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Correlation E8ects in Two- and Three-Electron Systems
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Correlation effects in the lithium isoelectronic series (1s)'2s '5 have been studied by computing the ex-
pectation values of a number of one- and two-electron operators. Calculations were performed using both
Hartree-Fock and con6guration interaction wave functions. The operators considered are ZrP (E=—2,—1, 2, 4), ZS'(r;), ZP;s, Z;»S'(r t), Z;»(r; r;), and Z~»(p; p;). Computations were performed for Z=3,
4, 5, and 8. For comparison purposes the same expectation values were computed from configuration inter-
action wave functions of comparable accuracy for the two-electron systems (1s)' 'S with Z= 2, 3, 4, 5, and
8. The results of the two-electron computations show reasonable agreement with more accurate computa-
tions and with empirical estimates. For the three-electron systems the main conclusions are: (a) Correla-
tion has little effect on the one-electron expectation values, (b) the expectation values of Z;»(r; r;) and
Z;»(p; p;) are proportionately larger for three- than for two-electron systems, and (c) the configuration
interaction approach probably gives poor estimates of the expectation value of Z„»s (r;;) even though
this value appears to converge as the number of terms in the wave function is increased.

I. INTRODUCTION

ECENT computations of wave functions for low-

lying states of two-electron atomic systems' ' has
led to accurate expectation values for a number of
quantum mechanical operators. The purpose of such
bound-state calculations has been primarily to obtain
the total energy for a given state directly by approxi-
mate solution of the nonrelativistic Schrodinger equa-
tion. It appears that at present this can be done for
two electron low-lying states about as accurately as
spectral term values can be measured. From this point
of view expectation values of operators other than the
Hamiltonian represent a useful by-product of such
calculations which can be compared with experimental
results. Most of the interest in such values has been in
attempts to compute relativistic corrections to the
energy. ' 5 The success of such eRorts, coupled with the
satisfactory agreement of other theoretically determined
expectation values with observed quantities, ' indicates
that basically the properties of such two-electron sys-
tems are well understood.

For systems with three or more electrons, the best
bound-state calculations presently available yield total
energies several orders of magnitude less accurate than
those for two electrons. ~ While the wave functions ob-
tained from such calculations give a moderately realistic

' C. Pekeris, Phys. Rev. 112, 1649 (1959); 115, 1216 (1959);
126, 1470 (1962).' T. Kinoshita, Phys. Rev. 105, 1490 (1957);115,368 (1959).

'A. Dalgarno and A. L. Stewart, Proc. Phys. Soc. (London)
A76, 49 (1960).

4 C. Schwartz, Phys. Rev. 123, 1700 (1961).' E.E. Salpeter and M. H. Zaidi, Phys. Rev. 125, 248 (1962).' For example, Pekeris computes a value of 1.320355 for s'(r&)
compared with a measured value of 1.320345&0.000091 obtained
from hyper6ne splitting measurements for the 2 '5 state of He.
While discrepancies still exist between computed and measured
values {see, for example, R. Va. Damburg and E. M. colin, Zh.
Eksperim. i Teor. Fiz. 42, 820 (1961) [translation: Soviet Phys. —
JETP 15, 572 (1962)g}, the above agreement is typical of what
one should expect from accurate two-electron bound-state
calculations.

~ Variations of 0.01 atomic units in the total energy from the
experimental values are typical for such systems. See, for example,
R. E. Watson, Phys. Rev. 119, 170 (1960).
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spatial description of the electronic charge cloud, ex-
pectation values derived from them do not always agree
with experimentally measured quantities. For example,
the expectation value of (Qr, )' can be obtained by an
analysis of experimental refractive index data. This
method yields results for the rare gases which lie 4 to
6% below the quantities computed from Hartree-Fock
wave functions. For other properties, such as the hyper-
Qne splitting, ' " discrepancies between calculated and
measured values tend to be much larger even when
wave functions superior to Hartree-Fock functions are
used.

