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We investigate the dissociation rate of a dilute solution of diatomic molecules in an inert gas. The diatomic
molecule is assumed to dissociate when its vibrational energy exceeds the dissociation energy E. A classical
impulsive collision model is used for the interaction between the diatomic molecules and the solvent gas
which is treated as a temperature bath at temperature T. The diatomic molecule is also simplified by treating
it as one dimensional, thus neglecting the rotational degrees of freedom, and assuming that its translational
degree of freedom is always in equilibrium when it is not neglected entirely. Still further simplification is
achieved by considering only cases where the efFect of the solvent gas may be represented by a transition
rate between the vibrational energy states of the diatomic molecule, and the distribution function for
vibrational energies e E is approximately given by the equilibrium distribution J 0(e). We find generally
(i.e., when the assumptions stated in the last sentence hold, but independent of our model) that when a
diatomic molecule with vibrational energy E is very likely to lose (rather than gain) energy in a collision
with a gas atom, the dissociation rate k(E) is given by the expression k(E) =P '[v (E)7 'Fe(E), where r(E)
is the mean time between collisions for a molecule with vibrational energy E and P ' is Boltzmann's constant
times T. For the model considered in this paper, this will be the case when E))(ytS) where y is the ratio of
the mass of a gas atom to that of a diatomic molecule. The expression for k(E) then assumes the simple form,

k(E) =nAcP 'e ee$8(E)/Z(E)7,
where A is the cross-sectional area for a collision, c is the concentration of gas atoms, Z(E) is the vibrational
partition function for the bound states, S(B) is the distance between the minimum and maximum value of
the vibrational coordinate when the molecule is on the threshold of dissociation, and a is a constant of order
unity. We also treat the case when 7«1, which leads to a Fokker-Planck type equation for the distribution
function from which k(E) is found for PE))1.A quasi-quantum-mechanical calculation for k(E) is also
presented and leads to the same results as the classical calculation.

I. INTRODUCTION

E consider the problem of the dissociation of
diatomic molecules immersed in a chemically

inert gas, e.g., iodine molecules in argon gas. The physi-
cal situation may be visualized either by introducing a
number of diatomic molecules (essentially in their
ground state) into a gas at temperature T or starting
with the system at some low temperature and suddenly
raising the temperature of the inert gas, then observing
the transfer of energy to the vibrational degree of free-
dom of the molecules which leads to their dissociation.
We shall assume that the molecules behave as hard
spheres connected by a spring which may break when
the amplitude of vibration becomes sufficiently large.
The atoms in the inert gas are also assumed to act like
hard spheres, and the collisions between atoms and
molecules are, therefore, impulsive, i.e., the duration of
a collision is infinitesimally small compared to the time
during which the position coordinates change sig-
ni6cantly. This is the opposite of the adiabatic approxi-

*Supported in part by the U. S. Air Force OfBce of Scienti6c
Research and by the National Aeronautical Space Agency.

$A preliminary account of this work was presented at the
Discussions of the Faraday Society, April, 1962. At that time
Dr. E. Nikitin made some very interesting observations which
can be found in the record of the discussions.

$ Part of this work was performed while the author was a visitor
at Bell Telephone Laboratory, Murray Hill, New Jersey, and at
Yeshiva University.

mation, used by Landau and Teller, ' where the duration
of a collision is assumed long compared to a vibration
period. This latter assumption leads to the conclusion
that only small amounts of energy can be transferred
during a collision. This conclusion also results from a
perturbation expansion in the interaction, assumed
weak, between the diatomic molecule and its surround-
ings. The impulsive collision model, on the other hand,
permits a large transfer of momentum and, hence,
energy during a collision. The actual energy transfer is
determined by the momentum of the particles prior to
a collision. We shall further assume that the distribution
of gas atoms prior to collision is always Maxwellian at
some temperature T. This permits us to write down an
explicit equation for the time evolution of the distribu-
tion function p(y, tht) of the diatomic molecules in their
phase space I', whose coordinates p and q, are the set of
momentum and position variables of a diatomic mole-
cule. The equation obeyed by p(p, tht) is an integro-
differential equation which is a generalization of the
Liouville equation for an ensemble of systems (the
system here being a single diatomic molecule) interact-
ing with surrounding heat reservoirs (the inert gas
atoms are here considered the heat reservoir). On the
basis of the assumptions outlined above the effect of the
reservoirs on the evolution of p(y, tl, t) is completely

' L.Landau and E.Teller, Physik. Z. Sowjetunion 10, 34 (1936).
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characterized by a kernel E(p,q; p', q'). E(p,q; p', q')

Xdpdqdt is the contingent probability that a molecule
with coordinates p', q' will suffer a collision with a gas
atom in the time interval dt, and as a consequence of
this, will jurnp into the volume element dpdq about the
point p, q. Calling H(p, q) for Hamiltonian of the di-

atomic molecule, the equation for p(p, q, t) has the form s

Bp
+ (p H) =

I &(p,q; p', q')p(p', q', &)

83 —&(p', q'; p, q)p(p, q, 1)l~p'd»', (l.l)

where (p,H) is the Poisson bracket of p and H which

represents the effect of the natural streaming (un-
interrupted by collisions) in the phase space.

