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The three-body formalism, using separable potentials in s and p states of nucleon pairs, is set up under
the conditions of full antisymmetrization of the three-nucleon wave function. The formalism is applied to
the problem of n—d scattering, where the eGects of "polarization" are fully taken into account. The ampli-
tudes for quartet and doublet scattering are found to satisfy two- and four-coupled one-dimensional integral
equations, respectively. The quartet scattering length is found to agree with the figure for the so-called
experimental set I for this parameter. The doublet scattering length, on the other hand, is found to be
much more sensitive to the details of the potentials, thus preventing a theoretical resolution of its ambiguity
within the present formalism without tensor forces.

I. INTRODUCTION (Yukawa, Gaussian, etc.) that have so far been used to
calculate m-d scattering.

Presumably as a result of this and other approxima-
tions, it has so far not been possible to resolve theoret-
ically the ambiguity between the two famous sets of
scattering lengths, both of which seem to fit the
experimental data on n-d scattering at low energies. '

S CATTERING of nucleons by deuterons has been
used by many authors as a means of understanding

two-body forces in greater detail than two-body
scattering data can provide. For, as is generally
believed, the validity of a two-body potential can be
assessed only through a simultaneous study of scattering
of two particles on and off the energy shell. A three-
particle system is the smallest unit whose physical

parameters depend on the two-body "potential" in a
more or less sensitive fashion. In a recent paper by one
of us' this idea was discussed in some detail in the
context of a bound three-body problem —the triton. In
the same way, the study of a three-body scattering
state, e.g., an e-d system, provides a complementary
tool for obtaining information on the validity of a
given two-body potential.

A major obstacle to translating these ideas into a
practical program of calculations has always been the
need to resort to various approximations (with effects
of unknown magnitudes) in dealing with three-body
systems. For example, a standard approximation used
in the calculation of e-d scattering is the so-called
"no-polarization" approximation, in which the distor-
tion of the deuteron structure due to the projectile is
neglected. Mixed feelings have been expressed by
various authors on this approximation, ' the common
belief being that a proper antisymmetrization of the
complete three-body wave function makes the error
due to the "no-polarization" approximation muc
smaller than if such antisymmetrization is not carrie
out. No accurate estimate of this error has, howeve
been made with the conventional static potential

(I) ttsts ——6.4+0.3 F) arts=0. 7+0.3 F;
(II) asl s= 2.6+0.3 F, arts= 8.3&03 F.

Thus, the calculations of Troesch and Verde, ' Gordon, '
Delves and Brown, ' using various approximations
(among them the no-polarization approximation) have
all tended to favor set II. On the other hand, the
calculations of Christian and Gamxnel' and Haas and
Robertson' produced evidence in favor of set I. How-
ever, these last authors' who worked with a Yukawa
interaction, were also able to show that their results
were so sensitive to approximations, that the neglect
of the long-range tail of the kernel of their integrodif-
ferential equation could shift the values of the scattering
lengths almost all the way to set II.

Studies of the effect of distortion of the deuteron,
using variational procedures, have also led to widely
different conclusions by various authors. Thus, while
Sartori and Rubinow, ' and Burke and Haas' found
negligible effects, Effimov" observed an effect as high
as 50% for at/s and somewhat less for asts."All these
authors worked with Gaussian potentials. It is entirely
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possible that a potential with a longer tail could produce
further ambiguities, as the authors of Ref. 7 have found
(see last paragraph). As a matter of fact, the range of
the potential considered might conceivably play an
important role in the understanding of all these conflict-
ing results.