The differences between experimental and calculated
values mentioned above are, of course, due to the use
of approximate wave functions which ignore important
correlation effects between electrons. While such effects
can be studied in some detail for two-electron systems,
very little has been done for systems of three or more
electrons. It is the purpose of this paper to make a
start in this direction by studying correlation effects for
the lithium isoelectronic series (1s)'2s 'S. Such a study
is possible since wave functions for this series have re-
cently been computed" using the configuration inter-
action approach which is expected to include most of
the interelectron correlation. In addition, Hartree-
Fock wave functions for the sequence are also available. "

With the above in mind, we have computed the ex-
pectation values for a number of one and two electron
operators using both of the above-mentioned sets of
wave functions. In order to shed further light on the
effects of correlation, we have computed the same ex-
pectation values using wave functions of comparable
accuracy for the two electron (1s)' 'S isoelectronic

s A. Dalgarno and A. E. Kingston, Proc. Roy. Soc. (London)
A259, 424 (1960).

'N. Bessis, H. Lefebvre-Brion, and C. M. Moser, Phys. Rev.
124, 1124 (1961).

'o R. K. Nesbet, Phys. Rev. 118, 681 (1960).
"A.J.Freeman and R. E.Watson, Phys. Rev. 127, 2058 (1962).
n A. W. Weiss, Phys. Rev. 122, 1826 (1961).
3 C. C. J. Roothaan, L. M. Sachs, and A. W. Weiss, Rev. Mod.

Phys. 32, 186 (1960).
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series. The results for these two-electron systems are
of some interest by themselves since, although accurate
values are available for He and Li+, a complete study
has not been made for larger values of Z.

In the above expression, 0 is an arbitrary many-electron
operator. For one-electron operators O(1), the above
form reduces immediately to the form

II. EXPECTATION VALUES CONSIDERED AND
COMPUTATIONAL DETAILS

The operators we consider are the one-electron opera-
tors gr ~ (/=2, —1, 2, and 4), ebs(r;) and pp, s

and the two-electron operators P;»(r,"r, ), g;»(p; p;),
and P~»P(r, ,), where r, is the radius vector between
the ith electron and the nucleus, r;, the vector between
the ith and jth electrons, and p; the momentum of the
ith electron. The radial moments w'ere chosen to gauge
the effects of the correlation on the spatial distribution
of the electron cloud described by the wave functions.
The operators Pr, s, P;~;r,"r;, PpP, P,»(p,"p,), and
Pb (r;) have special significance since the minus first,
first, and second moments of the spectral distribution
of oscillator strengths for transitions from the ground
state are proportional to ((Pr;)'), ((Pp,)'), and
(ebs(r;)), respectively. The deviations of expectation
values such as (Pr,s) from experimental determina-
tions such as those mentioned for the rare gases in
the previous sections can be interpreted as being
due to the approximation ignoring the correlation
factor (P;&;(r,"r,)). Similarly, the correlation term
(P,» (p,"p, )) is ignored in computing the mean squared
momentum ((Pp,)') using Hartree-Fock functions.
The expectation value (P;»5s(r, ;)) is a measure of the
depth of the "hole" surrounding individual electrons
due to correlation effects and the exclusion principle. "
The expectation value (QP,s) provides a check on the
computations since it must equal twice the total energy
of the system due to the virial theorem. This equality
was verified to at least four-place accuracy for all cases
considered.

The details of the functional form of the configura-
tion interaction wave functions are described in detail
in gneiss' paper. "BrieQy, he uses a linear combination
of Slater determinants, the one-electron wave functions
of each determinant being orbitals of the Slater type
represented by

(2g) ++1/2

For wave functions of this form, the evaluation of ex-
pectation values such as those listed above for a two-
or three-electron system reduces to evaluating linear
combinations of expressions of the form:

I
o 14-, i -, (1)4-, i, -. (2)4", i, -, (3)) (2)

'4 This phenomenon is called the "Coulomb hole" when due to
electrostatic repulsion and the "Fermi hole" when due to the
vanishing of second-order density matrix elements for electrons of
parallel spin. See P. 0. Lowdin, in Admnces in Chemical I'hysics
(Interscience Publishers, Inc. , New York, 1959), Vol. II.

