
MODIFIED X* EXCHANGE MODEL FOR hX' PRODUCTION

The width of the E*is given by

(18)
4wims

where p is the center-of-mass momentum of the decay
pion and M the mass of the E*.

We obtain fe/4w=0. 80 which gives g'/4~=0. 144.
This value is smaller than the estimate of Chan" ob-
tained under the assumption that the E*exchange term
gives the total cross section at an incident pion kinetic
energy of 960 MeV and with a width for the E* decay
of 23 MeV. Our product of coupling constants falls close
to the value obtained by MacDowell et u/. ' from the
experimental data at T =1300 MeV.

After this work was completed we learned of a related
work by Feld and Layson" who analyzed the experi-
mental data on the total s +p cross sections and the dif-
ferential elastic s p scattering cross section for energies
between 0.3 and 1.3 BeV. They found that the best
fitting of the angular distribution requires a T=1/2, pr~s
resonance near 950 MeV(W= 1716 MeV) in agreement
with out results. Also Kuo" has fitted the low energy
y+p ~A+K+ data (excitation function, angular dis-

'3 C. H, Chan, Phys. Rev. Letters 6, 383 (1961).
' B. T. Feld and W. M. Layson, in Proceedings of the 196Z

Annual International Conference on High-Energy Physics at CERE,
edited by J. Prentki (CERN, Scientific Information Service,
Geneva, 1962), p. 147. See also W. M. Layson, Nuovo Cimento
27, 718 (1963)."T.K. Kuo, Phys. Rev. 129, 2264 (1963).

tribution, andone experimental point inthepolarization)
using a model similar to ours which included a Kanazawa
resonance at H/'=1700 MeV and obtained a slightly
better fit in the pr~s case.

Ke should add a comment on a work by Gourdin and
Rimpault" in which a model somewhat similar to ours
was proposed. These authors added to the E*exchange
the contributions from the Z and I'I* exchanges, the
nucleon pole, and the resonances EI/2* and SI/2**, but
an agreement with experiment for total and differential
cross sections was found only in the cases of odd ZA.

parity, spin of E*equal to 1, and even ZA parity, spin of
E*equal to 0. It is well known at the present time that
the spin of the E* is one" and the ZA parity even, "
so this model is no longer valid. Their value for the
E*A1V coupling constant g'/4s. =1.8 should, therefore,
not be considered reliable.
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The X*vector meson is regarded as a P-wave resonance in the coupled, isotopic spin —,', w+E, and g+X
states. All forces other than the X* and p exchange forces are neglected, and a modification of the self-

consistency technique of Zachariasen and Zemach is used to calculate the E*mass and two relations among
the three coupling-constant products y~* ~, y~*„~, and y, „y,~~. The calculated E* mass agrees with
experiment. The factors in the self-consistency equations that depend on the m —g —E and X*—p mass
differences are isolated, and the effects of these mass differences on the results are discussed. The relationship
of the results to the predictions of unitary symmetry is discussed.

I. INTRODUCTION

'ANY authors have speculated that the strong-
- ' interaction coupling constants and the relative

masses of the strongly interacting particles may be

t Work supported by grants from the U. S. Fulbright Com-
mission and John Simon Guggenheim Memorial Foundation.

$ On leave from Northwestern University, Evanston, Illinois.

determinable from some form of dispersion relations. '
Recently, several different attempts have been made
to determine the p-meson mass and width from disper-
sion relations for the pion-pion scattering amplitude. ' 4

' See, for example, G. F. Chew and S. C. Frautschi, Phys. Rev.
Letters 8, 41 (1962); R. H. Capps, Phys. Rev. 128, 2842 (1962).' F. Zachariasen, Phys. Rev. Letters 7, 112, 268 (1961).

3 Louis A. P. Balazs, Phys. Rev. 128, 1939 (1962).' F. Zachariasen and C. Zemach, Phys. Rev. 128, 849 (1962),
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The agreement of the predictions with experiment has
not been spectacular; the chief difhculty is that the
predicted reduced width is too large. ' ' At first glance
it appears that a dispersion-theoretic prediction of the
width of the E* or or meson would disagree with
experiment even more, since these mesons are of mass
comparable with the p, but are much narrower. In
fact, the existence of many high-energy resonances of
rather small widths is a serious obstacle to the point
of view that all resonances and particles are of dy-
namical origin with all interaction constants calculable,
since simple dynamical calculations generally lead to
large widths.