There is very little purely threoretical material
available which might help to resolve these ambiguities
on scattering lengths. Davidov and Filipov" had
suggested that since in the quartet state of e-d, the
neutron cannot fall inside the deuteron (exclusion
principle), the effective potential" for the quartet m-d

state should be (a repulsive) one of range larger than
the deuteron radius of 4.3 F—an argument which allows
only set I. A more forrnal method of analysis was given
by Spruch and Rosenberg" who were able to obtain
rigorous upper bounds on the scattering lengths of
neutrons by nuclei for a specified total angular momen-
tum J. A calculation on these lines by Sartori and
Rubinow" produced a result for a3~~ in accord with the
one given in set I. However, since the theory of Ref. 13
is valid only for cases where there are no bound states
of the compound system, it does not apply to the
doublet e-d state and, hence, cannot i Ndepemdeztly

resolve the ambiguity in a~~2.

Such ambiguities certainly illustrate the fact that
three-body parameters are rather sensitive to approx-
imations, and that the interpretation of results is at
least partly obscured by the effect of approximations
made in the calculations. Since, however, the magnitude
of the three-body problem with conventional potentials
leaves little alternative to approximations, the other
possibility is perhaps to look into the problem with
simplified interactions which at least would not allow
approximations to stand in the way of interpretation
of the results. Such an approach, using the so-called
separable potentials, was advocated by one of us' in
connection with the problem of H', where it was shown
that a three-body problem could be algebraically
reduced in an exact fashion to an equivalent two-body
problem, at which stage a simple numerical calculation
would suffice. It is, therefore, clear that a similar
simplification would obtain for the problem of n-d
scattering if such potentials are used, so that the effects
of various approximations (mentioned in the last few
paragraphs) can be tested against the exact solution
that this alternative description can provide.

The present investigation for e-d scattering is a direct
continuation of the program for studying three-body

'2A. S, Davidov and F. 6, Fillippov, Zh. Eksperim. i Teor.
Fiz. 31, 340 (1956) [translation: Soviet Phys. —JKTP 4, 257
(1957)7.

'3 L. Spruch and L. Rosenberg, in Proceedings of the Internati onal
Conference on Nuclear Forces and the Fez-Nucleon Problem,
London, 1959, edited by T. C. Grifhth and E. A. Power (Pergamon
Press Inc. , New York, 1960), Vol. II, p. 375.

' S. I. Rubinow and L. Sartori, see Ref. 13, in Proceedings of the
International Conference on Nuclear Forces and the Few-Nucleon
Problem, London, 1959, edited by T. C. GriKth and E. A. Power
(Pergamon Press Inc. , New York, 1960), Vol. II, p. 385.

systems which was started with the case of bound
states. ' It may be noted that the e-d system is one in
which both bound (H') and scattering states are
involved. The case of all three nucleons in scattering
states (e.g. , in photodisintegration of H') represents a
third possible three-body system which can, in principle,
provide additional information on the consistency of
two-body forces. However, this case will not be con-
sidered in this paper.

The formulation of the problem of e-d scattering is
made here with a complete antisymmetrization of the
wave function, including the effect of isospin —an
improvement over the treatment of Ref. 1 where
isospin effects were neglected. The Ã—Ã interaction
considered here is assumed to operate in s- and p-states.
The formalism with tensor forces becomes considerably
involved when isospin effects are included, and as such
will be the subject of a subsequent publication.

In Sec. 2, the coupled Schrodinger equations for the
spatial parts of the three-nucleon wave function for the
two cases of S= ~ and S= ~ are obtained through a
generalization of Verde's" treatment so as to include
potentials of unequal ranges for the different Ã—S
states. In Sec. 3, the explicit structures of the appro-
priate symmetry for these spatial wave functions are
obtained through the use of the assumed separable
interactions in s and p states. These structures are
expressible in terms of certain single-variable functions
(one for each variety of X—X interaction assumed),
which represent the "two-body wave functions" char-
acteristic of the various channels through which the
n-d scattering can take place. Numerical values of the
quartet and doublet scattering lengths are presented in
Sec. 4, along with a discussion of the "polarization
effects" due to the various channels.