It is clear that the function p(p, q, i) is sufficient to
determine all the properties of the diatomic molecules
(assumed independent). It is, unfortunately, also clear
that even with the drastic simplifications of the nature
of reservoir we have made, this function cannot be
found in practice. However, when we are interested
only in the dissociation rate, i.e., whether the two atoms
making up the molecule are bound together or not, some
drastic sirnplifications in the structure of the diatomic
molecule, which make it a model of a dissociating mole-
cule become reasonable, i.e., the model still contains the
essential features of the process. The simplest procedure
is to consider the vibrational degree of freedom sepa-
rately and treat dissociation as the escape of particles
from a potential well. This is the model treated by
Kram. ers, '. Chandrasekhar, ' Montroll and Shuler, '
Buff' and Careri. We shall consider this model first
though we shall later generalize it to include also a
translational degree of freedom, albeit in one dimension
only.

The model molecule which we will consider consists
thus of two pistons with some potential g, possessing a
minimum and a maximum between them. This mole-
cule is embedded in a gas of atoms of mass m and con-
centration c, both outside and inside the pistons (this
appears to represent best the three-dimensional situa-
tion). The cross-sectional area for hard-sphere colli-
sions, on one dimension, between each piston and a gas
atom is A. Neglecting further the translational degree
of freedom, our system reduces to a single piston of
cross-sectional area 2A, effective mass M, moving in a
potential p(q) where q is now the relative position co-
ordinate, measured from its equilibrium value. The rele-
vant part of the molecular Hamiltonian II, and the

kernel K now have the form

H= (p'j2M)+y(q),

Actr P )'"
&(P,q; P', q') =—

I I
(1+v)'lP —O'I

m l Swttsi

(1.2)

P(1+v)' v —1
)(exp p — p'

Stts y+1

&&3(q—q'), (1 3)

imp

where 7=m/M, and the 5 function appears because
there is no change in position during the impulsive
collision. ' 'We still have to choose the potential p(q).
The simplest choice, used by many authors, is that of a
cutoff harmonic potential, having a maximum ampli-
tude of vibration Q and a dissociation energy E=~zsQ'.
This potential is clearly wrong for large negative values
of q (where it ought to become infinite) and, perhaps
even more important, gives too steep a slope for @(q)
at q=Q. Despite these deficiencies, its use so greatly
simplifies the problem that we shall use it for our ex-
plicit calculations in Sec. IV. Our general result
Eqs. (3.6) and (3.12), is independent of the exact nature
of p(q) requiring only that it have a fmite cutoff and
some other qualitative features. This rules out the use
of the Morse potential, which has no cutoff, without
some modification.

The evolution of the distribution function p(p, q, t)
may now be looked at in terms of the unperturbed tra-
jectories in the system's two-dimensional phase space
(Fig. 1). The curve labeled E bounds the region

H(p, q)(E, which we shall call V(E), while the two
vertical lines q=Q+ and q=Q define the region where
the coordinate of the diatomic molecule lies whenever
its energy is less than that necessary for dissociation.
The trajectories in the region V(E) are closed curves
while those outside are open. Hence, in the absence of
the solvent gas, a molecule initially inside the V (E) will

always remain there. Due to collisions with the gas
particles, however, a molecule can jump from a point
p', q' inside V(E) to a point p, q' outside V(E) and then
dissociate. Since we are considering a very dilute con-
centration of diatomic molecules, we may neglect the
possibility of recombination of the two parts of the
diatomic molecule once they are apart, i.e. q(Q or

' P. G. Bergmann and J.L.Lebowitz, Phys. Rev. 99, 578 (1955).
J. L. Lebowitz and P. G. Bergmann, Ann. Phys. (N. Y.) I, 1
(1957).' H. A. Kramers, Physics 7, 284 (1940).