There exists within the dispersion-theory framework
a rather simple mechanism which may lead naturally
to narrow resonances, however. This mechanism is the
strong coupling of the resonances to states of higher rest
mass. In this paper we consider the example of the E*
vector meson, ' and regard it as a resonance in the
coupled, isotopic spin —,', z+E, and q+E channels, using
a modification of the "bootstrap" procedure of Zacha-
riasen and Zemach. 4 In order to see how the coupling
of the E*to the high 'rest mass rI+E channel may lead
to a small E* width we consider the hypothetical
situation in which the rr+E ~ r)+E inelastic amplitude
is zero, so that the 7r+E and r)+E states are eigenstates
of the scattering. The IP would then be either a pure
+E resonan. ce, with an appreciable width, or an rl+E

bound state, with zero width. It is apparent that in a
realistic calculation in which the 7r+E~ t)+E coupling
is not zero, a predicted E'* width anywhere between
zero and an appreciably large value is possible. The
small observed width may mean that the E* is coupled
more strongly to the r)+E state, or another state of
high rest mass, than to the rr+E state into which it is
forced to decay for energetic reasons. We note that in
a dispersion theory there is no difBculty in the concept
of the coupling of a resonance to states of high rest
mass, since amplitudes may be analytically continued
into unphysical energy regions.

Another reason for considering the coupling of the
r)+E channel to the 7r+E channel is the recent suc-
cesses of the octet model of unitary symmetry. ' This
model has successfully predicted the existence of the
pseudoscalar g particle and the vector-meson octet, '
has produced a mass formula that is satisfied very well

by the pseudoscalar meson and baryon octets, ' and
has predicted successfully the I=-,' cascade-pion reso-

'For experimental evidence of the vector nature of the E*,
see W. Chinowsky, G. Goldhaber, S. Goldhaber, W. Lee, and
T. O'Halloran, Phys. Rev. Letters 9, 330 (1962).

s M. Gell-Mann, Phys. Rev. 125, 106'l (1962); Y. Ne'eman,
Nucl. Phys. 26, 222 (1961}.

7 For a summary of the evidence concerning the pseudoscalar
nature of the q particle, see M. Chretien, F. Bulos, H. R. Crouch,
Jr., R. E. Lanou, Jr., J. T. Massimo, et al. , Phys. Rev. Letters
9, 127 (1962).

'S. Okubo, Prog. Theoret. Physics (Kyoto) 2&, 949 (1962);
see also Ref. 6.

nance at 1532 MeV. ' The dynamical prediction of
the ™*from unitary symmetry depends crucially on
the assumption that the g and E interactions are of
comparable importance with the m. interactions. '0

However, the relative strengths of the m, E, and g
interactions cannot be predicted from unitary sym-
metry as long as the origin of the mass differences of
these particles is not understood. We shall treat these
relative strengths as undetermined parameters, but
adopt the principle that all members of the m, E, q
octet must be considered whenever any one of them is.

In a previous paper by the author, "the values of the
five I'5 I'5 V(p-scud-oscalar-pseudoscalar-vector) me-
son-coupling constants were calculated from approxi-
mate dispersion relations of the "bootstrap" type, with
the mass difterences among the PS mesons and among
the V mesons neglected. The ratios of the calculated
constants are in agreement with the predictions of the
octet model of unitary symmetry, so that this symmetry
is predicted by the dispersion relations. However, if
future experiments do verify the validity of unitary
symmetry, it is clear that this will not prove that the
symmetry has anything to do with dispersion relations.
In the author's opinion there are two types of methods
that may provide tests for the hypothesis of a disper-
sion-theoretic origin of unitary symmetry. The first
has to do with the predictive power of dispersion
theory. If it becomes possible to start with a few simple
dispersion-theoretic principles and give many correct
answers to such questions as: (1) What are the masses
and coupling constants of particles' (2) What are the
basic interaction symmetries' and, (3) Why do so
many particles exist?, then the theory will certainly be
attractive even though the necessity of a dispersion-
theoretic formulation will not have been "proved. "

The second method of testing our hypothesis has to
do with the PS-meson mass di6erences and U-meson
mass differences; it is to this question that the present
paper relates. Because of the existence of the mass
differences we know that the basic interaction sym-
metry must be broken in some manner. It is hoped
that the dispersion relations will predict a particular,
testable relation between mass differences and the
breaking of the interaction symmetry.

We cannot discover the reason for the mass differences
by considering only the PS-PS meson scattering
amplitudes and only the V-meson exchange forces in a
bootstrap calculation. However, we can hope that these
amplitudes and forces are the most important in
determining the relations of the V-meson mass diGer-
ences and V-PS-PS coupling constants to the PS-meson

'The prediction of the * is made by R. Behrends, J. Dreitlein,
C. Fronsdal, and W. Lee, Rev. Mod. Phys. 34, 1 (1962); the
discovery of the * is reported by G. M. Pjerrou, D. J. Prowse,
P. Schlein, W. E. Slater, D. H. Stork, and H. K. Ticho, Phys.
Rev. Letters 9, 114 (1962), and by L. Bertanza, V. Brisson,
P. L. Connolly, E. L. Hart, I. S. Mittra, et al. , ibid. 9, 180 (1962).

