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Pion-Nucleon Scattering in the Boundary-Condition Model.
I. Inelastic EBects on 8 Waves*
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S-wave amplitudes for both T=-,' and T=-', 2I--X scattering in the 0—500 MeV range are constructed by
means of the boundary-condition model. Included in the Hermitian Ii matrix is a production channel in which
the two outgoing pions are assumed strongly correlated in the T=O, J=O+ state. The behavior of the
amplitude so derived is in agreement with the present analyses of the experimental data, and shows in a
simple manner the mechanism for obtaining a maximum in the cross section through the introduction of
an inelastic channel.

I. INTRODUCTION

N the past few years several attempts have been
-- made at an understanding of the m. —N interac-
tion. In particular, dispersion relations for the x—N
partial wave amplitudes using the singularities derived
from the Mandelstam representation, in conjunction
with phenomenological representations of strong x —x
interactions in various channels, have been used by
several authors' ' to explain the available s-wave ampli-
tudes. The difhculties with these approaches have
mostly involved rather severe approximations about
the contributions to the dispersion integrals of the dis-
continuities across the m+7r~E+E cut (the circle
cut) and the elastic cut in the complex s plane. It is the
aim of this paper to outline an approach to the problem
using the boundary-condition model (B.C.M.), which
incorporates unitarity and as much of the analyticity
as is desired, and which permits a direct comparison
with the requirements of the relativistic theory.

In a recent paper' (hereafter referred to as FL) the
application of the B.C.M. to the problems of elementary
particle physics was discussed and justi6ed on several
grounds. The application to m —N scattering was also
mentioned. In Sec. II we shall repeat a few of the theo-
retical arguments in favor of the model with special
reference to the x—N case. In Sec. III the experimental
s-wave data will be presented and discussed. Section IV
will deal with the effects of inelastic channels as a
possible explanation of some of the data. Section V will
set forth both the single and multichannel forms of the
S.C.M. and derive some of the pertinent equations. The
T=—,'and T= —,

' cases will be dealt with separately and
the best 6ts will be presented in Sec. VI. Section VII
will contain conclusions drawn from the fits and a dis-
cussion of further uses of the model for the ~—N
interaction.

*This work is supported in part through funds provided by the
Atomic Energy Commission under contract AT(30-1)-2098.

f IBM Predoctoral Fellow.' J. Bowcock, N. Cottingham, and D. Lurie, Nuovo Cimento
19, I42 (196i).

2 J. Hamilton and W. S. Woolcock, Rev. Mod. Phys. (to be
published). This contains references to earlier work by Hamilton
and others.

'H. Feshbach and E. L. Lomon Ann. Phys. (N. Y.) (to be
published).

II. RELEVANCE OF THE B.C.M. TO
STRONG INTERACTIONS

The double spectral representation for the m —N
scattering amplitude contains terms of the form
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FIG. 1. (a) Lowest order contribution to n strip of double
spectral function, giving rise to long-range "potential" effects.
(b) Lowest order contribution to P strip of double spectral func-
tion, giving rise to shorter range B.C.M. effects. (c) Lowest order
contribution to peripheral production. This may be related to the
contribution of (a) through unitarity.

The limits of integration may be found by unitarity
and the conservation laws. In particular, the double
spectral function p(s', t') for processes of the type in
Figs. 1(a) and 1(b) vanish outside the shaded areas in

Fig. 2.
At energies where inelastic scattering is not im-

portant, it may be hoped that we can represent the
effects of the shaded strip 0. by a superposition of
Yukawa potentials in deriving the asymptotic ampli-
tude. However, if strip P [i.e. , diagram 1(b)j plays an
important part, then, as explained in FL, the inter-
action is extremely nonlocal and the boundary con-
dition may dominate. (The form of the boundary con-
dition will be given in Sec. V.) We shall try a pure
B.C.M. in a 6rst attempt, hoping that the potential
tail contributions LFig. 1(a)j will not cancel the im-

portant effects to be discussed. The supposition was
made mostly for ease of computation, but it has turned
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out to be sufficiently correct to accomplish the present
objectives.

As shown in FL, the B,C.M. partial-wave amplitude
is consistent with the analytic properties of the 5
matrix in the k' variable (where k is the momentum of
the particles in their center of mass) as derived from
the Mandelstam representation for the total amplitude,
except possibly the asymptotic property. The various
unphysical cuts are obtained by the choice of potential
tail. For these reasons, we shall employ the model in
this paper using full relativistic kinematics. The use of
wave functions to derive the amplitude may be justified
in that it gives a scattering amplitude with the correct
analytic properties in the relativistic k' variable when
the latter is formally substituted for the nonrelativistic
one. Since we are not now concerned with the crossed
sr+sr —+IV+8 reaction, the fact that crossing sym-
metry is not inherent in the model is not of importance
in this case. Crossing between various partial wave
channels (such as between. the T= —'„J=—', s-wave and
the T= sr, J= is+ p-wave amplitudes) can later be im-

posed ad hoc, as has been done for the m.—~ interaction
in FL. This will place consistency requirements on the
parameters involved. Inelastic unitarity, of great im-
portance to the present discussion, is automatically
contained in the model.
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FIG. 2. Regions of the s't' plane outside of which

the double spectral function vanishes.

4 S. W. Barnes, B. Rose, G. Giacomelli, J. Ring, K. Miyake,
and K. Kinsey, Phys. Rev. 117, 226 (1960).' H. Y. Chiu and E. L. Lomon, Ann. Phys. (N. Y.) 6, 50
(1959).

6 S. M. Korenchenko et al. , Dubna Report P-431, 1959
(unpublished).

III. DISCUSSION OF THE s-WAVE DATA

A. T=—',

We express the T=-,' diagonal 5-matrix element as
q~e" ', where q~ and a~ are real and 0~&g&~&1. The
available analysis of the data is plotted in Fig. 3.' '
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Frc. 3. T= —', s-wave elastic phase shift n1 and inelastic parameter
g1 from analyses of experimental data. Reference to source of
analysis is given by number at the point.