4 S. Chandrasekhar, Rev. Mod. Phys. 15, 1 (1943).
~ E. Montroll and K. Shuler, in Advances in Chemical Physics

(Interscience Publishers, Inc. , New York, 1958), Vol. 1, p. 361.' F. P. Buff and D. J. Wilson, J. Chem. Phys. 32, 677 (1960).
G. Careri, in Advances Az Chemica/ Physics (Interscience

Publishers, Inc. , New York, 1958},Vol. 1, p. 119;J. Chem. Phys.
21, 749 (1953).

FzG. 1. The phase
space of the vibra-
tional degree of free-
dom of a diatomic
molecule.
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q)Q+. (This is particularly clear in the true three-
dimensional situation to which we want our model to
apply. ) Furthermore, we shall also neglect the possi-
bility that after the molecule has suffered a collision
which took it out of the region V(E), but before it has
a chance to completely dissociate, i.e., leave the region
Q (q(Q+, it will suffer another collision which will
bring it back into V(E). This is certainly correct when
the average time between collisions of the molecule
with the gas is of the same order or larger than the
period of vibration of the molecule, co

—' and may, for
other reasons, be correct in other cases (see Sec. V). We
will, therefore, consider dissociation to occur whenever
our system leaves the region V(E) and neglect all
transitions back into V(E). The above assumption is
formally equivalent to having an absorbing barrier at
H=E, i.e., setting p(p, q, t) equal to zero outside V(E).
This additional assumption is not essential, but is very
convenient. It now permits us to go one step further in
a consistent way and assume that even inside V(E)
p is a function only of the energy H. This will also permit
us, as we shall see later, to go over easily to the corre-
sponding quantum-mechanical treatment in terms of
transition rates between energy levels.

The mathematical formulation of our problem before
going over to the energy variable is then as follows:
We want to find the concentration of diatomic molecules
at time t, C(t)

C(t) = t (P,q, t)dPdq (1.4)
&(&)

given some initial distribution p(p, q, o) inside V. Since
molecues can only leave but not enter V(E), C(t) will

be a monotonically decreasing function of t approaching
zero as t ~ ~.It is the rate at which C(t) decreases that
we are interested in here. This formulation of the dis-
sociation problem is very similar to that ot Montroll
and Shuler' but different from the formulation of
Kramers' and Chandrasekhar. ' The latter attach great
impcrtance to the backflow of particles from the region

q(Q, q) Q+. It is assumed by them in fact that there
is a quasistationary state set up in which the net fIow
at Q is proportional to the concentration there. They
are led to this formulation by considering the effect of
the medium on the diatomic molecule to be similar to
that exerted on a Brownian particle. This leads to the
possibility of building up a concentration of molecules
in the region q(Q, q) Q~ which are ready for recom-
bination. Considering, however, the scale of distances
involved here and the fact that we are in reality dealing
with a three-dimensional system, we believe their as-
sumptions to be reasonable only for the case of very
dense gases or liquids.

This difference io the formulation of the problem is
responsible for the difference in the form of the dis-
sociation rate constant k obtained by us when
y=(m/M)«1 and that obtained by Kramers and
Chandrasekhar. When y((1, the integrodiGerential

II. REDUCTION OF PROBLEM TO ENERGY
VARIABLE ONLY

Continuing now further with the development of our
model, we introduce the kernel K(», »') which represents
the probability density per unit time that a molecule
with vibrational energy e', i.e., located on the surface
H(p', q')=»', corresponding to a microcanonical dis-
tribution with energy e, suffers a collision and jumps
to the surface H(p, q)=». K(», »') is determined by
K(p, q; p', q') through the relation

K(», »') =[n(»'))-' K(p, q; p', q')S[H(p, q) »j—
&(b[H(p', q') »'gdpdqdp'—dq'. (2.1)

Here, 0(»') is the "area" of the energy surface H=»',
which is given by the well-known expression

0(») =—V(») = 8[H(p, q)
—»]dpdq.

dc
(2.2)

Q(») is finite for»(E and for a simple ha. rmonic po-
tential is equal to 2~/ar. The kernel K(», »') derived from
(1.3) satisfies the detailed balance condition

K(»,»')e & "0(»')= K(»', »)e &'0(») . (2.3)

The number of molecules whose vibrational energy is
between» and»+d», f(»)d», is given in terms of p(p, q, t)
by the relation

f(» t) = p(P q t)~[H(p q) —»ldpdq (24)

If p(p, t)qis a function of H only, then clearly

f(», t) = [f(H(p, q), t)$~,0(») . (2.5)

