
interval, the mass, or energy of the system is less at the

end of the interval. Clearly, this result is the same as
that given in Eq. (4.17) for ~'=bp' except that the
interpretation here does not depend on the possible
existence of initial and final rest states.

One cannot make such a general statement about the
momentum. The momentum may increase, decrease, or
remain constant, depending on the angular dependence
of c 0

—hence, depending on the angular dependence of
the energy transport. However, if c,0=0, the linear
momentum is a constant of the motion. Clearly, in this
case the momentum may be reduced to zero by a
I.orentz transformation.

Similarly, the Eth time derivative of the 2~-pole com-
ponents may increase, decrease, or be constants of the
motion. If c 0

——0, they are necessarily constants of the
motion. However, the time derivatives of lower order
need not vanish. Indeed, these are just the nonradiative
motions described by Bondi." Unfortunately, this
analysis sheds no light on their origin. However, it is
clear from the results of Sec. 2 on electromagnetism that
similar nonradiative motions occur there. In the electro-
magnetic case, moreover, one would not identify such
nonradiative motions with a system of charges which
interacts only through its own field. Bondi does suggest
an interpretation for gravitational interactions as it is
consistent with Infeld's conclusions about gravitational
radiation. " The results of this paper do not rule out
such a possibility.

A little thought shows that Eq. (4.1) considered for
all possible vector functions m is merely an integral
statement of (4.18). This integral form has the advan-
tage of permitting a physical interpretation, as given
above. Furthermore, the physical picture implied by
the asymptotic integrals allows one to conceive of
measurements made at large distances which give in-
formation about the source distribution. Only a sensitive
meter for the gravitational field is lacking.

5. DISCUSSION

Thus, asymptotic integral invariants may be con-
structed either from the Riemann tensor or from the
superpotential. In both cases physically important
quantities result. They are different, yet closely related.
From the Riemann tensor one is not led to the total
energy or mass of the material system generating the
gravitational field. One is led, however, to time deriva-
tives of the multipole moments of the matter distribu-
tion. Specifically, one gets the (iV+1)th time derivative
of the 2~ pole. By examining the energy transport with
Einstein pseudotensor, one sees that these time deriva-
tives are precisely those which determine the energy
How. The result is curious, for these time derivatives do
not come from the far wave some of the Riemann tensor,
that is, from the null field which falls off as r ', but from
the near mace sone, the asymptotically type III part of

36 I.. Infeld and J. Plebanski, Motion and Relativity (Panstwowe
Wydawnictwo Naukowe, PWN —Polish Scientific Publishers,
Warsaw and Pergamon Press, Inc. , London, 1960).
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the pseudotensor generate canonical transformations
has long been known ""Recently, Komar" has shown
that integrals constructed by the Riemann tensor and a
bivector as in Sec. 3 may generate infinitesimal coordi-
nate transformations with the Jacobian equal to 1; that
is, volume preserving transformations. As mentioned
earlier, however, whether integrals formed on null hyper-
surfaces may be identified with generating functionals
is still an open question.
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APPENDIX

1. The Electromagnetic Field

Assume that the charge distribution is confined within
a suKciently large world tube. within the world tube
take a straight world line x'=sa(s), ds'=ri. bds ds',
where t), b is the Minkowski metric (1, —I, —1, —1).
The four-velocity, or tangent vector to the world line,
is v'=dsa/ds=sa.

Let u(x) be the retarded solution for s of the equation

tl, b[X'—Sa(S))[Xb—Sb(S)j=0.
Clearly, u(x)=const is a family of null surfaces. The
following relations are easily established:

i =0, kk, =0, k v, = —kl, =1,
with

k.=u,.= r).b[xb —
s( b)u]/r,

r =v.[x'—s'(u) j,
l,=k,—v, = —r, , (Al)

Furthermore, it is useful to introduce

k, =bl. ,
=bI. br/,

Iab= rlab Vavb+lalb ) (A2)
I.b, ,=2l(jb),/r.

The quantities introduced are most easily identified in
the rest frame v =80 . One has then N=x' —r, and
consequently

k, =b '—8,'r, .
Vjlith the introduction of the usual spherical angles
one has

f,= r,=(0, sin8 —cos,q, sin8 sing, cos8).