where the quantities S„,„, represent "overlap" inte-
grals of the form (f„,g,„,If, i, , ). These overlap inte-
grals vanish unless l2=l2', m2 ——m2' and can in each case
be reduced to simple expressions involving r, r ', l,
and t

' Fo.r all of the operators considered except
P(r,;), the whole expression (2) can be reduced to linear
combinations of products of overlap integrals. For
P(r;;) a similar reduction occurs. Thus, the process of
evaluating such expectation values reduces to a straight-
forward but tedious job of evaluating linear combina-
tions of products of simple functions. Since the number
of configurations is large (Weiss uses 35 for two- and 45
for three-electron systems) such calculations are only
practical when a large-scale computer is available.
However, since only direct evaluation of given expres-
sions is involved, the amount of computing time re-
quired is quite small. "

For the Hartree-Fock wave functions the evaluation
of expectation values for one-electron operators is a
simple straightforward task. The only nonzero two-
electron operator we consider is g;»ls(r;;). While an
analytic evaluation of this is possible we found it easier
to evaluate the operator by direct numerical integration
of the expression

(Z 5 (r j)) d&lgi (rl)+ d&1N1 (rl)+2 (rl)

where ui, (ri) and Ns, (ri) are the wave functions of the
is and 2s electrons, respectively. The two integrals
represent the relative contributions to the expectation
value from the overlap of the core electrons and from the
overlap of the valence electron and the core electron
of antiparallel spins, respectively.

III. RESULTS FOR TWO-ELECTRON SYSTEMS

In Table I we present the ground-state expectation
values for two-electron '5 systems with Z=2, 3, 4, 5,
and 8. Also shown in the table are "exact" values for
Li+ and He as computed by Pekeris' and Kinoshita'
and approximate values computed from perturbation
expansions given by Cohen and Dalgarno" and by
Dalgarno and Stewart. "The table shows that for Z=2
all expectation values except (8'(rts)) agree with the
"exact" values to better than 3 places. For (5s(ris)) the
gneiss wave functions overestimate the value by about

"For example, the computation of all nine expectation values
considered for a 45-con6guration wave function of given Z re-
quired less than 2 min on the IBM 7090."M. Cohen and A. Dalgarno, Proc. Roy. Soc. (London) A261,
565 (&961).

"A. Dalgarno and A. L. Stewart, Proc. Roy. Soc. (London)
A247, 245 (1958).
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TABLE I. Two-electron expectation values.

Oper-QZ
atorg

2 8
b

6.0187
5.8290
6.0174

3 4

14.930 27.843
14.744 27.659

5 8

44.759 119.51
44.574 119.32

1.6882
1.6875

c

2.6880 3.6878
2.6875 3.6875

4.6878
4.6875

7.6878
7.6875

rP ' 1.1922
b 1.049
e 1 193

0.4461 0.2320
0.4130 0.2249
0.4463

0.1419
0.1391

0.0520
0.0515

r ~4 ' 3.9379 0.5276 0.1402 0.0520 0.0069

Oper-
a

Zr; ' 1$
2$
Sum
C.I.

14.913
0.435

30.261
30.244

27.766
1.450

56.982
56.999

44.637
2.982

92.256
92.270

119.24
10.61

249.09
249.12

Zr i 1$
2$
Sum
C.I.

2.6885
0.3454
5.7224
5.7175

3.6825 4.6806
0.6075 0.8633
7.9725 10.2245
7.9728 10.2252

7.6776
1.6212

16.9764
16.9781

TABLE II. Expectation values for three-electron systems. Rows
labeled 1s and 2s are Hartree-Fock (H.F.) contributions for single
1$ and 2$ electrons and rows labeled "Sum" are the total Hartree-
Pock estimates. Rows labeled C.I. represent expectation values
for the whole atom computed from Weiss' 45-coniguration wave
function.

yg p2
' 0.1597
c 0 1591

0.2898 0.4213
0.2890 0.4205

0.5533
0.5528

0.9520
0.9510

—0.06455 —0.0172 —0.00686 —0.00340 —0.00079—0.0624 —0.0170 —0.00686 —0.00342 —0.00075
e 0 06474

Zr 1$
2$
Sum
C.I.