"Richard H. Capps, Nuovo Cimento 27, 1208 (1963)."R.H. Capps, Phys. Rev. Letters 10, 312 (1963).
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mass differences. Such relations may be investigated
by means of a program of calculations in which the
physical masses of the PS mesons are assumed, and
the bootstrap technique is used to calculate the V-
meson masses and interactions. This paper represents
a part of such a program; we consider only the E'*—m

+IF '1+E system.
In our calculation the E*exchange force contributes

to all three processes 7r+E~ 7r+E, ri+E~ri+E,
and rr+E ~ ri+E. The only other force considered is

p exchange, which contributes to rr+E elastic s'catter-

ing. These forces are characterized by five parameters,
the masses m~~ and m„ the coupling constants y~* ~'and
pz*,z', and the product pp pp++ We take the p mass
from experiment, so there are four undetermined
parameters. The X/D dispersion relations yield as
output the three parameters m~*, y~* ~', and y~*„~'.
Thus, the requirement of self-consistency does not
determine all the parameters, but leaves one unfixed.
It is shown in Sec. III that the E* mass is extremely
insensitive to this arbitrariness and may be calculated
in our model. The relationship of the results regarding
the coupling constants to unitary symmetry is discussed
in Sec. IV.

II. DERIVATION OF THE EQUATIONS

The general procedure we use is similar to that of
Refs. 4 and 11. We assume that the x, g, and E are
pseudoscalar particles and consider the P-wave ampli-
tudes for the processes m+E-+ s+E (in the isotopic
spin-sr state), ri+E-+rl+E, and rr+E-+rl+E. The
input forces are assumed to result entirely from the E*
and p exchange graphs shown in Fig. 1. The first
approximation to the matrix N/D method is used for
the amplitudes; i.e., the Born-approximation ampli-
tudes resulting from these forces are taken to be equal
to the numerator matrix, and a once-subtracted dis-
persion relation is used for the denominator matrix.
For suitable choices of the input parameters, the E*
resonance is generated by the dispersion relations, as
shown in Fig. 2. We then apply the self-consistency

requirement that the values of the E* mass and
coupling constants resulting from the dispersion rela-
tions are equal to those used to specify the forces, and
study the resulting implied relations among these
constants.

A. The Input Forces

We denote the rr+E and rl+'E states with the single
indices x and g, and the E*mE, E*gE, p&z, and pEE
coupling constants by pz~~, pz*„, pp, and pp+
define the P-wave amplitudes T;, for the three basic
processes in terms of elements of the unitary scattering
matrix U by the equation

where s is the square of the total energy in the center-
of-mass system, and g; and q; are the magnitudes of the
initial and final particle momenta in the center-of-mass
system. The constants 5 and c are taken as unity. The
(q,q, ) 't' factor is included in the definition so that T,;
has no zeroes, poles, or branch points at the threshold
energies.

Because of the ~—E and g —E mass differences,
the calculation of the Born-approximation amplitudes
resulting from the input forces is not as straightforward
as that in Refs. 4 and 11.We illustrate the calculation
by considering the inelastic process rr+E ~ rl+E. The
force for this process may be determined from the
amplitude for the crossed w+E'-+rl+E process ob-
tained by looking at I'ig. 1(d) from the side. We
consider only the contribution of the E* to this crossed
process, and denote the E* mass by M. The invariant
amplitude 3 for the crossed process is assumed to be of
the form)""

i
'YK~w YK~s

lpga,

egg, c cosec
A=4i

4w j
where s„8„q ., and q„,, are the appropriate energy,
angle, and momentum variables for the crossed process.

/
/

/
/

FIG. 1. Graphs of
the input forces to
the ~+X —+ 7r+E,
g+E —+ g+E, and
)I.+E —+ g+E proc-
esses.
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"Our normalization of the invariant amplitude is the same as
that of Geoffrey F. Chew, S-Matrix Theory of Strong Interactions
(W. A. Benjamin and Co. , New York, 1961), Chap. 2. The
calculation of Born-approximation amplitudes by using the
"crossing" or "substitution" law is discussed in detail in this
reference.

j3 In the pole approximation one must make a choice concerning
the exact definition of the amplitude to be replaced by a simple
pole. Our choice is the amplitude T;; of Eq. (1). This choice is
the customary one in the limit that the mass di8erences are
neglected; it agrees with that of Ref. 4, for example. It is well
known that for short-range forces the I'-wave amplitude T;; of
Eq. (1) has no singularities at the channel thresholds unless a
"bound-state" pole occurs accidently at a threshold energy.
Therefore, one would be treating the nearby, threshold singu-
larities incorrectly if he were to assume that q;q;T;;, rather than
T;;, is represented by a simple pole. For this reason, the factors
q, , and q, , must be included in Eq. (2); they cannot be replaced
by their values at s,=M'. )The relation between 2';;, , and A
is given in Eq. (3).J
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{a) (Cj

FIG. 2. The output; appearance of the E* resonance in
the ~+E and q+E states.