2. THREE-BODY FORMALISM WITH ARBITRARY
POTENTIAL SHAPES

In this section we shall obtain the coupled Schrodinger
equations for the spatial components of the three-body
wave function for the two cases of S= ~ and S=-,', after
eliminating their spin and isospin components, following
the techniques of Verde's article" referred to as B.The
corresponding equations of 8 will, however, be general-
ized to include arbitrary shapes of the potentials in the
odd and even states of triplet and singlet interactions,
instead of taking equal shapes for all of them. As will

turn out in Sec. 3, this generalization does not bring
about any additional complication in the structure of
the equivalent two-body equations of the type obtained
in A, and as such leaves a wider scope for studying
three-body systems with realistic separable potentials
which 6t two-body data, than might be possible with
the limitation of equal shapes for the different poten-
tials. The notations of 8 for the various spin and isospin

~ M. Verde, in Handbuch der Physik, edited by S. Fliigge
(Springer-Verlag, Berlin, 1957), Vol. 39, p. 170; referred to as B ~
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and

Pi+Pi+Ps ——0,

2p,;=P;—P, , P;+P,= —P„,

(2 2)

(2.3)

(P,P,
l

V
l
P,'P, ') =P (Pi,—P„')(p;, l

V
l y;, ') . (2.4)

According to B, the wave function 0 (Pi,Ps, Ps) has the
following structures for the cases S=—,

' and 5= —,
'

respectively, of the n —d system.

+vs= (O'F" 0"i')X', — (2 5)

0 i)s——P $'—ll"$ +P'$"—P"(', (2.6)

where x, l, f are the spin, isospin, and spin-isospin
functions, respectively, of the three particles, with the

symmetries indicated by their superscripts, in the
notation of B."Now the "master" equation for 0' is

D(E)e= PM V (sq)e, (sq—), (2 7)

functions will, however, be frequently used in this
section. The complete two-body potential in s and P
states, but without tensor or spin-orbit parts, is taken
as (cf., B)

M(pl V
I

p')

)g—(p)a(p')P'P ) f—(p)f(p')P P'
—3Xiis(p)s(p')p y'P, P, —

—3XssN(p)u(p')p y'P+P+ (2 1)

The shapes of these potentials will be discussed in
Sec. 4. The projection operators I',,+ are as defined
in B.

For the three-nucleon system let the momenta of
the particles be Pi, Ps, Ps, such that

Let the operator A»(ij ) be the first term of —MV(ij )
defined by (2.1), so that

(p' IAs
1 p' ') =)t»a(P')g(P"), (2.10)

with similar definitions for A~3, A.~~, and A.33. Further, let
the operators A', A', and A.

" (for each of Asi, Ais, Aii, Ass)
be defined as follows:

A'= A(12)+A (31)+A(23),
A'=,',-3'"(A(12)—A. (31)),
A"= —A (23)+ i~ (A (12)+A (31)).

(2.11)

(a) S=-',

D(E)P'= —,
' (Ast'+Ass')P'+-, ' (A st' —Ass'g"

+-', (Asi"—Ass")P', (2.13a)

D(E)P"=,'(A '+A ')-P"+ '(A ' A')f-'—
—',-(A»"—A:,")P"; (2.13b)

(b) ~=s
D(E)4 s (All +A38 )4' + s (All f All li' )

——', (Ass'P" —Ass"P'), (2.14)

The effect of A* on a particular spatial wave function P
will be understood to mean the following:

A'/ =A (23)fi (23)+A (31)fs(31)+A(12)fi(12), (2.12)

where each term of (2.12) is interpreted in the sense of
Eq. (2.9). Similar definitions hold for A'P and A"P.
Using these notations, elimination of the spin and
isospin components from both sides of Eq. (2.7) leads
finally to the following coupled equations for the two
cases of S=—', and S=—,', respectively.

where

D(E)= ', (Pts+P'+ P-s) ME—(2 g)

D(E)4"= s (A»'+A»')&"+s (A»V+Asi & )
——', (Ais'P'+Ais"P") i (2.15)

and the following operator notation is used for the
right-hand side:

V('j)o (ij) = (P,P, l VlP, 'P, ')