Now, while the equation obeyed by p (p,q, t) is
Markoffian, i.e., the value of p at some time t' deter-
mines p(t) for all later times t, t)t', there is, in general
no such equation for f(»,t). Furthermore, even if p is
initially a function of H only, it will generally not
remain so. (This is also true in a quantum-mechanical
system where p is replaced by the density matrix, or by
the Wigner distribution function). The reason for this

equation (1.1), reduces to a Fokker-Planck type equa-
tion for p, having the same form as that used by
Kramers. This equation yields, in our treatment,

k=4Ac(gy/7rpM)"'pEe &~=qpEe

where q is the appropriate friction coe%cient. This is in
marked contrast to the result of Chandrasekhar
[Eq. (507), Ref. 4j where, (taking note of the entirely
diferent notation), k depends on the frequency ~ and
on the form of the potential in the region q) Q+ and E
does not appear in the pre-exponential factor at all.
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or
1 /r 8E) r/s

e=—
I

ro ~ M /

The argument of the delta function will vanish for
p=&I 2sst(« —C'(q'))j'/'. When «&H(p', q'), p' will lie
between these two values of p, and (4.3) will yield

Also,
fl (E)= 2 /, Z(E) = (2 /P ) (1—P ").

Thus, for pE))1,

2p )1/2

K(.,p, q)=2Ac
I

e PPP-&")
~sssi

(4.4)

r '(E)=4Ac(2E)'/s/sr'
k(E) = [4AC(2E)r/'/sr' jp P~.

for &= 1 and «&H(p', q'). To obtain K(«, «') we have to
average K(«,p', q') over the energy surface H(p', q') = «',

( 2p 1/s

e P(pP@—(e')),,
4sssC'(q) = sM~«'q'L1 —sq/Q+3 Q-&q&Q+

The rate constant is not affected very much if we K(«~«)=I fl(«)j K(«~P iq)~[~ H(P sq)l~P dq

chose C (q) to be an anharmonic potential which has a
maximum value equal to E for q=Q+. We have then

(45)

= «Mo)ssQ+', otherwise;

Q—= -sQ+

(3.16)
E) 1/2

@=
I Q-I+Q+= —13 5—

I

2VZAcg P —p(q—q') s/' —pp'2/2M'

(srM)'"

1 2

(PP@(s')),=
2K O

gp c cos28de
IV. EVALUATION OF 0 FOR y=1 (4.6)

The evaluation of (eP~) can be carried out readily for

Z(E) is more dificult to evaluate now but should b the kttrsls)«'c Ps)««ictl by going over to a«ion angle

very close to 2sr/po) so that k(E) will remain very close
to that given in (3.15).

We shall carry out here a more detailed calculation
for the case of almost equal masses and a cutoff har-
monic potential. This will lead again to Eq. (3.15) when
PE))1, thereby justifying, for this case at least, the
assumption involved in going from Eq. (3.3) to
Eq. (3.4).

To simplify the presentation we shall first discuss the
case p=i, that is, equal masses for gas atoms and
oscillator atoms. For this case we have I Eq. (1.3)j

Ac( 2P
K(p, q, p' q') =

I I p p'I~(q q')— —
ME,~M

Xexpl —P I
(4 1)

p' ')

2M)

where M is the common mass of the atoms.
To find K(«, «') we consider first the function

K(«,p', q')d«which is the probability per unit time, that
the system, initially at p', q', will make a transition to
an energy surface between «and «+d«. Clearly,

K(«,p', q') = K(p, q; p', q')bI H(p, q) «jdpdq. (4.2)—

Using (1.2) and (4.1), and carrying out the integration
over q, we obtain

K(«,P', q') = (Ac/srt) (2P/srsss)'"e —P'ePe«')

=2I« («'/2) eP "/s

where Io is the hyperbolic Bessel function of order zero.
That is, Is(s) =Js(is) where Js(s) is the ordinary
Hessel function of order zero, and for large s we have
asymptotically' Is(s) = (2srs) '"es.

This leads finally to the result

4Ac(2P) t/s

K(«, «') = ~
—p(e-e')

(srM)'/s
XP P""I (P"/2-), &", (4.7)

and using detailed balance, Eq. (2.3),

(p)
K(«, «') =

(srM)r/s
e P "Is(p«/2), «( c'. (4.8)

We see from Eq. (4.8) that the probability of a tran-
sition from c' to e, which increases the energy, e) e',
depends strongly on «'. Thus, for P«'))1, we have
$K(«,«')/K(«, «'+b)5=e P' for «& «'+s), 6&0. This
might appear at erst surprising since for equal masses
the transition probability K(p,p') goes essentially as
e»'/' which is independent of p'. The e Pt' ") de-
pendence of K(«, «') for «& «' is due to the fact that since
the position does not change during a collision a system
initially on the surface H= e' can make transitions to
only part of the surface H= e. The smaller e' the higher