If the E* resonance were to occur above the 7r+E and
rI+E thresholds, the denominator M' —s, should have
an imaginary part, but we consistently neglect this
imaginary part in computing the Born-approximation
amplitudes. The momentum q„,, is actually imaginary
at the mass of the E*,but this causes no difKi. culty.

The P-wave amplitude in the crossed process is
related to the invariant amplitude by the equation,

T, ,= (q,q„,,) ' A (s„cos8.) cos8,d(cos8, ). (3)

From this equation and Eq. (2) it follows that our
definition of the coupling constants is"

ex*.~x*/(4~)=sL(M' ~)&' j =~', (4)

A7. . /~~ Q', E
—Ciq', lpli Vlq'+iq', l&

~';, =Q()X.;, /(S-I;;, ),

4 2
Q(s) = ——+ —+—ln(1+4s).

S2 S2 S3

(7a)

(7c)

(7d)

The constants C;, , ~ are isotopic-spin-dependent factors
that may be determined from the crossing matrices,
and I,; ~ and V;, ~ are functions of s. For the amplitude
X „(we drop the unnecessary index E* on 1V „,x~ and
cV„„,z.), in the energy region above p+E threshold,
these factors are

larity in Ã „,z* results from the singularity at s,=0
of the expression for cos8„Eq. (Sa). There is a branch
cut in E „,~* at those values of s for which the inte-
gration over cosg involves integrating over the point
s,=0. In order to get rid of this singularity we replace
the factor —',5 6„/s, by -', 6 6„/M' in Eq. (5a), when
substituting this equation into the expression for the
invariant amplitude. LNo change is made in Eq. (5b),
however )A. similar procedure is used in computingX,~*and E»,~*.The Born-approximation amplitudes
X;; g resulting from this modified procedure may be
written in the form

where i and j each refer to either of the ~+E and'
rl+E states.

In order to compute the Born approximation for the
s-channel amplitude, we need the relations between s„
q „q„„cosa„and s-channel variables. These are

C„=1,
X.„=s+2M2—-', Z „——,'(6 6„/M2),

Y.„=-,'s+M' —-',Z.„—-', (Z.S„/s) —2~.&„.

(Sa)

(Sb)

(S)

where

s,
2g~, cg~, c cos8~=s+

2 2 2$c
(5a)

s
s,=-', Z „——+ +2q q„cos8, (5b)

2 2$

In the region between the m+E and rl+E thresholds,
where q„ is imaginary, these functions may be analyti-
cally continued. The resulting formulas may be ex-
pressed simply, if one makes the simultaneous substi-
tutions, Q(s) —& Q'(s') and Y „—+ V', where

Z,;=2mx2+m, 2+tnt,

6;=m~' —m'

and the relation between q, and s is

(5c)

(5d)

4 2
Q'= ———arctan(2s'),

s'2 s'3

Y'= —',s+M' ——,'Z»„——,
' (h~h„/s).

0'= h~ —
2 (~x'+~")+4 (~''/~)]'". (6)

If the expression for A LEq. (2)) is written in terms of
s-channel variables, the Born approximation for T' „
may be obtained from the analog of Eq. (3) l Eq. (3)
with the subscripts c removed]. We denote the contri-
bution resulting from the exchange of the V meson / to
the Born approximation for the amplitude T, by the
symbol E;,, ~.

Unfortunately, the above procedure leads to an
unwanted singularity in Ã „,z* that arises because the
masses of the PS mesons are not the same. The singu-

'40ur normalization of the coupling constants is the same as
that of Refs. 4 and 11.

C...,=42,

X~~ p
—s+2mp ——,Z~~

2F,=m, ,

(Sd)

(Se)

(Sf)

(Sg)

The Born approximations for 7r+E and rI+E elastic
scattering resulting from the diagrams of Figs. 1(a),
1(b), and 1(c) may be determined in a similar manner.
The m+E —+ ~+E amplitude has two contributions,

,~* and X,, The results for these three contri-
butions may be expressed in the form of Eqs. (7),
where the various C, X, and V functions are
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X «,x*——s+-'M' —-'Z —-'(d '/M') (8h) the following E*-meson propagator,

I', Ir« ——M' —(6 '/s),

(8j)

4. (P—- Px—).(P- Px—)./M'

s,—M'

X„„=s+-,'M' —Z„„——,'(S„'/M'), (8k)

F„„=Ms —(6„'/s).