D(E)f = s(Asi' —Ais )lf'+s(Ass —Aii )f
+4 (A31 +Als +All +A38 )4'

+4 (Asi"+Ais" —Aii"—Ass")0"

+4 (A31 +Als All A83 )4' (2.16a)

Xe(P,',P,',P,)dP,'dP,' (2.9).
%i, is expressed here as a function of P, and P, alone,
via (2.3). The next step is to substitute the forms
(2.5) or (2.6) for 4 in (2.7) and eliminate the spin and
isospin functions to obtain the coupled integral equa-
tions for the spatial functions in the two respective
cases of S= ~ and S= ~. To write the resulting equations
in a compact form, the following notation is introduced.

"P' and P are, respectively, the totally symmetric and totally
antisymmetric spatial parts of the wave function; p' and p" are
the spatial functions of the so-called "mixed symmetry" [2,1],
p' being antisymmetric with respect to the basis momenta P2 and
P&, and P" symmetric in them. The superscripts on the spin and
isospin functions have identical signi6cance (in the basis represen-
tation provided by particles 2 and 3).The spin-isospin functions &

and g" are expressible in terms of the pure spin and isospin func-
tions x and i as g'=2 'i'(x'i "+x"1')and g"=2 '~'(x'1' —x"1").

D(E)4' s (A31 A13 )f +s (All A33 )4
+4 (Asi'+Ais'+Air'+Ass')ll"
+ 4 (A31 +Als All A'33 )4'

—
4 (Asi"+Ais"—Aii"—Ass")P". (2.16b)

These forms bring out explicitly the permutation
symmetry structures of the various spatial wave
functions that are involved in each of the quartet and
doublet cases, and represent the appropriate generaliza-
tions of Eqs. (2.7) and (2.8) of B for the case of unequal
potential shapes. From these equations it is now
possible to read oG the algebraic structures of the
various f's by using the contents of Eqs. (2.9)—(2.12),
so as to maintain the correct symmetries implied by
their notations. This reduction is carried out in Sec. 3
separately for the two cases of S= ~ and 5= 2.
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G(pi) )131 dP23 g(p28 )ill (23 ) (3.3)

p23'plH(P1) ~)183 dP28 28(p23 ) P28' P23 ill (23 ) (3 4)

where 1P1'(23') and 1P1"(23') are the forms of (3.1) and
(3.2) when Pi is eliminated by the use of Eq. (2.2), and
the arguments (23') are abbreviations for the momenta
P2', P8'. Substitution of Eqs. (3.1) and (3.2) in (3.3) and
(3.4) leads finally to the equations

()131 '—I831(p))G(p)

3. REDUCTION TO EQUIVALENT TWO-BODY
EQUATIONS

We discuss first the case of 5= 2. From Eqs. (2.13)
it is easy to deduce that the following functional forms
of 1P' and lt" are the only ones compatible with their
correct symmetry, as well as the interaction (2.1).

D(Z)g'
~3(g (p12)G(P8) g (ps i)G (P2))

+~3N(p23) (p23' Pl)H(pi) 2VS(N(p12) p12
' P3H (P3)

+N(p»)psi P H(P2)), (31)
D(E)4"

g(p28)G(pi)+ 2 (g(pis)G(P8)+g (psi)G(P2))
+2(N(p12) P12 P3H(P3) —N(p„) P31 P2H(P, )) . (3.2)

We have introduced only two scalar functions G and H,
one for each type of interaction allowed for the 5=2
state, viz. , A3~ and A.33. Substituting these forms back
into Eqs. (2.13), the functions G and H are found to be
given self consistently by the following equations:

Equations (3.5) and (3.6) admit of a simple interpreta-
tion. G(P) describes the wave function of the neutron
with respect to the actual deuteron state, viz. , (28p) 'Si.
On the other hand, H(P) represents the polarization
e6ect due to the 'P interaction, viz. , the wave function
of the proton with respect to the (228) 'P state (as a
result of the replacement of the proton in H' by the
incident neutron). The exchange of the target neutron
by the incident one is, of course, automatically taken
care of by the function G(p), due to total antisym-
metrization of the wave function. Neglect of H(p)
would, therefore, amount merely to a neglect of the
virtual effect of the channel P+ (228) 'P on 28+2 scatter-
ing. We note in this connection that the triplet odd
potential is generally believed to be much weaker than
the others, "" and further, that for a calculation of
the (zero-energy) scattering length from Eqs. (3.5) and
(3.6), the centrifugal barrier (/= 1) is expected to reduce
the virtual effect of P+(228) 'P on n+d scattering
considerably. With this understanding we shall ignore
this particular polarization effect by setting H=O in
Eq. (3.5), for purposes of numerical calculations to be
discussed in Sec. 4.

The case of S=—,
' is more involved than S=-,', in

that all the four interactions A3~, A~3, A~~, and 433 appear
in it. By analogy with S=&, we now expect four
independent functions to appear in the coupled integral
equations, but in view of what has been said above for
A», we may drop this term from the beginning. We do
not, however, take this liberty with A», since this
force, which is much less understood, may or may not
be small. We, therefore, work only with the interactions
A31 A/3 and A», and obtain the following structures for
the various 1P's through Eqs. (2.15) and (2.16).

Ag(q+2P)g(P+2«)D '(P, q)G(V)

~qg(q+-'P) q (P+l«)

D(E)a.=E (p„)p„~P.H. (p.),

D(~)O'=Z(g(p')G (p.) f(p')~ (p.)),—

(3.10)

(3.11)

+3 dqD '(P, q)28(q+2P)P (q+-', P)

where
Xj (P+'2«)88(P+2«)qH(q), (3.6)

X28(P+-2'q)D '(P, q)H(q), (3.5)

()138 '—h33(P))PH(p)

d«D '(P, q)~(q+lP)& (q+lp) g(P+l«)G(V)

D(@&'=-'~3(g(p») G(ps) —g(p») G(P2))

+(g~ f) G~ p)+%3v(p23)p23 P1H(P1)

—-'2v3(e(p12) p12 P,H(p, )

+1(psi)psi P,H(P2)), (3.12)

D (P)$ g(p23) G(pi) +2 (g(p12) G(ps) +g(ps 1)G(P2))

+(g~ f~ G~ P)+2('(p»)p»'P3H(P3)

e (p31)P81 P2H (P2)) (3'13)

hs, (p) = dqg2(q) (8P2+q2 —EM)-' (3 7) The symbols (g —+ f, G —+ F) in Eqs. (3.12) and (3.13)
signify the presence of additional terms of identical

and
D(P, q) =P2+q2+P. q —EM. (3.9)

Ii (p) — d«882 (q) q2 (3p2+ ~2 Q~)—1 (3 g) "This is true, e.g. , of the Gammel-Thaler potential (Ref. 18).
and the same was found to be the case by Mitra and Napvi (Ref.
19), using separable potentials in the T=1 state.

'8 J. Gammel and R. Thaler, Phys. Rev. 107, 291 (1957).' A. N. Mitra and J. H. Naqvi, Nucl. Phys. 25, 307 (1961).
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structure, with the replacements indicated. We have
here introduced two sets of functions G„F„H and
G, F, H." However, we expect these two sets to be
related, in so far as the permutation symmetries of all
the four P's are coupled in an essential manner. Indeed,
by substituting Eqs. (3.10)—(3.13) back into Eqs.
(2.14)—(2.16), and proceeding as before, we find in the
same notation as in Eqs. (3.3) and (3.4),

G, (P&)
—=G(Pt)

just one single-variable function for each variety of
interaction that appears in the complete separable
potential. Moreover, the assumption of different shapes
for the different varieties of interaction leaves the basic
structure of just as simple or as complicated, as the
assumption of equal shapes would give. To obtain the
coupled integral equations for G, Ii, H in a compact
form, we introduce the following alternative notations:

G(P), F(P), PH(P)= {G (P)}, rr=1, 2, 3; (3:.17)

= 2&» dp»'g(P»')(ll r'(23') —4r"(23')),

P, (P,)—=P(P,)

= —27 33 dp23'f(p»')(ll r'( 3')+6"( 3')),

(3.14)
Xsr, Xrs, Xrr= {X~}) n= 1, 2, 3; (3.18)

hsr(P), hr3(P), hrr(P)= {h~(P)}, n=1, 2) 3, (3.19)

where

hts(P) = dqf'(q)(4P'+q' ME) —', (3.20)

p23 PtHg(P$)=—v3p23'PtH(Pt) (3.15)
h&&(P) = dqs (q)q (43P +q ME) r—. (3.21)

2ltr& dp23 "(p23 ) p23' p33 (1 r'(23')+1 r'(23'))
Using these notations, the coupled integral equations are

[li.-'-h. (P)]G.(P)
(3.16)

dqD-'(P, q)&-p(P, q) Gp(q), (3 22)Thus, as expected, there are only three independent
functions (using the interactions A3~, Ars, and Art),
giving strong support to the conjecture that there is where {E„p(P,q)} is the matrix

sg(t)g(~) sg(k)f(—~) —l (gk) qnt(~)

2f(k)g(n—) sf(&)f(n) sf(&)q n—s(n)

.—2s(EU'(g(n) 2s($)&.U—(n) —ss(&) (P 6) (q n)&(n)

(3.23)

with
g= q+-', P, sf =P+-,'q. (3.24)

The functions G&, G2, G3 are, respectively, the "wave
functions" for the channels 33+(np) 3Sr, p+(233) 'Ss,
and /3+ (33P) 'Pt, showing explicitly how the effects of
"polarization" are incorporated in our formalism.

Finally, we have to solve Eqs. (3.5) and (3.22) for
the quartet and doublet scattering lengths at zero
energy, respectively, using the boundary conditions
represented by the process of n-d scattering through the
various channels involved, according to the above
interpretations for the functions G . For S= ~, we set in
Eq. (3.5) with H=O,

Similarly, in Eq. (3.22) for S= 2 we set

G (P)= (23r)sb3(P —k)b r
—4sa (P)

X (P' —hs —ie) ', (3.27)

where 8 r is a Kronecker delta, and ar(0) represents the
exact doublet scattering length. Substituting the forms
(3.25) and (3.27) in (3.5) and (3.22), respectively, the
following equations are finally obtained:

«h3$ (P)/33/3 (P)

= (23r)sg(32P)g(P) (Ps+ns) '—43r dqq
—'D-'(P, q)

Xg(q+lP)g(P+lq)~3/2(q) (32g)
G(P) = (23r)sbs(P —k) —42./33/2(P) (P'—hs —ie) ', (3.25)

43rh. (P)/3. (P)
where

ME= 'I/ 2 n' (a'/M=2. 2—26 M—eV), (3.26)

so that /33/2(0) is the exact quartet scattering length.

= —(2~)sit. ,(P,0) (Ps+&')-'

+Z «dqq-'D-'(P, q)&-p(P, q)~p(q); (3.29)

~ The same functional notation for the two cases of S= ms, $
need not cause confusion, since these cases do not overlap at any
Stage, h, (P)= [X ' —h„(P)7 (P' —h') —', (3.30)
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TABLE I. Calculated 'P phase shifts (in deg)
YLAM datq, of Hull et al.

Energy
(Mev) 10 20 30 40 50 80 100

Calc. —1.5 —3.8 —6.1 —8.4 —10,5 —16.4 —19.8
YLAM —2.5 —5.0 —7.3 —9.1 —10.6 —14.1 —15

and the notations implied by Eqs. (3.18) and (3.19)
are understood here.

g(p), f(p), (p)= (p*'+p') '; (i= 1, 2, 3) (4 1)

g(p) and f(p) become the Yamaguchi potentiap' for
the 'Sj and 'So states by taking

Pi ——6.255n, Xai 33 44——n';.
P2 ——6.255n, X,,= 23.37n'.