J. L. Lebowitz, Phys. Rev. 114, 1192 (1959).
X

I p p I5Lp /2sst++(q )—«3dp ~ (4 3) ' N. G. DeBruijn, Asymptotic Mettsods sn Analysis (North-
Holland Publishing Company, Amsterdam, 1958).
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must the final kinetic energy be for a transition to e. Substituting this value of E(e,e ) into Eq. (3.1) yields
This does not apply to transitions which decrease the for the dissociation constant of a molecule with a cutoA'

energy and there is no such factor there. oscillator potential and y= 1,

k(E) = (~)
(mM)'/'(1 —e ex)

PE

e
—//"'/'Io (Pe'/2)de'

SA c~e //xg—E — (P@ii/~

(m-'M) i/'(1 —eel') 0

(1 e"')—dy 4AC(2E)'/'e e~

Li+ (~E)-']
~2[1 ~2 (PE)

—1]1/2 PE))1 ~ Ml/2

(4 9)

This agrees with Eq. (3.15) and thus confirms the
analysis in Sec. III. It would be quite easy to compute
higher order terms for the asymptotic form of k(E) in
Eq. (4.9). However, this form of k(E), Eq. (3.1), is
based on the assumption that the energy distribution
F(e) is, for e&E, adequately represented by Fo(e) and
this can be an adequate approximation only if PE))1.
Actually in order to get a good value for k(E), we need
the value of F(e) for those energies e, e& E, from which
dissociation takes place. In our model this corresponds
to a width Ag

'. We expect Fo(e) to be a good approxima-
tion for a given e if the frequency of transitions between
e and other bound states is much greater than the fre-
quency of transitions which lead to dissociation
r '(e)))rq '(e). According to Eqs. (4.7) and (4.8) the
ratio between these two type of transitions is of order
PE, for e&E. Hence, the replacement is consistent, if
and only if EP))1.

A similar analysis can be carried out for the case
y/1. Unfortunately, however, the simpli6cations which
occurred in the evaluation of (4.2) for y=i now no
longer occur. Using the kernel (1.3) in (4.2) we find,
for e&II(p', q'),

Ac(1+/)'q P (X+ (2M)'"p')
E'(e,p', q') = e //(~ ~')P-

[2n y'M]'/' X

~ (1+&)p'
Xexp —— W (1—y) X ~, (4.10)

(2M) /

where li=[e—C (q')]'/', and the summation goes over
the plus and minus signs. To obtain E(e,c'), (4.10) has
to be averaged over the surface II(p', q')=e'. Con-
sidering again the case of a harmonic potential and going
over to action angle variables we find

Ac(1+v)'& P
E(e,e') = ~

—p(a—c')

[2n-y'M]i/'m-

(e—e' sin'g')'/' —g e' cosg'
dg

(e—e' sin'g')'/'

[(1—y) (6 ~ sin'g')'/' —(1+y)g Ecosg ]''
Xexp —P e& e'. (4.11)

In order to find k(E) from (3.1), when pE))1 and y is of 0(1), we need, as noted before, to know E'( , e)efor
values of e and c' lying in the range, F&~&E+p—', E—p '& e'&E. It is, therefore, suKcient, when the above
conditions on pE and y are satisfied to evaluate the integral in (4.11) for pe))1 and [1—y/1+y I'e &e & e. In this
range (4.11) can be evaluated using Laplace's method, ' and we obtain, using also detailed balance,

E(e,e') =

2Ac(1+y)

m [2yM]'/2

z
—P(.—~~) 1—7 '

2 —1/2

i+y
2Ac(1+y) 1-7 ',

e'& e& e', Pe))1, Pe'))1.
ir[2yM]'/' 1—y ' '/' 1+y

1+y

(4.12)

and E(e,~') vanishes approximately for other values of e' when pe))1. When (4.12) is used in (3.1) we again obtain
(3.15).
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V. THE FOKKER-PLANCK APPROXIMATION

We now discuss the case where the mass ratio of the gas particles to the diatomic molecule, y, is so small that
APE, is small compared to one even though we shall assume that PE is large compared to one. For this case the
integrodifferential equation (1.1) may be reduced to a differential equation of the Fokker Planck type. s'~"
Following Keilson and Storer" we expand the term on the right-hand side of the J iouviile equation (1.1) in the
following way:

where

dn

L&(PP')p(P', q, t) &(P—',P)p(P, q, t)l~p'=2 —L~'"'(P)p(p q, t)1
~l d

&'"'(p) = &(p' p) (p p') "d—p'.