The Z,; are defined in Eq. (Sc). These formulas are
valid both above and below the r)+E threshold.

The replacement procedure discussed above, that of
substituting h, h;/M' for A,A;/s„ is made for all the
E -exchange contributions. This procedure is equiva-
lent to assuming a nonresonating 5-wave amplitude,
proportional to 6;6;/(M's, ), in addition to the resonant
P-wave contribution, in the crossed channel. It is not
clear whether this assumption is better or worse than
the assumption of a zero S-wave amplitude. In fact,
it is actually inconsistent to neglect forces resulting
from the exchange of 5-wave PS-meson pairs, since
the V-meson exchange mechanism leads to forces in
the "crossed" channels in the 5 waves as well as the
P waves. One should write equations for the S waves,
P waves, and other angular momenta, simultaneously.
This would complicate the problem greatly, however,
so we use only that small 5-wave amplitude in the
crossed channel necessary to remove the 1/s, singu-

larity, as described above. The early work of Chew and
Mandelstam on the 5- and P-wave ~—x scattering
amplitudes partially justifies our approach (or any
other approach in which the 5-wave amplitudes are
small), for in this work it was found that if the P wave
is resonant, the forces on the P-wave amplitudes
contributed by the exchange of S-wave meson pairs is
relatively small. "

The Born-approximation amplitudes are often derived
from perturbation theory involving the vertex function
and propagator for the vector meson, so we shall
discuss how Eqs. (7) and (8) may be derived in this
manner. One can write the vertex factor for the K~vrE
interaction occurring in Figs. 1(b) and 1(d) in the form

&Px I ~x,.I P-)=~(p-+Px).+&(P- Px)., —

where p and pz are the four momenta of the vr and E.
The ratio b/a may be determined from the "current
conservation" condition Jlr«(px —p )=0. The result
1s

&PxI ~x*,.l P-) =~L(p-+Px)+(~-/') (P. Px)j., —
where s,= —(p —px)'. It is easy to show by considering
the "crossed vertex" ~+K ~E* that the 6 /s, term
prevents the occurrence of coupling of 5-wave s.+E
pairs to the fourth component of the E~ vector. Use
of this vertex function would lead to the 1/s, singularity
discussed earlier. We may derive Eqs. (7) and (8) by
neglecting this term of the vertex function and using

"G. I. Chew and S. Mandelstam, Nuovo Cimento 19, 752
(1961).

The second term of the propagator is necessary; leaving
it out would be equivalent to neglecting the 6 d,„/s,
term in Eq. (5a) entirely, which would correspond to
the assumption of a resonant 5-wave amplitude in the
crossed channel.

D(s) = I+
S—Sg ds' ImD(s')

(s s() (s s se)
(9)

Only the physical m+K and ri+E branch cuts are
included in D. The unitarity relation is ImD
= (ImT ')N, where

(ImT—'),;=—8; (qP/s'Is)0;(s). (10)

The function 0, (s) is defined to be one for q;s)0 and
zero for q,'(0. These equations, together with the
expressions for E;; in Sec. II A, are the equations for
the amplitudes. The integral in Eq. (9) is convergent,
so that no cutoff or further subtraction is necessary.

This method is only approximate, as is discussed in
Ref. 4. The amplitudes satisfy the unitarity condition
exactly on the right-hand cut, but only approximately
on the left-hand cut. Furthermore, further approxi-
mations to the N/D method diverge when vector
particles (or other states of angular momentum) 1)
are exchanged. '~ ' It is widely hoped that if the asymp-
totic forms of the various crossed-channel amplitudes
are taken to be that suggested by Regge; it will be
possible to construct a consistent, convergent theory. "'
However, since our approximate equations are simple
and convergent, we do not postulate the Regge behavior
here.

It is pointed out in Ref. 4 that if the position of the
derived resonance lies on the left-hand cut of one of
the amplitudes, then this method is inconsistent. The
inconsistency will manifest itself by the occurrence of
a branch point in the logarithmic function of Eq. (7d)
at some real value of s equal to or greater than M'.

i6 J. D. 11jgrken, Phys. Rev. Letters 4, 473 (1960).
'V The manner in which the use of the Regge representation

may improve the convergence in the pion-pion resonance problem
is discussed by David Y. Wong, Phys. Rev. 126, 1220 (1962).

B. The N//D Dispersion Relations

In the matrix N/D method, one writes T=ND ',
where T, Ã, and D are square matrices. " We follow
the general procedure of Refs. 4 and 11 and choose E
to be the Born-approximation matrix amplitude of
Eqs. (7) and (8), i.e., N =N, ,+N, xe N«« —Nqg, rr«,

and X „=Ã„„,~*.We write a once-subtracted dispersion
relation for D, setting D equal to the unit matrix I at
the subtraction energy si,. The dispersion relation is
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2.0

1»2

& FIG. 3. The four force functions
X;; z. The energy variable s is in units
of m«', and the (8+%) are in units oi
nz~ '. The energies of the m.+E
threshold, E~ mass, and g+X thresh-
old are shown. For convenience the
energy scale is changed at s=6; the
derivatives of the curves are actually
continuous at this point.