(4.2)

(4 3)

A second set of values considered in this section for
the evaluation of asf2 is one due to Naqvi, "viz. ,

Pi ——5.8n, X3i——23.2n'. (4.4)

This is only a part of the total T=O interaction —the
contribution from the s state of the 2$ system. As for
the function n(p) for the 'P potential, the following
parameters were found to fit Hull et al. 's YLAM data"
rather well up to 100 Mev, as Table I shows.

Ps=6.255a, Xii ——5.067m. (4.5)

Since a positive Xii greater than Pi/ir' in the above
model indicates a 'P~ bound state which is clearly
unphysical, a second fit was also obtained for

Pg ——6 255n, Xii.———50.6n, (4.6)

but the latter value of P» was not very sensitive to the
data. However, as we shall see below, the effect of either
of these two sets on a&f& was extremely small, and we
shall not discuss this (academic) question of a repulsive
or attractive 'I' interaction any further in the present
context. We would like to repeat, however, that either

TABLE II. Calculated values of a3q2 in 10 "cm.

Case

5.91 5.3 6.32

IV

5.7

"Y.Yamaguchi, Phys. Rev. 95, 1628 (1954).' J. H. Naqvi, Nucl. Phys. 36) 578 (1962)."N. H. Hull, K. E. Lassila, H. M. Ruppel, F. A. McDonald,
and G. Breit, Phys. Rev. 122, 1606 (1961).

4. NUMERICAL RESULTS AND DISCUSSION

We are now in a position to discuss the numerical
solutions of Eqs. (3.28) and (3.29) for the two scattering
lengths. For this the potential shapes are taken as
follows:

of the sets (4.5) or (4.6) for Xii indicate that the 'Pi
interaction is appreciably stronger than the I' interac-
tion"" and, hence, a fortiori, this fact gave us added
confidence in our neglect of the 'I' interaction on the
integral equations for a3/2(P) and ai/&(P).

Calculation of aa/2 from Eq. (3.28) was carried out
exactly, as well as under the approximation described
in Sec. 4 of A, using by turn the interactions (4.2) and
(4.4). The results are shown in Table II, where columns
I and II represent, respectively, the exact and approxi-
mate values using (4.2), and columns III and IV the
corresponding values using (4.4).

These values indicate, first, that the approximation
considered in A is rather good for zero energy scattering,
though it gives a somewhat smaller figure (by about
10%). Secondly, a comparison of columns I and III
shows that the triplet s-state part, like (4.4), of a T=O
potential which also includes a tensor force, gives a
somewhat higher figure, viz, 6.32 F, for a3f2 than an
effective central s-state interaction like (4.2), which

gives 5.91F. The increase in the quartet scattering
length by a "more realistic" two-body interaction like
(4.4) is certainly welcome in the present context in so
far as it tends to bring its value substantially closer to
the experimental value of 6.4 F (corresponding to Set I).
While such a small difference like 6—7% should not,
o6hand, warrant the physical conclusion that a T=0
force with a tensor part gives a better representation of
the quartet scattering length, than an effective T=O
s-state force, we would like to believe the effect to be
qualitatively significant for the following reason. Apart
from the effect of P waves (which we shall see from the
case of ai/& to be negligible), the only other eRect that
could possibly influence the value of asf& is that due to
the actual tensor part of the T=O force, which is
responsible for S—D interference in n-d scattering, and
which has so far not been considered in our analysis.
Now the kernel of Eq. (3.28) is seen to be repllsii/e,
as already conjectured in Ref. 12. Therefore, the effect
of the (hitherto neglected) tensor force would be to
produce merely coetinNNm D waves for the n-d system
and not bound D waves, so that at zero energy the
centrifugal barrier is expected to be very e6ective in
preventing these D waves from affecting S-wave n-d
scattering. '4 Under such conditions, it is very hard to
visualize how the tensor force by itself could completely
neutralize a 6-7% increase in the value of a3/9 due to
the potential (4.4), compared with (4.2)," though a
more quantitative estimate is certainly in order. In any
event, our result seems strongly to indicate a value of
a3~2 quite consistent with set I, in agreement with the
findings of Ref. 14, which also support the theory of
Spruch and Rosenberg. "

'4 Such a conclusion would be unwarranted for an attractive
n-d kernel, in which case the effect of the (almost) bound D waves
could be quite important. One of the authors (ANM) is indebted
to Professor N. Austern for bringing this point to his attention.