0.4456
17.7140
18.6051
18.3722

0.2330 0.1427 0.0522
6.0833 3.1263 0.9328
6.5494 3.4117 1.0372
6.5314 3.4069 1.0371

Ss (rg) s 1.8156
b 1 696
c 1 8104

6.8626 17.217
6.681 16.971
6.8520 17.198

34.789 149.90
34.476 149.37
34.759 149.83

Zr 4 1$
2$
Sum
C.I.

0.53
561.01
562.06
545.80

0.143
63.618
63.903
63.706

0.0530
16.546
16.652
16.636

0.0070
1.4477
1.4616
1.4630

S'(r,s) ~ 0.1319
0.106
0.1064

0.6127 1.6858
0.587 1.671
0.5337 1.5230

3.5903 16.675
3.597 16.813
3.3126 15.871

ZP(r;) 1s 6.8307 17.1519 34.671 149.522$0.1660 0.8082 2.155 12.80
Sum 13.8274 35.112 71.497 311.84
C.I. 13.8661 35.1510 71.534 316.16—E ' 2.9032

(H.F.) b 2.8617
c 2.9037

7.2792 13.6548 22.030
7.2364 13.6113 21.986
7,2799 13.6556 22.031

a This paper.
b Empirical estimates from Refs. 16 and 17.
o "Exact" values from Refs. 1 and 2.

59.1557
59.1111
59.1566

Z;;S'(r;;) 1s
1$-2$
Sum
C.I.

0.7682
0.0013
0.7695
0.5916

1.9827 4.0729
0.0106 0.0301
1.9933 4.1030
1.6582 3.5396

17.9885
0.1955

18.1840
16.5396

Z;» (r; r;) C.I. —0.1834 —0.0835 —0.0426 —0.0101

25% for Z=2 and by about 5% for Z=S. The close
agreement between our values and the empirical esti-
mates of Dalgarno e1 al.ze'r (which, for one-electron
operators, are merely estimates of the Hartree-Fock
values) should be noted. For most practical purposes
these estimates lie close enough to our more accurate
values to eliminate the need for further computations
of this type.

IV. RESULTS FOR THREE-ELECTRON SYSTEMS

The expectation values for three-electron '5 systems
are given in Table II. Also shown are individual con-
tributions by 1s and 2s electrons to the one-electron
expectation values computed from Hartree-Fock func-
tions. " A comparison of the results for one-electron
operators obtained from both calculations shows that
correlation has very little effect on the spatial distribu-
tion of the electronic charge cloud. The largest devia-
tion between the Hartree-Pock and the configuration
interaction results occurs for Z=3 for Pr r and gr;4
and amounts to a difference of only 2 or 3%. As with
two-electron systems, the agreement is better for higher
values of Z.' The over-all agreement is about what one
would expect. The addition of configuration interaction

' For large Z all expectation values must approach the values
for hydrogen-like systems, so this behavior is quite general.

z;), (p; p;) c.I.
Zp /2 C.I.

0.9056 1.3634 1.8263 3.2182

7.4765 14.3218 23.4226 64.2343

7.4327 14.2774 23.3760 64.1780
7.4771 14.3235 23.4231 64.2266
7.4781 14.3248 23.4248 64.2292

lowers the total energy of the system by about 0.04
atomic unit (a.u. ) for Z=3 from the Hartree-Fock
value. The decrease in energy is accompanied by a
slight contraction of the charge cloud. The portion of
the charge cloud close to the nucleus remains practically
unaffected by the electron correlation.

As mentioned previously, the quantities ((Qr~)') and
((Pp;)') are related to moments of the spectral dis-
tribution of oscillator strengths. We can obtain an
estimate of the effect of correlation on these quantities
by studying the ratios ((Pr,)')o.z/((Pr, )')H.F. and
((Qp;)')or. /((Qp, )')H.z.. The ratios include two ef-
fects of correlation. The first is due to the slight changes
in (grP) and (PP r). The second and dominant effect
is due to the cross terms (g;»r; r;) and (P;»(p,"p;))
which vanish in the Hartree-Fock approximation. In
Table III we list these ratios. We have used —2E for
the Hartree-Fock values of (PpP) since the virial theo-
rem is satisfied by a Hartree-Pock calculation. Also
shown in the table are the mean squared momentum
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TABLE III. Ratios of expectation values computed using con-
figuration-interaction wave functions to those computed using
Hartree-Pock wave functions.