De6ning the projection operator into the hypersurface

the Riemann tensor, which falls off as r '. As was dis-
cussed in Sec. 3, the linear relationship between the
Riemann tensor and the pseudotensor leads to this re-
sult. An examination of the Riemann tensor for Bondi's
metric shows that one can construct a gravitational
field in which the Riemann tensor falls o6 as r ' and
not as r ', that is, the null part of the field vanishes, yet
there is an energy loss; in fact the rate at which energy
is lost will be constant, in agreement with the previous
discussion. However, such a solution seems to be ruled
out because the asymptotically pat boundary condition
is inconsistent with a constant rate of radiation. '7 "

However, it is the superpotential which is closer to
the physical ideas concerning energy and energy trans-
port. "This quantity expresses the strong corsservatiom

lars which are a restatement of the Bianchi identities,
from which Bondi's supplementary conditions are de-
rived. As a result, from these conditions one gets pre-
cisely the same information that is obtained asymptot-
ically with the superpotential, arbd only thati nformatiorb

Actually, here only one of Bondi's two supplementary
conditions has been considered. The other discusses a
quantity which is identified with the dipole moment.
This quantity is not examined by the integrals con-
structed here for it appears in the r ' part of the Rie-
mann tensor and the superpotential. Thus, one might
expect it to appear in the study of angular momentum.
A number of possible candidates for an angular Ino-

mentum complex have been proposed. "" These
should be studied from the point of view presented in
this paper. Undoubtedly, Bondi's second supplementary
condition contains all this information; only the inter-
pretation may be added.

The invariance of the asymptotic integrals remains to
be discussed. Certainly they are invariant under all
transformations which are asymptotically a homogene-
ous Lorentz transformation. Such transformations only
vary the surface of integration in a given null surface
and the integrals were constructed to be independent of
such changes. However, they are clearly altered if the
null surfaces are changed, for the integrals evaluate
information which is transmitted along the null rays.
Therefore, changing the null rays being examined

changes the information being evaluated, and changes
the surface integrals. Thus, the quantities defined are
not invariant under the full Bondi-Metzner group. "

Finally, the possible relationship of these integrals to
the generators of invariant transformations should be
emphasized again. The fact that the superpotential and

"A. Papapetrou, Ann. Physik 2, 87 (1958).
3'A. Peres and N. Rosen, in Recent DeveloPments in General

Relaleoity (Panstwowe Wydawnictwo Naukowe, PWN Polish—
Scientific Publishers, Warsaw and Pergamon Press, Inc. , London,
1962).

8' R. Arnowitt, S. Deser, and C. Misner, Phys. Rev. 121, 1556
(1961).

asL. Landau and E. Lifshits, The Classical Theory of Fields
(Addison-%esley Publishing Company, Inc. , Reading, Massa-
chusetts, 1951)."P. G. Bergmann and R. Thomson, Phys. Rev. 89, 400 (1953).
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0Ã ' pIII b

Pab + +0(r—
S)

r r2
1

l,lbdQ = —(1/3) e.b,
4x with

d N+2

t),dxa=0, e b= t) b
—s 'vb, one can show that the following obtains the electromagnetic Geld from (A5):

surface integral relations hold (dQ =sinededg):

(AS)

1
l,l,l,l„dQ= f—e be s+e ebs+e geb 5 (A3a)

4m.

(—1)"
lag' ' 'lasrsdQ= P Leasaseasas' ' ' ear)s ieasN—5 '

m, (N)
~ ~

The sum is taken over all symmetric combinations of
the indices and

K(N) = (2N+1)(2N —1) 3X1.

Clearly

0III blab

—dN+I
yk, t,„m[b+l„„I,[b+Nk, I„„[b Q-i:(».

dNN+'

pE bkb=p,

.N"=2 g k ~
Q

Ã-0 dNN+2

fNkssIII"=2qv[ l'i+2 Q(l,br, ) (N+1)~ +l, ~l,„k[b
N=O 2 j

Finally,
1

/„. . -l„~,dQ=O.
4m-

(A3b)
00 dN+I

= —k' q+ Q (N+2) Qb':("»mb) (l )
Ã 0 dN

(A9)

The following shorthand notation will be used hereafter: Similar relations hold for the dual; one obtains

(lrx) =lrilrs' ' 'lrNi

g (rN) —g r7.r2 "r~

Introducing the vector potential A such that

Pab ga, b g b, a

the field equations, (2.1) become

(A4)

gee ~ Qas: (re) (Sb)
Ae= +P (A6)

A-=4z j-, A-,.=O.