2' Our subsequent analysis of u'/'2 shows that continuum P waves
have negligible (~0.3/&) effect on s-wave scattering.



THREE —BOD Y PROBLEM WITH SEPARABLE POTENTIALS 127i

TABLE III. Calculated values of u1~2 in 10 "cm.

Case

9.25 11.74 11.69

IV

11.77

V

25,5

The case of a~~2 is much more complicated because of
several effects, and hence, seems to be much less clear.
The calculation of this parameter was carried out, using
the potentials (4.2), (4.3), and (4.5) and/or (4.6). The
results are shown in Table III, where column I rep-
resents the exact value using only the potentials (4.2)
and (4.3), and column II the corresponding value under
the approximation of Sec. 4 of A. Columns III and IV
represent the values of a~, 2 under the approximation of
A, when the potentials (4.5) or (4.6), respectively, are
added to (4.2) and (4.3). Table III shows, once again,
that the approximation of A is quite good for zero-
energy scattering. Further, the effect of "polarization"
due to the channel e+(ep) 'Pt, on the S=is m+4
scattering is very small, under the assumption of both

attractive and repulsive interactions in the 'I'~ state of
(imp). Unfortunately, these values are nowhere near the
corresponding set I value of a~~2',. rather, the figure in
column I is not far from the set II2 value of this parame-
ter! The "polarization effect" of the p+ (2e) 'Ss channel
was estimated as follows. Taking the first of Eq. (3.29)
and setting Gs ——0 (in addition to Gs), the equation for
Gi was solved with the potential (4.2), and a value of
25.5 F for aj~2 was obtained, as shown in Column V of
Table III. This shows that the polarization effect no
doubt works in the right direction, but it is hard to
make a precise estimate (percentage-wise) of its
importance in the present context, since the quantities
involved are still very large ( 10 F) and of course far
removed from the region of 1 F which is the expected
order of magnitude for a~~~ on the basis of the exper-
imental set I value. It is possible, of course, that the
ranges of the assumed singlet and triplet forces can

play a much more important role' for a&~2 than for a3/2.
A more important possibility lies in the recognition of
the role of the tensor force for a~~2, for the following
reason. The large values of a~~2 in Table III indicate
very little net attraction and therefore a "just bound
state, "compared with the actual H'. To bring down this
parameter from such large values would, therefore,
need additional attraction, most likely to be provided
by the hitherto neglected tensor force in producing
(almost) bound D waves for the I-d system. It may be
noted that unlike the previous case of a3~2 the bound
n-d D waves in the present case can significantly affect
5-wave n-d scattering in the doublet state. It is, of
course, not clear off-hand as to what extent the inclusion
of the tensor force can bring down the value of a~~2

by providing additional attraction in the 5 wave of
the n-d system. The formulation of the tensor force
using full antisymmetrization in the present scope of
the three-body investigation is still under way, and the
questions as to the (1) role of the tensor force and (2)
effect of the range of the E—E interaction, on the
doublet scattering length, are expected to be answered
more specifically in due course.

A mechanism for detecting the di-neutron through
a threshold effect in n-d scattering was suggested
recently. " If the di-neutron exists, then it has been
suggested that a detection of this threshold effect can
have a bearing on the ambiguity in the doublet scatter-
ing length. "However, since such a threshold effect is
expected to be small and has so far not been detected
experimentally, we prefer not to discuss this question
any further in this paper.
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