Ter.z IV. Expectation values for 35-, 41-, and 45-term
wave functions of I.i.

Operator 35 terms 41 terms 45 terms
Oper

a

(Z r;)' (3-electron)
(Z p;)' (3-electron)
Z p;)2 (2-electron)
;»Ss(r;;) (3-electron)

3 4 5 8

0.968 0.971 0.973 0.980
1.128 1.098 1.080 1.050
1.046 1.034 1.027 1,016
0.768 0.827 0.856 0.899

ratios ((Pp, )'),„„t/((gp,)')H, s. for two-electron sys-
tems, where ((P,p;)'),„„s were computed using the
"exact" values of Table I and the Hartree-Fock values
were obtained from Ref. 13.

Table III illustrates the importance of correlation in
evaluating expectation values of this kind. Notice that
the correlation causes a much larger change in ((P y;)')
(about 13% for Li) than one would expect from the
change in ((P p,)') of the ion core (which is less than
5% for Li+). The percentage changes for ((P y,)') are
much larger than the changes for ((P r;)') when correla-
tion is included as is the case for two-electron systems.

Ratios of the expectation values for P,»P(r;;) are
also shown in Table III. The decrease of this value
when configuration interaction is introduced corre-
sponds to the correlation increasing the depth of the
"hole" mentioned previously. However, our results for
two-electron systems indicate that wave functions of
this type do not predict (P,»5'(r, ,)) very accurately.
For helium, for example, our result of 0.132 lies about
midway between the Hartree value of' 0.188 and the
"exact" value 0.106. This would seem to indicate that
our configuration interaction values are still about
10—40% above the true values, the accuracy increasing
with Z.

In order to estimate the accuracy of the values given
in Table II, all expectation values for Z=3 were com-
puted using 35- and 41-term wave functions. ' The re-
sults are shown in Table IV. The only value which

"H. Bethe and E. E. Salpeter, Quantum 3Eechanscs of One and-
Two Electron Systems -(Academic Press Inc. , New York, 1957),
p. 164.

20 These wave functions are not tabulated by Weiss. However,
the total energy corresponding to this calculation is given in
Table VI of his paper,

gy.—2

Zr
Z.,4

S'(r, )
Z;),Ss(r;;)
Z;, (r,"r;)
&'»(1' lit)

jV

30.317
5.7360

17.6299
511.341
13.8980
0.6093

—0.0484
0.8872
7.4740

30.247
5.7171

18.4455
549.618

13.8685
0.5911

—0.0886
0.8739
7.4762

30.244
5.7175

18.3722
545.801

13.8661
0.5916

—0.1834
0.9056
7.4771

shows substantial deviations is (Q,»r; r;). However,
the fluctuations of this quantity are about the same
size as those of (Pr s). Note also that (Pr s) and
(Jr~4) become larger as the number of configurations
is increased, even though the total energy is lowered.

V. FINAL REMARKS

The results of the preceding section show that corre-
lation may produce large changes in the expectation
values of three-electron systems even though the change
in total energy is extremely small. While the same is
true for two-electron systems, the variations appear to
be less extreme in that case. Consequently, estimates of
the eBects of correlation in many electron systems based
upon our knowledge of analogous effects in two-electron
systems are likely to be substantially in error.

The accuracy of the values reported here is dificult
to estimate. While Table IV shows that most of the
expectation values we compute appear to remain more
or less stationary, this should not be interpreted to
mean that these values are correct. In particular, the
value of (P;»8(r;;)) remains stationary to about 3%
in going from 35 to 45 terms in the wave function, yet
from our two-electron results we expect even the 45-
term value to be a considerable overestimate of this
quantity.
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