B. T=-',

Here (see Fig. 4) we have no apparent structure
effects in the phase shift u3.~ "The absorption parameter
p3 has not been plotted since it is essentially 1 through-

~ W. D. Walker, J. Davis, and W. D. Shepard, Phys. Rev. 118,
1612 (1960).

J. Deahl, M. Derrick, J. Fetkovich, T. Fields, and G. B.Yodh.
Phys, Rev. 124, 1987 (1961).

~ G. E. Fisher and E. W. Jenkins, Phys. Rev. 116, 749 {1959).
"Proceedings of the l958 Annual International Conference on

High Energy Physics, a-t CE~RN (CERN, Geneva, 1958), p. 43,
Fig. 7."B.Aubert et al , CERN Report .61-11, 1961 (unpublished).

'2 E. H. Rogers, O. Chamberlain, J. H. Foote, H. M. Steiner,
C. Wiegand, and T. Ypsilantis, Rev. Mod. Phys. 33, 356 (1961).

The outstanding feature in the energy behavior of the
phase shift is the apparent "knee" not far above the
inelastic threshold followed by a fairly sharp rise. This
suggests a discontinuity of some kind and, thus,
perhaps the onset of a new channel. The low-energy
data have not been put into the plot but they are con-
sistent with a scattering length at ——0.173tt '.' [Here
we set A= c= 1, and p is the charged pion mass. Lengths
are thus measured in units of p, ', the pion Compton
wavelength and momenta and energies in units p. The
scattering length tt, is defined as lims s(crt/k) ]The.
data on q& show virtually no absorption until k= 2.4p,
then rather strong absorption seems to arise over a
small energy interval, again suggesting the possible
importance of the inelastic channel.
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Fzo. 4. T=-,' s-wave elastic phase shift n3 from analyses of ex-
perimental data. Inelastic parameter g3 ——1. Reference to source
of analysis is given by number at the point.

out the range of interest. The low-energy data are con-
sistent with a scattering length a3 lying between
—0.090 and —0.110.' ' The absence of any appreciable
absorption combined with the smoothness of a3 as a
function of 4 suggests that any inelastic channel con-
trolling the T= ~~ behavior can have little, if any, effect
in the T=-,' channel. The slowness of the change of the
slope of n3 versus k from a constant negative value
suggests the dominance of repulsive boundary condition
type scattering which maximizes the negative rate of
variation of the phase shift. '

IV. INELASTIC CHANNELS

The inelastic channel we shall consider in our attempt
to explain the T=2 data is

assuming a strong attraction or resonance at low energy
for two pions in this state derives mainly from the ex-
periments of Abashian, Sooth, and Crowe, " Samios
et a/. ,'4 and Richter. "In the 6rst of these experiments
the authors provided an explanation of their data in
the p+d ~ He'+2m (neutral) p+d +H-'+2'
(charged) reactions by postulating a narrow T=O,
J=O+ resonance in the final state of the two pions.
Truong" and Jacob, Mahoux, and Omnes'r have sug-
gested that the data could be explained by a nonreso-
nant but strongly attractive interaction between the
two pions in this state with a scattering length of the
order of 1.5p, '. Results of Hamilton et al.' seem to
support this hypothesis. Both these interpretations will
be tested. The results of the model bear out the existence
of a strongly attractive (0,0+) state with a preference
for the resonance interpretation. However, because of
the crude approximation of the model used here and
because of uncertainties in the data analysis, noneof
these possibilities is considered to be eliminated. Very
recent data favors the scattering length Qt, as men-
tioned in Sec. VII below.

V. THE BOUNDARY CONDITIONS

Conservation of Aux at a radius rp, when the particles
may be described by configuration space wave functions
outside r = r p, is satisfied by the boundary conditions

rpPdv(r)/dr7, „, = fv(r=s)

in the one-channel case, and by

In this way we recognize the possible importance of the
rr strip /see Figs. 2 and 1(a)7 when we are above thresh-
old. The model as presently used is unable to handle
3-particle channels, so that two of the three particles of
the Sew system must be assumed to be strongly corre-
lated for our purposes.

Possible idealizations we may consider are

v.+1V—+ ~a+1V

rr+JV +rr+ 1V*. —

For m* one might be tempted to try the p meson
(T=1, J=1 ). However, this would then appear in
both the T=~ and T= —,

' states; also the threshold for
such a reaction is too high for our domain of interest.
Similarly, the Ã* taken as the (3,3) isobar will appear
in the T=-', state. One could eliminate both of these
particles from the T= —,

' state, of course, by reducing the
coupling to zero, but this seems too arbitrary a
procedure.

One state in which there is mounting evidence that
the two pions are strongly correlated, if not resonant,
at a low energy in their center-of-mass system is the
state of T=O, J=O+. Such a two-pion system can be
produced only in the T= 2 channel and, hence, will not
affect the T=-, elastic scattering. The justification for

Fp (2)

in the two-channel case. Here v(r), u(r), and w(r) are
the reduced radial wave functions in the various
channels, whose values and derivatives are taken on the
surface described by ~

r
~

'= rs' in the relative coordinate
r. The channel described by w(r) may have different
kinetic energy and/or different orbital angular mo-
mentum from the channel described by u(r) Similar.
equations, where u(r) and w(r) have had different orbital
angular momenta but the same kinetic energy, have
been previously used. "As used here, u(r) and w(r) will

also have different kinetic energies associated with
them.

The reality of f and the Hermiticity in general of the

f matrix is required by the unitarity of the system,
while the reality of the f matrix is a consequence of
time-reversal invariance. (The matrix is related to F

"A. Abashian, N. E. Sooth, and K. M. Crowe, Phys. Rev.
Letters 5, 258 (1960).' N. P. Samios, A. N. Sachman, R. M. Lea, T. E. Kalogerop-
oulos, and W. D. Shepard, Phys. Rev. Letters 9, 139 (1962)."S.Richter, Phys. Rev. Letters 9, 217 (1962)."T.N. Truong, Phys. Rev. Letters 6, 308 (1960).