(5.1)

(5.2)

In this way we write the integral operator as a differential operator of infinitely high order which we subsequently
shall simplify by neglecting the higher terms.

With the kernel used here we have, ' setting p —p'= z

2Ac '" 1+~( ~)
g(o) (p)—

4(27r)'/'(/ill)'/s

[z+v(z —2P)7
~z~z" exp —P ds

M

z'(1+v)' zpP
( z( z" exp —P 1+ + dz8' 2M

(5.3)

Retaining only the lowest order terms in y which
contain the essential features of the problem we get

g~ )1/2

8&"=4Acl
~ p

I p~m)
(5.4)

g~ qr/2

Q, t'&=SAcl
i

M.
&pe~a)

(5.5)

The higher order terms vanish to this order so that the
integral operator to this approximation becomes

( Sy )'' B ( B 'It

4Aci
i

—
i P+MP '—

i

I p~M) Bpk Bp)
(5.6)

and the generalized Liouville equation reduces to the
Fokk.er-Planck equation

Bp p Bp dp Bp B ( B )
I p+~P '

lp
—(5 &)—

Bt MBq dqBp Bpk Bp)
'

where P is the molecular potential and the friction co-
e%cient is

depends only on the energy of the oscillator and on
time, not on the angle variable.

The justification given before this assumption,
namely that the time between collisions is larger than
the period of vibration so that the phases are essen-
tially randomly distributed is no longer valid. When p
is small the concentration of gas atoms must be very
large (and hence, the time between collisions very
small) in order for the gas to have any effect on the
molecule. However, since the energy change in each
collision is very small, the change in energy of the oscil-
lator will be slow compared to its change in phase and
thus averaging over the phase should still be approxi-
mately valid. This is similar to the justification for
using energy variables rather than the distribution
function (or the density matrix) in weak interaction
theories of dissociation of diatomic molecules. '" We
thus neglect here precisely the eGect which is believed
to be the rate determining step in the dissociation of
polyatomic molecules, namely the getting in phase
with respect to stretching of a bond. "

Assuming that after the transformation to energy
angle variables e, 0 the density function Ii is only a
function of e and t we get

( gp )1/2
rt= 4Aci

&P~Jid)
(5.8) BF B ( B'l

=g—
e~ 1+P-'—

~

&
Bt Be 'E Be)

(5 9)

To Gnd the rate constant for dissociation of the
diatomic molecule we change to energy angle variables
and assume as before that the density in phase space

'~ J. E. Moyal, J. Roy. Stat. Soc. (London) Bll, 130 (1949)."J.Keilson and J.E.Storer, Quart. Appl. Math. 10, 243 (1932).
"A. Siegel, J. Math. Phys. 1, 378 (1960).

as discussed previously. ""The solution to this equation

'3 T. A. Bak and K.Andersen, Kgl. Danske Videnskab. Selskab,
Mat. Phys. Medd. 33, No. 7 (1961).

~4 N. B. Slater, Theory of Unimolecular Reactions (Cornell
University Press, Ithaca, New York, 1959)."T.A. Bak and I. %. Plesner, Acta Chem. Scand. 14, 1310
(1960).
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which is zero for ~=8 can be expressed in terms of the
confluent hypergeometric function

square root of the mass of the gas atoms, and inversely
proportional to the square root of the temperature.

F=e ~'Q—C„e & "'1F1(—a~, 1)Pe), (5.10)
VI. CENTER OF MASS NOT FIXED

a t 8—
e~ 1+P-'—

RE E l9E. (5.11)

with the boundary condition that the eigenfunction
vanishes at e=E. A number of methods have pre-
viously been used in solving this problem. "

The formal method which lends itself most easily to
this case is the variational method which gives an ap-
proximation to the smallest eigenvalue as

where C„(n=0,1,2, ) are determined by the initial
conditions and a„(x=0,1,2, ) are the roots of the
equation 1F1(—a, 1, PE) =0.

If PE))1 the roots of this transcendental equation
become approximately 0,1,2, ~ and, therefore, the
rate constant as defined above $Eq. (2.10)] becomes
independent of time (except for t&g ') and equal to
QGp. The problem of determining the rate constant then
reduces to determining the smallest positive root ao of
the equation 1F1(—a, 1, PE)=0 or, alternatively, to
find the smallest eigenvalue of the operator

So far we have neglected the translational and ro-
tational motion of the molecule altogether. We shall
now relax the restriction on translational motion and
consider a diatomic molecule constrained to move on a
straight line. We shall, however, still assume that the
translational motion of the center of gravity is in
thermal equilibrium at all times.