16
S

60

It can be seen from Eqs. (6), (7), and (8) that no such
inconsistency occurs in our case for values of 3P equal
to or greater than the physical value.

One well-known difficulty with the matrix 1V/D
method is that approximate solutions are not in general
symmetric, despite the fact that S is symmetric. "We
illustrate this point by using Eqs. (9) and (10) to write
the equation for T,= (1VD ') „ in the following form:

T.„=iDi-' X.„y (X..I.„Ã.„I..), (11)—

p,2Ã, ;(s')ds'

7

) (s' —sg)(s' —s—se)s""
(12)

where
i
D

i
is the determinant of D, and p, is a kinematic

factor which we chose equal to q,'" in our definition of
T;; in Eq. (1).The corresponding equation for T, may
be obtained by reversing the x and p subscripts in Eq.
(11).It is seen that the coefficients of (s—s,) are not
the same in the expressions for T „and T„so that, in
general, T „&T„„.

It is commonly believed that nothing can be done
about this asymmetry without complicating the pro-
cedure greatly. Actually, however, the amount of
asymmetry depends on the ratio of the kinematic
factors p and p„corresponding to the two channels.
If E„ is proportional to X „ for all energies greater
than the w+E rest mass, and X« is proportional to
E „ for all energies greater than the ri+E rest mass,
the (s—s~) terms of Eq. (11) and the corresponding
equation for T, vanish, and T „,=T„. Hence, one
should choose the ratio p„/p so that the E;, are as
nearly proportional as possible. LA common function

' The exact solutions are symmetric, however. See J. D.
Bjgrken and M. Nauenberg, Phys. Rev. 121, 1250 (1961).

where the constants Ii;, & are defined by

X„,([(m„+mx)']
Ki, l

X.„L(m„+noix)']

The t)+E threshold is chosen for the deffnition of the
K because it is an intermediate energy for this problem.
If the physical values of m, ' and M' are used, none of
the actual X,;,&(s)/X „(s) ratios varies by more than
22%%uo from its value at r)+E threshold.

The matrix amplitude T is symmetric in the approxi-
mation, and may be written in the form

T,,=X.„(s)R;;(s)/i D(s) i, (14)
~3 rf +K+m'PK+ rfy (15a)
R .= ',«.yx». '+42«„y,.y, lr+n.„(—s)H-, (15b)
R«=«„yx»„'+n (s)H, (15c)

i Dt =1—o. (s)[—-',«.pe».'+v2«p». ymir]

n„(s)«„ylr*„' n—(s)n„(s)H, (—15d)

ds'g, "Dt.„(s')
n.,=,] (15e)

( «+;)* (s' —st)($' —s—te)$""

(s—s,)

multiplying both p and p„makes no difference in the
results, since it leaves the products p S;; occurring in
Eq. (12) unchanged. ] Our choice of p;=q, ai', which
eliminates the singularities a.t the n+E and .ri+E
thresholds, leads to S;, that are nearly proportional.
This is shown in Fig. 3, where the functions X,;,E

corresponding to the four V-meson exchange graphs of
Fig. 1 (computed by using physical values for m, ' and
1lII') are compared. In view of this approximate propor-
tionality, we simplify the equations by making the
approximation in which the K;;,i are all proportional
to K „.We make the replacement

Jt,;,)(s) ~ «;, )X „(s), . (13)
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H=yx*~'gee„'(1+ 3~~a„) K2—z„~p xe„'yp.ypx. (15f)

The symbols K p K &+ and Kg, ~+ have been abbreviated
to ~„~,and ~„, respectively.

This approximate form of the amplitude equations
has several advantages. One is that some of the self-
consistency equations (derived in Sec. II C) are simple
algebraic equations. Another is that only the factors 0.
and z of Eqs. (14) and (15) depend on the PS and
V-meson mass differences, so that the effects of these
mass diGerences on the symmetry of the interaction
constants may be studied conveniently.

C. The Self-Consistency Equations

The application of the bootstrap mechanism requires
that a resonance occurs in the derived amplitudes,
which is identified with the E*.We assume the physical
situation in which the resonance occurs at an energy
above the m.+K threshold but below the g+K thresh-
old. The function n„(s) is real for such an energy, so
that the complex nature of the amplitudes in Eqs. (14)
and (15) arises entirely through their dependence on the
complex function e (s). It is convenient to define n „
to be the real part of 0. , and to add a subscript e on
the T;;, R;;, and D to denote the real expressions that
result if o. is replaced by e„. We define the resonance
energy so as the energy at which the ~+K phase shift
increases through 90'. Hence, ReT (so) =0, and since
K &(sp)R (so) is real, this requires that Re

I D($0)
I

= ID„(so) I
=0. The coupling constants are defined by

an equation analogous to (4), i.e.,
vx'n x* /(4~) = sL(~0—~)T',.j.=., (16)

The y~* may also be interpreted as the reduced
partial widths of the resonance.