"M. Jacob, G. Mahoux, and R. Omnes, Nuovo Cimento 23,
838 (1962).

's H. Feshbach and E. L. Lomon, Phys. Rev. 102, 891 (1956).
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of FL by the relation f=F+I, where I is the unit
matrix, due to our choosing to work with the reduced
wave functions. )

Feshbach and Lomon' have shown that causality and
considerations of the strength of the interactions in-
volved will cause f to be more or less energy-independent
for rp at about the strong interaction distance char-
acteristic of the P strip (in our case, at sty ').This energy
independence is not, however, expected to hold for
pole-type interactions such as the (3,3) v Ec—hannel,
where there is no activity in the momentum transfer
channel. (See Fig. S.) A more general structure of f to
include these pole eGects is discussed in FL.
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FIG. 6. ao obtained from single-channel B.C.M. Eq. (3).
References to experimental points are given in Fig. 4.

VI. DETAILS OF THE MODEL AND THE
FITTING OF THE DATA

f= r /(ro+oa )o (4)

To fix f, as was varied slightly between —0.090 and
—0.100, while rp was varied between 0.25 and 0.50.
This left the one parameter, rp, to fit the higher energy
data, and this parameter was expected to stay within
the above narrow limits required by its physical inter-
pretation. An excellent Gt to all data up to about 500
MeV (see Fig. 6) was obtained for as ———0.098 and
ro ——0.45 (units of p '). From Eq. (4) f=1.28. Since no
potential tail was used, and a good fit was obtained, it
is likely that diagrams of the kind 1(b) (representing
the p-strip contributions) are largely responsible for the
scattering. Note that rp is almost twice the estimate of
4t//,

' obtained from consideration of Fig. 1(b). An ex-
planation of this will be discussed in Sec. VII.

A. T=~~

Let us consider first the T=-,' case. As there will be
no absorption in this channel if the particle produced
has T=0 (according to the hypothesis made in Sec. IV),
the wave function v(r) [see Eq. (1)j may be taken as
e '~"—e" Ie'~" i.e., a scattered s wave, for rQ rp. ns is
real. Application of the B.C. (boundary condition) of
Eq. (1) implies

f+p tanp
p cotns ——

1—f(tanp/p)
where p=kro.

In the scattering-length approximation, kcoto. 3

= (1/as) for k —+ 0. From Eq. (3) we get

(ttz2 /r2) 1/2+ (M2 /r2) 1/2 —W (Sb)

This procedure is seen to be justified by asking that
the B.C.M. 5 matrix have the proper analytic con-
tinuation in the complex k plane. "

Carrying through the calculations with the above
wave functions, we get from Eq. (2)

du(r) f 2

rp = fi+ M(ro), (6)
dr „„, Z[x—1/(x+i) $—fs

where

x=Kro for W)M+r/s (above threshold)

=i/rro for W&M+r/s (below threshold) .

B. I=-'
General Formllation

Since there is inelasticity in this channel, the m —X
wave function N(r) may be taken as e 's" rite—"~&e'"'

outside r = rp, with q~, a~ real and 0&~g~ &&1.If a particle
with definite mass m and T=O, J=O+ is produced,
tv(r) must be an outgoing p wave (by conservation of
angular momentum and parity):

tt/(m, r) ~ (1+i/Kr) e'x"

E is the outgoing relative momentum and is given by

(K2+ ttt2) 1/2+ (K2+M2) 1/2 —W (Sa)

where W= (k'+/t')'"+(k'+M')'" is the total energy
in the c.m. and the nucleon mass M is taken as 6.72'.

For W&M+rN (i.e., below threshold for production
of the mass r/s particle) we set K=i/r, and we have a
decaying p wave given by

tt/(rr/, r) oc (1+1//rr)e "'.
~ is given by

(&3

/

() '

(b3

FIG. 5. Pole dia-
grams for m-E
scattering.

With this formulation and the definitions (Sa) and
(Sb) the inelastic cut appears explicitly, and 2nd. -order
cusps (see Appendix) are obtained in nt(k) at the mo-
mentum corresponding to the threshold for production
of a particle with mass m [see Eq. (14)].Such curves

"P. T. Matthews and A, Salam, Nnovo Cimento 13, 381 (1959).
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p(m)dm
u(rp), (7)

„ i[x—1/(x+ i)]—fr
where x is a function of k' and m, and is given for each
m by the definitions following Eq. (6) and Eqs. (5a)
and (5b).

In this approximation, fs is independent not only of
k', but also of m.

This integration procedure is equivalent to opening
a continuous range of channels with varying m's, with
a density f s(m)dm still independent of the external
energy, viz. , Eq. (2) becomes

ra[du(r)/dr], „,= fru(ro)+2 f (m)w(m, ro),

ro[dw(m, r)/dr]„„,= f, (m)u(ro)+ fsw(m, rp).

are plotted in Figs. 8 and 10. As can be seen, the general
nature of the curves is consistent with the data.

To take into account the width of the resonance,
Eq. (6) is changed to

-du(r)-
t'p fi+

—r=rp 2

Then let P f,'(m) —+ J'p(m)dm in the resulting
reduction.