Let P1, Q1 and P2, Q2 be the coordinates of the two
atoms in the molecule, P, Q the coordinates of the
center of gravity and p, q the relative coordinates. Since
the interaction with the gas atoms is impulsive we have
that during a collision between one end of a molecule
and a gas atom the other end of the molecule does not
change its momentum or its position. Introducing

Pl 2P Pt
P2 ———,'P+P,

and integrating over the center-of-mass coordinates in
Eq. (1.1) we obtain an equation containing only the
relative coordinates with the kernel

pg 2~(e)+p (e) eee'd e

0 dE
(5.12)

2Ac(1+y)2g p

M'"2r'12y (y+2)

LP(e)]2ee'de

( g~ 1/2

k=4Ac~ PEe ~x,
kp m

(5.13)

whose most important features are that the pre-
exponential factor is proportional to the energy, to the

where P(e) is an approximation to the eigenfunction
corresponding to the smallest eigenvalue. In this case
it would not be a good approximation to use for P the
equilibrium distribution Fo(e) since the dissociation
here takes place from a very small region near e=E',
where the correct quasistationary distribution differs
significantly from Iio by going to zero for e~ E. How-
ever, as long as one is only interested in large values of
E, P may with sufhcient accuracy be taken as e e' —e ee

which gives ao=PEe e~. The method itself is, of course,
only of minor interest in connection with the harmonic
oscillator, since in that case the eigenfunctions are
known, and the eigenvalue ao can be found from the
series expansion of the conQuent hypergeometric func-
tion. The method can, however, equally well be used
to 6nd the rate constant for escape from an arbitrary
potential. "

Kith this result for ao, we now have the expression
for the rate constant quoted above:

pLp' —(1+~)p]'
Xexp 8 (q

—q'), (6.1)
(y+2)M

which allows us to calculate k, using the methods out-
lined above.

For the case y = 1 we get, using the method of Sec. IV,

SAc(1+j)
k= E'"e "(1+oI:(PE) ']) (6 2)

2rM'" (7+2)'"

while for the case p((1, where the Fokker-Planck equa-
tion is valid, we obtain the same equation as before
except that q now has only half of its previous value.

Whereas, the fixed center rate constant for y=1
fEq. (3.15)]was independent of m (or y), we have here
a slight y dependence.

The method which we have used here for the inter-
action of vibration and translation could also be used
for the interaction of rotation and vibration which
would occur in the three-dimensional problem.

VII. AN APPROXIMATE QUANTUM-MECHANICAL
CALCULATION

As mentioned above an exact quantum-mechanical
calculation seems presently to be impossible unless one
wants to do it numerically as done by Shuler and
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Zwanzig. " As an alternative to the full quantum-
mechanical treatment we shall now consider the quan-
tum correction to the classical case which arises from
dividing phase space into cells. We consider only the
case p=1 and fixed center of gravity of the oscillator
for which K(e, e') is given by Eqs. (4.7), (4.8). From
this we want to calculate E, the probability of tran-
sition from quantum state e' to quantum state e. Since

the energy of the quantum state n is E„=(n+-', )/r/oi we
define the quantum state n as the part of phase space
for which the energy of the oscillator lies between nhco

and (n+1)ho/.
To obtain K„„we shall, therefore, integrate K(e, e')

over the final energies in the range nba(e& (n+1)her
and 'average' it over the initial energies, n'Ace&a'

& (n'+1)Ao/. Thus,

E„,„=
A,oe/2

dsK(E„+x, E„+s)e e'
%to/2

e t"ds (7 1)

The use of the Boltzmann factor in averaging over the initial states is necessary in order that E„have the property
of detailed balance in equilibrium:

E „e &~"'=E„„et'~".
Using (4.7) in (7.1) yields, for y=1,

2P q'/' —
f E;y—

K„„,=4Ae
l

exp Pl E.——
l

prMI k 2)

P /s
/

E. Ps)
&pl P + le

e' 'ds [j=mi (nn, 'n)].
—s(y/p k 2 2

(7.2)

We note here that our E„„has the property the levels satisfy the equations

K„+,,„.PC„,„.=e e"-; n&-n', n+j&n' (7.3).

Thus, when PAoi is not too large compared to unity
there will be a reasonably large transition rate to levels
for which e—n'&1. The transition rate to levels n&e'
will be almost independent of n for PE„&)1.This is in
contrast to the weak-interaction model' where only
transitions to neighboring levels are permitted.