The above de6nition of the coupling constants
requires a little clarification. The amplitudes T and
T „are purely imaginary at the resonance energy; for
these amplitudes Eq. (16) is an obvious definition.
However, T„„is complex at s= so because of the complex
function o. in R«. Our definition of y„„specifies that
ImR» be neglected, so that only the imaginary part of
T„, is considered. The validity of this procedure may
be seen from the fact that the condition (so—s)'T „,„'
= (sp —s) T,„T„„,„implied by Fq. (16), is automati-
cally satisfied for the imaginary parts of the three
amplitudes below rj+K threshold because of the form
of the unitarity condition, ImT, ;= (q %'")T; *T; .

In order for a resonance to occur at s=M', we must
have

ID„(M~) I
=0. (17)

Applying the definition pz*, LEq. (16)), to the ampli-
tudes, we obtain three relations, which may be written
in the form,

3-X.„(s)R,, „(s)-
(18)

4~ 8 ~ ID, I/as

where the notation is that of Eq. (14). One of the four

conditions given in Eqs. (17) and (18) may be derived
from the other three; hence, these equations represent
three self-consistency requirements on the four pa-
rameters M', y~* ', y~~„', and pp pp+.

The simplest of the equations represented by Eq.
(18) is the one corresponding to the inelastic amplitude
T „. If we divide this equation by pe,'e pxeg (which we
assume is not zero) the result is

1=-,'n. (M' —si)X 'K, (M'), (19)
where X is de6ned by the relation X= —(M' —s&)

&& (BID„I/Bs), ir~. The convenience of this parameter
will become clear shortly. Equations (17) and (18)
[with the parameters R;; given by Eq. (15)j may be
combined to give the relations

1=n „(M')axe '+o.„(M2)z„yx.„', (20a)

1=a„(M')y *„'+n,„(M')/v2iip p yp
—3~-vx -'j (2ob)

These two equations represent the self-consistency
equations for the p' in a convenient form.

y~* '/47r

0.5
1.0
1.5
1.75
2.0
2.5

7x „'/4~

3.45
2.78
2.10
1.76
1.42
0.74

VZy p„yp~/4w

0.88
1.32
1.77
1.99
2.21
2.66

0.98
0.98
0.97
0.96
0.96
0.95

We now show that the experimental value of the E*
mass very nearly satisfies Eq. (19). We take for the
masses of the various mesons %=885 MeV, mp=750
MeV, and m, =550 MeV. The constants ~ may be
determined from I'ig. 3; they are Kp

——1.27, ~ =0.93,
and a„=1.22. We must next decide on an appropriate
value for the subtraction energy s&. In a one-channel
problem an appropriate energy is that of the end of
the left-hand cut, but we have several left-hand cuts.
The ends of the cuts for the processes corresponding
to Figs. 1(b) and 1(c) are, in units of mx', s= —1.04
and s=1.26, respectively. The corresponding cuts for
processes 1(a) and 1(d) include complex regions as well
as regions on the real axis; the "ends" of these cuts
Lpoints where the argument of the logarithm in Eq.

III. RESULTS

Since we have one more input than output parameter,
our solutions depend on one adjustable parameter,
which we take to be y&~ '. However, Kq. (19) is very
insensitive to the choice of y~* ' and may be thought
of as the equation for the E*mass. The only quantity
in Eq. (19) that depends on p&* ' is the parameter X,
but X is very nearly one for all values of axe '. (If

I D„I
were a linear function of s, X would be equal to one. )
The actual dependence of X on y~* ' is shown in
Table I.

TAm, K I. Calculated values of p~*„', y,„y,~, and )
corresponding to chosen values of y~~ '.
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(7d) vanishes7 are s= —0.1&0.9f and s=0 4.+6 3.i,
respectively. Rather arbitrarily we take s& to be the
average of the cut ends for processes 1(b) and 1(c),
i.e., s& ——0.11m~'. If we substitute this value of s~ into
Eq. (19) and evaluate K „(M'), the right side of Eq.
(19) is equal to 0.95K '. Since X~1 (0.95(X(1 for
reasonable choices of pz* '), we see that this equation
is very nearly satisfied at the physical value of M'.
The error is less than the variation that would result
from different reasonable choices of s&. Hence, we shall
continue to set M' equal to the physical value.