Discussion of the p Func& oe'

If a stable particle with mass m* is produced, we wish

to have Eq. (7) reduce to the form of Eq. (6) with
m =m*. This can be done, clearly, by taking
p(m) =D8(m —m*) with D= f,'. This suggests that, in

general, we take p(m) to be proportional to the T=O,
1=0+ m —m cross section for elastic scattering at a
total center-of-mass energy, m. The primary eRects
of the spread in the mass distribution will be accounted
for by the equivalent spreading of the threshold eRects
in this choice of p. Thus, if we produce an unstable par-
ticle of average mass m* and full width F at —,

' full in-

tensity, p(m) will be taken as a Breit-Wigner form of
an s-wave resonance

where

p(m)=Spas 7

(m m*)s+—(F /4)[(m —2p)/(m* —2p)]

(Fs/2) [1—(F'/16) (m*—2p) ']'"
(s./2) —tan '{[(—2(m" —2p)+(F'/4)(m* —2p) ']I' '[1—(F'/16)(m* —2p) '] U'}

The integration over m in Eq. (7) will then extend from
m=2' to m= ~. The normalization factor E„, in
Eq. (8) assures Js„"dmp(m) =D. Thus, D should be the
full equivalent of f,' in the two-channel case.

On the other hand, suppose we have a nonresonant
mw system. In it the m's may still be correlated enough so
that a boundary condition on the center-of-mass system
is meaningful. In this case, we will let p(m) take a form
which is still proportional to the (0,0+) s.—s. cross
section q

' sin'8p(q). Here 5p(q) is the T= 0, 7=0+ pr —pr

phase shift at pion momentum q in the m —x center-of-
mass system. In the scattering-length approximation

q cot8o(q) = ap
—',

from which we get

q
—' sin'8o(q) = [ap '+u(m —2p)]—', (10)

since r~=2ls+q'/Is if the kinetic energy in the vr —7r

center-of-mass system is reasonably low. The same ap-
proximation was made in writing the resonant cross
section. No major error is expected to result from this
due to the integration to high m's since all quantities
in the integrand fall oR rapidly. Appropriately rela-
tivistic formulations of both the Breit-Wigner and
scattering-length forms can and will be used when
necessary. The Inain thing is that the Breit-Wigner form
used has the correct behavior at q

—+ 0 (m —+ 2p) and
around resonance (m=m~).

Thus, as an approximation in the nonresonant case
we use Eq. (7) with

where

p(m) =Ã„,
up s+u(m —2p)

1V„i——{in[ap'(m —2p)u+ 1]}—'.

I.O 2.0 m" 2+ /os 4.0
m(Toto{ Energy in the m'-m' Center of Moss)

S.O

FIG. 7. The function p(m) for the resonant (solid curve)
and nonresonant (dashed curve) s.—s. interactions.

The extension of this to the full eRective range ap-
proximation is easy. This was done, but was not found
to add results of further interest.

Curves of p(m) versus m are shown in Fig. 7. The
maximum in the Breit-Wigner curve is shown as oc-
curring at m=m~. This will be approximately so if
r«m*.
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rp[du(r)/dr(„— „, =f,ff (k' )u (rp), (12)

where f,«(k') is generally a complex function of the
variable k'. f.«(k') is given by Eq. (6) in the stable
particle production case, and by Eq. (7) (the expression
in the square brackets) in the general case. We shall
show that below threshold for the second channel
f„«(k') .is real, whereas above threshold it acquires a
negative imaginary part which is directly related to the
absorption. The threshold momentum for the produc-
tion of a particle m* is given by

Derivation of the Etastic Phase Shift and
Inelastic Parameter

In general, the equation from which q1 and n1 are
derived is given by

(i) k(kp (i.e., W(M+2p, )
(y+1)

dm p(m)
y'+ (1+f,)y+ (1+f,) (17)

fr= fi

f,=0.

(ii) k)kp (i.e., W)M+2ti)

that the stable-particle case may be obtained by letting
p(m) be a delta function at some mass m*.

We define the following symbols:

y= rp~(k', m),
s= oE(k', m),

where ~ and E'. are given by Eqs. (5b) and (5a), re-
spectively. With these definitions and Eq. (7) we
obtain for

[(mp —p) (mp+ p) (2M+mp —ti) (2M+mp+ti) j'~'
kp=

2 (M+mp) fr= fi
foe'+(1+f2)

dm p(m)
s' —(1—f2') 2'+ (1+f2)'

where mp is the lowest mass of the x*. In the pure par-
ticle case mp=m*. In the resonant and nonresonant
two-pion cases mp=2p.

Now we derive q1 and 0.1. I et

f.«= f.«(k'),

f,= Ref,«(ko),

f,= Im f.ii (k') .

Writing u(r) =e '""—rtie" 'e'~", and using Eq. (12), we
obtain

feff+2t3

«ZP

where P= krp as before. From this we obtain the follow-
ing formulas for the desired quantities:

f2+f 2+$2-+ 2Pf; .I/2

(15)f'+f '+&-' 2Pf-
P tanP+f

P coflti=
1—f(tanP/P)

(16)

where

f (1/2f ){—(f 2+f 2 P2)+ [(f2+f 2+P2)2 4f 2t32]lt2)

Note that (16) is analogous to Eq. (3) in the one-
channel case, except that now f has complicated energy
dependence.

As stated, below threshold [k&kp. see Eq. (13)]
f,=0 Thus, (15) redu. ces to

(y+1)
dm p(m)

y'+ (1+f2)y+ (1+f2)

dm p(m) s'- (1-f2')2'+ (1+f2)'
(18)

Unitarity requires that 0&~2ti&&1. From (15) we see
that for this to be so we must have f; ~&0 This cond. ition
is seen to be satisfied in our model. From Eq. (18) we can
see that f, is never positive if s' —(1—f22)s2+ (1+f2)'
is never negative. Remembering that the f matrix is
real a sufficient condition is

~ f2~ &~ 1. Also sufficient is
that the discriminant (1—f2')' —4(1+f2)'&0. This is
equivalent to —1&~f2&~3. Thus, it is also sufficient for

~
f2~ &&1. Thus, unitarity is fulfilled at all energies for

any real f matrix.
Note that in the pure particle case, m* is necessarily

less than 8'—M for k) kp, by the definition of kp in this
case. Thus, the second integral in the expression for f„
in Eq. (18) vanishes due to p vanishing in the range of
integration.