Take the retarded solution in the following form":

0S *bkb=p

d"+' (A10)sIII"'kb=k p (N+2) Qb"s:(r»sbl, ,(l„„).¹0 dNN+'

In order to obtain (A8) easily, the following relation
is used. I et p~'("")(I) be a set of functions which is
totally symmetric in the indices (r&) and such that
p~:(rN-»tp =p then

N dN —K
(PM:(rN)) ( ) g A+ (l )& 1 KPsr—.(r—~)

dg~-& (A11)
r N=p s(rW) A)v» = (N+K)!/K!(N K)!2)r. —

The coef!icients Qe' » may be chosen to have the
following properties:

as: (rN) Asa: (re)
)

es:(rbr) Qas:(rara ~ r)S)

2. Linear General Relativity

Introducing the deviation from Qat space as

ggeb —~eb +ab

eas: (rN-j.) t& —Ot

eas:(r+-2)i~-, . =p'IQ

as: (rN-i) t, —Osist

Q
[as:t] (rN-i) 0

One can show that

Qes: (r|v)s and Qe*s: (rN )t)

(A7)

the linear terms in Einstein's 6eM equations take the
form

mrs+ah O +ar P (A12)

outside the matter distribution. In the same manner
as was done for the electromagnetic field, a solution for
the p b with outgoing waves only may be given in terms
of a multipole expansion4'

represent the electric and magnetic multipoles, re-
spectively, of order 2 +', The asterisk means the dual
as defined in Eq. (2.1).

By means of a somewhat tedious calculation, one

L. Lyuboshitz, and Ya. A. Smorodinskii, Zh. Kksperim. i Teor.
Piz. 42, 846 (1962) retranslation: Soviet Phys. —JETP 15, 589
(1962)g.

~ab 4
mt)'t)b (5 b:"y

+I
r [ r j„

-~ai bj: (rN)—

Ã-0 —.si (rN)

(A13)

R. K. Sachs and P. G. Berginann, Phys. Rev. 112,674 (1968).
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The quantities M ib':(r» have all the properties of a
vacuum Riemann tensor in the first four indices (aib j);
in addition, they have all the properties listed in Eq.
(A7) for the electromagnetic multipole moments. The
remaining quantities in Eq. (A13) have the following
properties:

Hence, one has

gmanbg Qm*anbP 0 )

dN+3

OIII '"'k„=—4k' Q (1V+4)(l„„)k[a
N 0 d'uN+3

m=o,
$mn:r —$mr&n+$nr&m

gmn gnm Smn 0

One can show that

~aib j:(rN)& .&. and ~a*ibj: (rN)& .&.

(A14)
~m] i1'n: (rN )p .p .&

d N+3

()III" '"bk 4kb Q (1V+4)(l )k
N=O duN+3

M ~'1*":("N)kk V

(A16)

Since
A. The Riemmse Tensor

represent the vibrational and rotational multipole
moment, respectively, of order 2N+'.

B. The $NPeyPo[eyb[ial

From Eq. (1.3) one finds that the linear super-
potential is

with

@ma 2(+ m lb[m +) a

gmnQ

[n s] 2)]t ()] [ a7 n]r+a~ a [ ~ n]r)s

Substituting (A13) into (A17) one has

(A17)

one finds with the help of (A11)

gmanb ggImanb
+man — + +0(y—3)

r2

dN+4
1Vmanb 8k [ak P ~m] i s': (nN)k. k.(l )

0 guN+4

OC dN+3
[ns] —8)] Q (l )k[s 1[fn]iaj:(r~)k k,

g N=O duN+3

1 co f+—yN()'()[nl']+ p ~ (l„„)L2k(,b, )
[s

r2 N=O (

+ (1V+3)(k;k, l'+-,'(1V+2)k,k,k ['

()IIIma"'=8 Q (l„„) k,k, (I[b[a+k[ l[b+k[bl[')
Nm0

+2k(iI, ) [bk [a+2k(;I,) [ak[b

t((1V+3)
+(1V+2)i k,k,—2k(,(),) ik[ k[b

2

(A15)

Therefore, one obtains

dN+2
1[f' ]iaJ: ( nb() +r0(y—

&)
duN+2

+1V(lrbr i)kikjLlr)r[bk +Irbr k[bj
dN+3

~mli )1:(rN)
duN+3

dN+2
U'„["'k„=—k' m()„+ Q (l„„)

N=0 d'uN+2

X3E """""'k;lv; . (A18)