The computed values and derivatives of n, „and n„
at s=M' are found to be 4xn;„=0.328, 4zn„=0.198,
(M' st—)n„'/n, „=0, 94, .and (M2 s~—)o.„'/n„= 1.21.The
values of p~*„' and y, y,~ corresponding to different
values of yz*,' are determined from Eqs. (20) and are
shown in Table I. The y~* ' is related to the experi-
mental K" full-width F by the formula yx* '/(4w)
=38M'F/q '. The experimental value" of I' 50 MeV
corresponds to ply~ '/(4m-) 0.65.

As a further. test of the self-consistency of our model,
we must examine the forces in the I= 2, vr+K state in
order to verify that no resonance is expected in this
state. Even though there is no q+E channel of isotopic
spin 2, we write the equation for T,(I=-2) in the
form of Eq. (14), in order to facilitate the comparison
between isotopic spins, i.e.,

T (I=-', )=X.„R..(I=-', )/D(I=-,').
The expression for R (I=-', ) is similar to Eq. (15b)
except that the coefficients are changed, i.e.,

R..(I= ,')= 3N,yx*~' ,'K p-yp. yp . ——

This function is negative for the entire range of y~*
shown in Table I, indicating a repulsive force. Hence,
our assumption of no input forces from the exchange of
an isotopic spin--,' resonance is self-consistent, as well

as consistent with experiment. )We note that if ~, and
are set equal to one, and the ratios of the y~, are

taken from unitary symmetry, the quantity R (I= 2)
vanishes, as remarked in Ref. 11.7

IV. RELATIONSHIP TO UNITARY SYMMETRY
AND CONCLUDING REMARKS

One of the purposes of this paper was to investigate
the effects of the PS and V-meson mass differences on
the argument of Ref. 11, in which bootstrap relations
were used to predict the PS-PS-V meson interaction
symmetry of the octet model of unitary symmetry.
We have succeeded in isolating the main effects of the
mass differences in the equations for the E*; only the
parameters z and n of Eqs. (19) and (20) depend on
these differences. The ratios ~ /~„and n, „/n„measure
the main effects of the x—g mass difference on the
dynamics of the E* problem. Since the experimental

~9 M. H. Alston et al. , in Proceedings of the 106Z Annlal Inter-
national Conference on High-Energy Physics at CERE (CERN,
Geneva, 1962), pp. 291—294; R. Armenteros et al. , ibid. , pp.
295-. 291'.

masses are much more nearly degenerate for the V
mesons than for the PS mesons, it is very encouraging
that the ~,/I „and n, ,/n„are much closer to one than
the mass ratio m&/m . Furthermore, it seems likely
that if the present technique were extended to the p
and co mesons, the unitary symmetry would not be
broken by the PS-meson mass differences to such an
extent as to be unrecognizable. For example, if we set

equal to p&*„' (in accordance with unitary
symmetry), it is seen from Table I that W2y, y,z/
(yx* ') 1.13, whereas the ratio + is predicted bv
unitary symmetry.

It would be interesting to extend the calculations to
the p and co systems, in the hope of eliminating the
arbitrary parameter that is present here. However,
it seems highly unlikely that such a program would be
as fortunate in predicting the p and co masses as we
were in predicting the K mass. The work. of Zacha-
riasen and Zemach shows that the p mass may be quite
sensitive to other states beside states of two PS
mesons4; it is likely that many states and many contri-
butions to the force play a significant role in actually
determining the V-meson masses and widths.

As discussed in Sec. III, the E* width is not pre-
dicted by our model. However, if one sets y~* ' ——y~*„',
in accordance with unitary symmetry, then y&~ '/(4~)
=1.75, which is high compared to the experimental
value of 0.65. Thus, if unitary symmetry is approxi-
mately valid, the reduction of the E* width caused by
the coupling to the g+K state is insufficient to bring
about agreement with experiment. (See the discussion
of Sec. I.) The situation is similar for the p meson. In
the p ~7t KK ca—lcula—tion of Ref. 11 (with the 7r K—
mass difference neglected) the presence of the K+K
state reduces the p width to -', the value occurring in
the one-channel p —xw model, but the result is still
about three times too large. It may be that the V-meson
widths are further reduced by coupling to states other
than those of the PS mesons. The prospect of including
many states in the calculations seems discouraging at
erst, since multiple-channel dispersion relations would
have to be used. However, if the various strong inter-
actions are related by a symmetry principle, and if this
symmetry principle is itself derivable from dispersion
relations, one can hope that a method of simplification
based on this symmetry will be found, and that it will
be possible to reduce the equations to tractable form.

In conclusion, we remark that the agreement be-
tween the E~ mass predicted by this model and experi-
ment is encouraging, but many factors not included
here may play. a signi6cant role in determining the E*
mass and width.
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