Fitting the Data

The slope of the phase shift at k=0 is given by the
T= -', scattering length a1=0.173p, '.' The requirements
that this slope be fitted by a pure B.C.M. , i.e.,

ro[du(r)/drj„=„, , i o= fo[u(ro) jo o

imposes the condition fp rp/(rp+a&) on the va—l—ue fp
of f,ii(k2) at k'=0, where it is real. Thus, using Eq. (17)
and the above condition, we obtain

yo+1
dm p(m) , (19)

+ (1+f2)

rp
r eff ~

ro+ ai 2 yo +( +f2)yo
Now we explicitly exhibit the function f,«(k ) using

the integral formulation [Eq. (7)7, keeping in mind where yo is y(k', m) evaluated at k'=0.
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Thus, in the expression for f„ in Eqs. (17) and (18),
we set fi=ro/(rs+at)+6, where d is the integral in
Eq. (19) without the minus sign in front. In this way we
determine one of the parameters, fi, by fixing the scat-
tering length.

Fixing at at 0.173@ ', fitting rs, fs, and D (see "Dis-
cussion of the p Function" above) to higher energy data
was done by trial and error on the IBM 7090 and 709
at MIT for the input m- —m. interaction parameters given
below. rs was varied in the range (0.25—0.50)p, ', while
extensive variation in fs and D was used. Cutoffs were
used in all integrals having an infinite upper limit (for
numerical purposes only, since everything is rapidly
convergent), and the normalizations of the p functions
were corrected to account for this. In the pure particle
case, where p(m) =Dii(m —m*), this integration pro-
cedure was, of course, unnecessary.

Several cases of the T=O, 7=0+ x —x interaction
were tried:

0.2—

0.0 I I

I.O 2Q
k (pion momentum in the ~- N Center of Moss,

ln units of pc)

(a)

3.0

f00

I.Q

0.8

0.6

0.2

0.0 i i

I.O 2.0
k(Pion momentum in the ~-N Center of Mass,

in units of yc)

(b)

'
FIG. 8. (a), (b}n1 and q1 obtained from coupled-channel B.C.M.

Eqs. (15) and (16). References to experimental points are given
in Fig. 3. ParameterS fOr VariOuS CurVeS giVen in Table I. m —7r

interaction described by resonance at energy m*=2.30', (322
MeV), with 1'=0 ("AB(:"resonance in stable-particle limit).

(i) Resonance at energy m*=2.30li (322 MeV) and
zero width (I'=0). p(ns) is here taken as the delta
function at the above m*.

This is consistent with the results of Abashian,
Booth, and Crowe" and Richter. "The width in these
cases may have been up to 10 MeV (0.07li) if the reso-
nance interpretation is accepted, but the effect of this
finite width was tested and found entirely negligible.

(ii) Resonance at average energy ms*=2.83' (395
MeV) and width F=0.36li (50 MeV). p(m) in this case
is given by Eq. (8).

These are the isotopic spin, energy, and average
width deduced from the data of Samios et al. '4 from the
two-pion mass plots. We try them with the T=0,
J=O+ assignment which seems most likely in a low-

energy m —~ resonance that has been experimentally
excluded from T=2.

(iii) Same as (ii), except zero width (I'=0).
(iv) Strong nonresonant interaction with 7r —s. scat-

tering length ap=1.5p '.
Formula (11) was used for p(m).
This is an approximate value suggested by the con-

clusions in Refs. 2, 16, and 17.
(v) Same as (iv), except for as ——2.0@ '.

It was found that in all five cases an rp ——0.45' ' just
as for T= ~3 was compatible with the best its. This being
so, ft was determined from Eq. (19) given D, fs, and
the p function. Thus, the fitting to higher energies, after
having decided on this rp, was done with the two re--

maining parameters D and fs for each of the five s.—7r

interactions assumed.
The presentation of the results for cases (i) to (v),

in Figs. 8—12, respectively, is according to the following
plan: The (a) and (b) parts of each figure each contain
two sets of curves, labeled A and 8, respectively. (Each
set of curves contains a curve of e~ and the correspond-
ing tli curve, ) The A sets in all the figures have
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fs ———0.30, the 8 sets fs +——0.40 (chosen to illustrate
the differences of behavior in these two areas of fs).

In the (a) part of each figure, the parameter D was
chosen for each of the A and 8 sets so that the n~ curves
have a behavior which is the same until about 180 MeV
and which is in agreement with the experimental points
plotted. After that the diBerent characteristics of the
A and 8 sets reflect the different ranges of parameters
'used.

In the (b) part of each figure, D was again chosen to
give uniform behavior in a~ until 180 MeV for the A and
8 sets, except that the curves lie somewhat higher than
in the (a,) part. This was done in order to attain greater
proximity to the phase shifts at the higher energies.

Finally, the values of the parameters for each set of
curves are given in Table I.

400

30'-
Ql
4J

y 20'—

i0'—

i.o

0.8—

0.6—

TABLE I. Parameters for curves in Figs. 8-12. 04

rp=0. 45' '
Case

(i) Resonance
m*= 2.30@
r=0

(ii) Resonance
m*= 2.83p,
r =0.36@

(iii) Resonance
m*= 2.83@
r=0

(iv) Scattering
length

ap=1.50@, '

(v) Scattering
length

up=2. 00' '

uI ——0.173@ '
Fig. Set

8(a) A
8(a) B
8(b) A
8(b) B
9(a) A
9(a) B
9(b) A
9(b) B

10(a) A
10(a) B
10(b) A
10(b) B
11(a) A
11(a) B
11(b) A
11(b) B
12 (a) A
12(a) B
12 (b) A
12(b) B

1.18 0.50
1.55 1.50
1.27 0.60
1.72 1.80
1.28 0.70
1.69 1.90
1.43 0.90
1.94 2.40
1.35 0.80
1.73 2.00
1.43 0.90
1.94 2.40
1.29 0.80
1.76 2.20
1.44 1.00
1.94 2.60
1.24 0.65
1.63 1.80
1.36 0.80
1.84 2.20

—0.30
+0.40—0.30
+0.40—0.30
.+0.40—0.30
+0.40—0.30
+0.40—0.30
+0.40—0.30
+0.40—0.30
+0.40—0.30
+0.40—0.30
+0.40

fo ro/(ro+——a&) =0.72
fI D f2

0.2—

0.0-

~400

30
I

g 20'-

I

I.O 2.0 3.0
k ( Pion momentum in the ~ - N Center of Moss,

in units of pc)

VII. DISCUSSION OF RESULTS AND
CONCLUSIONS

We have shown the applicability of the B.C.M. to
one and two channel ~—V scattering, and have given
a possible approximation for a mass distribution in the
Anal channel. All cases attempted showed the correct
qualitative trend, both in the elastic phase shifts u~ and
n3 and in the inelasticity parameter q&. Particularly to be
stressed is the almost perfect 6t to the T= ~3 data from
0—500 MeV through the use of the model with two
parameters, coupled with the correct behavior in the
more complex T=-,' case. On the basis of the model, this
strongly indicates that a T=O, J=O+ low-energy x —x
resonance (or strong interaction) in the final state of a
production channel is a controlling factor in m —E
s-wave scattering in the 200 to 400-MeV range.

Quantitatively, the use of the Samios resonance
energy has given the best fit, while a nonresonant
"scattering-length" fit is least adequate. A better fit is

10'-

1.0

0.2—

0.0 I I

IQ 2.0 3.0
k(pion momentum in the m-N Center of Moss,

in units of pc)

(b)

Fio. 9. (a), (b) Same as for Fig. 8 except here x-x interaction
described by resonance at energy m*=2.83' (395 MeV), vridth
I'=0.36' (50 MeV). ("Samios" resonance. )
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xo

not necessarily to be expected due to the probable role
of other inelastic processes at the highest energies
considered.

These conclusions, of course, also depend on the
accuracy of the data used and the uniqueness of its
partial-wave-amplitude analysis. This production
mechanism could be ruled out if future analyses showed,
for instance, a value of g& very close to 1 in the range
of interest, and a trend of n~ toward negative values
instead of a rise near threshold.

An amplitude analysis by Cence and Eandi, " of
recent tr+ —p scattering experiments at energies in the
range 500—1600 MeV by J. A. Helland et al."and polar-
ization data, has just been received. The n~ and q~ ob-
tained in the analysis assuming a D3~2 x —E resonance
in the T= 2 state show excellent qualitative agreement
with the behavior of these quantities as predicted from
our model. Absorption in the T= —,

' s wave continues to
be negligible, lending further support to the importance
of the attractive T=0, J=0+ 2m state in the s-wave
scattering. Our scattering-length curves (Figs. 11 and
12, sets 8) give the better agreement at these higher
energies. The results of Walker et al. ,

7 which favored
the Samios resonance, were arrived at with much less
experimental input. The Wigner condition on 0.~ in the
form dcrt/dk) ra, whose po—ssible violation is pre-
dicted by our model at energies above 400 MeV (notice
the rapid drop of at in Figs. 8—12) is also seen to be vio-
lated in this new experimental analysis near 600 MeV.
As discussed below, this can be ascribed to the rapid
onset of absorption which is not taken into account
in Wigner's derivation.

Let us now discuss in more detail our results and their
theoretical implications.

A. T= —',

In this case we have apparently very well approxi-
mated the contributions of the P strip (Fig. 2) and have
shown that even above threshold the effects of the n
strip are negligible. However, the large value of
ra(0.45lr ') compared to the value expected from the p
strip (0.25' ') may be due to the long-range contribu-
tions of the a strip. These neglected contributions, in
the absence of inelasticity, should be accounted for by
the utilization of the unphysical cuts allowed in the
model through the use of Hermitian potential tails in
the construction of the wave functions to be used in the
model. However, for the present, the data seem to be
fitted well enough by substituting a somewhat enlarged
core for the potential tail.

3 T=x,

When a pure B.C.M. one-channel fit was attempted
on low-energy data (0-120 MeV), we found that a

FIG. 10, (a), (b) Same as for Fig. 8 except here m
—7i- interaction

described by resonance at energy m*=2.83' (395 MeV), width
P =0. ("Samios" resonance in stable-particle limit. )

"R. Eandi, University of California thesis, UCRL Rept.
No. 10629 (unpublished).

2' J. A, Helland, T. J. Devlin, D. E. Hagge, M. J. Luongo,
B. J, Moyer, and C. D. Wood, Phys. Rev. Letters 10, 27 (1963).
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radius rp of 0.35@, ' gave an excellent 6t. With the sub-
sequent introduction of the inelastic channel, however,
a larger value of 0.45@, ' was necessary to keep the good
fit below threshold and give a reasonable fit above. The
reason for this may be seen by examining Fig. 1(c):
The peripheral production of the "ABC" (or any pair
of pions) takes place via an interaction whose range is
longer than that of the interaction of Fig. 1(b), which
contributes to pure B.C.M. scattering. As pointed out
in the preceding paragraph and in FI,, this long-range
effect would best be taken care of by the use of a po-
tential tail (in this case, a potential coupling of the two
channels) in the derivation of the wave functions to be
used in the construction of the scattering matrix from
the B.C.M. This could be done numerically, but is
avoided here for simplicity.

In the language of the Mandelstam relations, by
introducing the inelastic channel we recognize the im-
Dortance of the T=0 s-wave projection of the spectral
function p(s', i') in the n-strip approximation. To see
this, we apply unitarity to Fig. 1(a) with the inter-
mediate state of the two pions taken as T=O, J=O+,
and show that the desired projection of p(s', t') is pro-
portional to the cross section for the peripheral pro-
duction of Fig. 1(c). This we then explicitly recognize
as non-negligible.

It is also plausible that effects of the P' region
(Fig. 2), which may have some importance for energies
above threshold (due to the smallness of the energy
denominator s' —s), can be approximated within the
framework of the pure B.C.M.

50'-

4QO

cn K'-

20'—

ipo

l.p

0.8—

0.6-
g

Q.4—

0,2—

0.0
0
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i i

i.p 2.0
k (Pion momentum in the ~- N Center of Mass,

in units of pc)

(a)

3.0

~eehanism for a Maximum in the E/aspic
Cross Secti oe

We now come to the most striking aspect of the
results. According to the work of Ball and Frazer, "an
amplitude with only the physical cut may give a sharp
maximum in the cross section without the elastic phase
shift necessarily going through 90', if the inelasticity
parameter drops fast enough to its unitary limit. They
have suggested this as the mechanism for the higher
m —Ã resonances, with the p meson dominating the
intermediate state in the o.-strip approximation. How-
ever, there are very dificult problems with the im-
position of unitarity both in their formulation and in
subsequent more elaborate formulations. "

We now claim to have demonstrated clearly the
effect discussed in Ref. 22, in the case of s-wave m —E
scattering. In addition, however, we have here the
added advantage within the model of automatic uni-
tarity. As seen from Figs. 8 and 10, the maximum is
sharper the faster g~ goes toward 0. The position of the
maximum in the elastic phase shift is always above
threshold. The rapid descent of a~ with k after "reso-
nance" does not violate the Wigner condition, ' since

4Qo

—30'—
'o

~ 20'-

ip'—

I.Q

G8-

0,6-

04-

0.2—

0.0
0

i I

I.Q 2.0
k (Pion momentum in the ~-hl Center of Mass,

in units of pc)

(b)

3.0

"J.S. Ball and W. R. Frazer, Phys. Rev. Letters 7, 204 (1962)."L.F. Cook, Jr. and B. W. Lee, Phys. Rev. 127, 283 (1962).
FIG. 11. (a), (b) Same as for Fig. 8 except here m~ interaction

described by scattering length of 1.5p '.
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more than one channel is involved. The Wigner condi-
tion is taken care of by the constancy of the f matrix
as a function of 4'.

These questions will be explored more fully in work
now in progress on the higher resonances. The aim will
be to ascertain the role of the p (and/or the E*) in an
inelastic channel giving the size and shape of the cross
section observed. The unitarity, desired analyticity,
and reasonable underlying physical assumptions make
the B.C.M. an attractive avenue of approach to these
more complicated structures.

APPENDIX

Threshold Properties of Cross Sections
and Phase Shifts

The general properties of cusps due to the opening
of new channels are well known. '4 "In this Appendix
we obtain the detailed dependence for our interaction.
The cusp behavior does not show up on our plots due
to their small scale, but can be obtained from Eqs. (A15)
and (A16) below.

We write the reduced radial wave function in
channel 1 as

u(r) =&*(r)+Sg(r), for r) rs, (A1)

50'—

400

30'—

U

g 20'-

0.8-

0.6—

matrix element qe" .
The wave function in channel 2 is to(r), an outgoing

spherical wave of angular momentum /2.

Zero total Aux at r=ro is obtained by requiring

&s(du/dr), „=ftu(ro)+ f,w(ro),

rp(dw/dr) „=„=fqN (r )+sfs'to(ro) .
(A2)

In the most general case, the f matrix may have the
energy dependence described in FI. We will assume
this generality.

Since w(r) is an outgoing wave asymptoticallysatis-
fying the free-particle equation, it can be written as

to(r)=x(Er)e'x", lim x(Er)=const,

where p(r) is an outgoing spherical wave of angular
momentum l& (possibly in the range of a potential tail
other than Coulomb), and normalized so that
g(r) -' (—i) "+'e's". Then 5 is the usual diagonal

Q4

0.2—

0.0
0

1 l

I.Q 2.0
k(pion momentum in the ~-N Center of Mass,

in units of pc)

(b)

3.0

where IC is the outgoing momentum (pure imaginary
below threshold). Therefore,

rs(dw/dr) „„,=Bw(rs), (A3)

where O=Ersf(x'/x)+ij and the prime denotes dif-
ferentiation with respect to Era. Note that the form of
0 depends only on l2.

FIG. 12. (a), (h) Same as for Fig. 8 except here s"-s interaction
described by scattering length of 2.0p '.

"E.P. Wigner, Phys. Rev. 75, 1002 (1948)."G. Breit, Phys. Rev. 107, 1612 (1957)."R. G. Newton, Ann. Phys. (N. Y.) 4, 29 (1958).
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Ba+B ' (A5)

Combining (A3), (A2), and using (A1) we get

OLfi4* —Pe*'j+Pf.4*'—(fif.—f')0*j
(A4)

BLf 4 P4—'j+L&f @' (f—f f'—)&3

where, as before, P=krp. Here the prime denotes dif-
ferentiation with respect to P.

Remembering the Hermiticity of the f matrix, this
mav be written as

BA*+B*

where A and B are complex functions of P and certain
constants determined by the structure of the I' matrix.
The important point is that, except for some accidental
singularity at threshold in the structure of the f matrix,
A and 8 are continuous and have continuous derivatives
in all orders at threshold. Hence, the character of dis-

continuity depends on 9 only and, hence, only on the
angular momentum of the outgoing wave in the pro-
duction channel ""

The elastic cross section

~.,= (~/uP)! S—1!P

(4s- (ReB)'+ (Red)2L(ReB)'+ (ImB)'j+ (2ReAReB)ReB

4 k'
!B!'+!2!'P(ReB)'+(ImB)'j+2Re(AB*)ReB —21m(AB*)ImB

(A6)

Let us now choose rp large enough so that w(r) satis-
fies the free-particle equation (approximately) for Thus, below threshold, using (A9),
r)rp (We. clearly cannot do this in the case of a 8(E) 1+gp(E E )+l,p(E E)3/2+
Coulomb potential. ) If l p 1(i.e., a —

p—wave is produced),
then where

(A13)

w(r) ~ L1+(i/Kr))e'x"=L1+(i/x)ge'~ at r=rp

using the definitions following Eq. (6) in the main
article. From this and Eq. (A3),

2mM
) =rp

M+m)

Above threshold, using (A10),

8(x) = (—1+ix') (1+x') '. (A7) 8(E)— 1+y'(E—E,)+g'(E—E i„)'/'+ . . (A14)

8(z) =—1+z'+iz'+ (A10)

Near threshold (on either side), x is small. Expanding
and keeping terms to order x', we obtain

8(x)= 1+x'—+ix'+ (AS)

Below threshold, we let x —+ iy, y = zr p! see Eq. (5b)j.
Then near threshold,

8(y) =—1—y'+y'+" . (A9)

Above threshold, we follow the main body of the
article and formally substitute s for x. Then near
threshold,

From (A13) and (A14) we see that

(1) 8(E) is continuous and has a continuous first
derivative (with respect to the energy, E)at threshold.

(2) Approaching threshold from below,

d'/dE'(ReB) —+ + ~;
d'/dE'(ImB) =0.

Approaching threshold from above,

d'/dE'(ReB) =0.
dP/dE'(ImB) ~+ ~.

Let E=8'—M—p
= incident kinetic energy; (3) At threshold, ReB= —1, Im8=0. Using these

facts, and the fact that A and B are well behaved at
threshold, we can say that, in this caseEl/rgp =m P

= threshold kinetic energy.

(2') Approaching threshold from below

(1') &r,i(E) is continuous and has a continuous first
From these definitions, and the assumption of small Ki derivative (with respect to E) at threshold.
we obtain from Eqs. (Sa) and (A11), that near threshold
and below it

Above threshold

f 2r/zM
(E E)1/2

5M+m

2mM )'/2
(E—E )'/&

M+m/

(A12) d'a, i do, i d'(ReB) )
dE d(ReB) @ @ti, dE )@ @ti„=p

6sA' Im(AB*)
(ReB—ReA)'(Eu„—E) '/'. (A15)

!B—W!P
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Approaching threshold from above,

d 0ei

(
d0 el d'(ImO)

~

d(ImO) ~ E,i„dE' ) s E,h, p+

6sA' Im(AB*)
(ImA —ImB)e JB—AJ

&& (ReB—ReA) (E—Eqi„) ' '. (A16)

Thus, the second derivative of the elastic cross
section has an infinity at threshold when a p wave is
produced. "' The infinity may change sign if
(ReB—ReA) has a different sign from (ImA —ImB).
By looking at the curves in Fig. 8 or Fig. 10 we can see
that this is what happened in our case. Of course, since
the phase shift is a continuous function of the cross

section, the same type of discontinuity will occur in a
plot of o. versus k as in 0. versus E.

With an s wave in the outgoing channel, the usual
type of cusp is found (first derivative infinite). '4 In
general, if a channel with orbital angular momentum / is
opened, the (t+1)st derivative will have a discontinuity
at threshold, with no Coulomb forces present. "'

It should be noticed that the above treatment is
perfectly general, and can be applied to wave functions
with any desired unphysical cut, insofar as an energy-
dependent f matrix, not singular at threshold, was
permitted.

In some of our cases the produced particle is unstable.
In these instances, "wooly" cu=ps" are obtained with
properties which have been discussed in Ref. 27 The
coupling scheme used in our formulation LEq. (7a)] is
consistent with that in the Nauenberg and Pais paper
and, of course, is unitary.

"M. Nanenberg and A. Pais, Phys. Rev. 126, 360 (1962).
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A model is proposed to explain simultaneously the backward peaking of the A particles in the reaction
x +p —h.+X', the large polarization observed, and the peak of the total cross section. The E* exchange
diagram and a resonant state in our channel are considered as the main contributions to the amplitudes.
By assuming a resonant p&&2 state, excellent hts to the angular distribution and polarization are obtained at
a pion kinetic energy of 871 MeV and at an incident pion momentum of 1.01—1.05 BeV/c. A fairly good fit
is obtained at a pion kinetic energy of 791 MeV. A new estimate for the E*AE coupling constant is given.

INTRODUCTION
' 'T is well known that the model of a E* exchange
& - proposed by Tiomno et al. ' to explain the backward
peaking of the A.'s produced in the reaction

7r +p A+Ep—
is incomplete, because it accounts neither for the ob-
served large polarization of the A.'s nor for the peak in
the total cross section at around an incident pion mo-
mentum of 1.03 BeV/c.

MacDowell et cl.' have made fits to the angular dis-
tribution at pion kinetic energies of 960 and 1300 MeV
by adding to the scheme a complex s wave. They ob-
tained a satisfactory value for the average polarization
only at the higher energy and needed two different prod-

*This work supported by the U. S. Atomic Energy Commission.' J.Tiomno, A. L.L. Videira, and N. Zagury, Phys. Rev. Letters
6, 120 (1961).' S. W. MacDowell, A. L. L. Videira, and N. Zagury, Nucl.
Phys. 31, 636 (1962).

ucts of coupling constants differing by a factor of 5 to
obtain good fits to the angular distribution. Also, their
work. is incomplete in the sense that they did not
attempt to fit the polarization dependence with angle.

In the present paper we propose a modification to the
Tiomno scheme by adding a resonant partial wave.
This model gives excellent fits to both the angular dis-
tribution and the polarization over a wide range of
energy if we assume that the resonance is pi~s. It gives
also a fairly good fit to the energy dependence of the
total cross section.

The idea of a p»s resonance is not new. A p„,or p„,
resonance was suggested by Kanazawa' in order to ex-
plain the peak in the total cross section. He ignored
though the IC* exchange diagram, probably because at
that time this particle was hypothetical, and considered
instead the one-nucleon term and the Z exchange term.
In this paper we do exactly the opposite. We have a

' Akira Kanazawa, Phys. Rev. 123, 993 {1961).