Eq. (7.3) may be compared with the work of Schuler
and Zwanzig" who carried out numerical computations
for the transition probabilities E„,„ for 0(e,e'&3,
Pho&=2 and y= —,'. Since (7.3) is only valid for y=1,
this makes a direct test of our quantum model im-

possible and might account for some of the discrepancy,
which is relatively small, between our results and
theirs. They find, for example, (Table I, Ref. 16),
[Ki p/Kp, p]—9 [Ks,p)Kp p] 8& [Kp i)Kp i]=11 while

(7.3) predicts that all these ratios be equal to e' 7.4~.

We did not use their results for E,„ in the comparison
for it is here where we would expect the crudeness of our
quantum model to show up most strongly. This should,
however, not have too great an eBect on our calculation
of the dissociation rate which we are now going to
compute.

Let x„be the population of the nth level of the oscil-
lator and N the largest stable level. A particle which
reaches the (X+1)th vibrational level is thus im-

mediately 'absorbed, ' that is, the molecule dissociates
and, as above, we neglect the possibility of particles
returning from the states n) %+1.The populations of

' K, E. Shuler and R. Zwanzig, J. Chem. Phys. 33, 1778 (1960).
See also F. H. Mies and K. E. Shuler, ibid 87, 117 (1962). .

dx„ 00

= P K.;x; xP K .=—P A„„x„
n'~n n'gn n,'=0

(n=0, 1,2,3, . Ã). (7.4)

If there were no dissociation (X= po) Eq. (7.4)
would have a stationary solution, namely, the equilib-
rium distribution. When the states above 1V are ab-
sorbing, we no longer consider an infinite matrix, since
we are not interested in i for e&N. We have now

x~=5 C~~ e—" ', (7.5)

where C„„can be determined from the initial condi-
tions. Following the same argument as before, we see
that the rate constant for dissociation, to an approxi-
mation which is better the larger N is, will be given by
the negative value of the numerically smallest eigen-
value ) 0 of A. We shall compute Xo by the use of per-
turbation theory.

The use of perturbation theory to find XD is equivalent
to assuming an equilibrium distribution arnonS the

x=Ax= (Ap+8A)x

where x is the vector (xp xi ' ' 'XN) Ap is an 1VXX
matrix which represents the transitions between the
bound levels and 8A is an (XXX), negative, diagonal
matrix which represents the transitions to the dis-
sociated states. 20 by itself has a lowest eigenvalue of
zero corresponding to the equilibrium distribution,
Ii p(n) =Z '(1V)e ~e". — —

Let X„(n=0,1, cV) be the eigenvalues of A. The
solution of the differential equation (7.4) is then
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bound states. As already discussed in Sec. IV this is a
good approximation for our model when gE~
=P(Ar+1)A4o»1. In this situation transition from a
state e', even when n' is close to or equal to S, will be
much more frequent to nondissociating than to dis-
sociating levels. This is not the case for the weak inter-
action theory. The numerically smallest eigen value of
A which we want to find is the zero eigenvalue of A'
which has been perturbed by 8A. We, therefore, sym-
metrize A' by the transformation y„=x„exp(-',PE„),
8 =A'„expD8A4o(n —m)/2j, whereby we obtain

—y= (B+bA)y. (7.6)

Let gs be the normalized eigenvector of B corre-
sponding to eigenvalue zero. The numerically smallest
eigenvalue of B+"A is then Q (8A) Q. We have then

8
—pfio1/2 ~

—ph(y ~
—NP&au j2

0
~ ~ ~

Q Z'sr Q Z'N g Z'sr Q Z'tr
(7.7)

where Z'~e ~""~' is the partition function for the bound
states, Zsr, that is

~ go ~' is the equilibrium distribution
for the bound states. Substituting gs in the expression
for the perturbed eigenvalue we obtain again precisely
Eq. (4.9) for k(E) with E= (/+1)ho&.

Since the above perturbational calculation leads to
the same result as Eq. (3.1) it is at least very probable
that the latter procedure will, in general, have the same

property, as the ordinary perturbational procedure,
namely, that the eigenvalue approximation is better
than the eigenfunction approximation.

and the explicit calculations of r(E) for various models
all leading essentially to the result LEq. (3.11)$

1/r(E) =4Ace/Q(E).

Although this paper deals only with the one-dimensional

case, the above equation for k should be valid in the
limit PE))1 also for a three-dimensional system. In that
case, the calculation of r(E) will be somewhat more
complicated.

The derivation of the equation above is based on the
integral equation for F, which in our present formalism
implies hard-sphere interaction, and on the assumption
PE))1 which is necessary for the evaluation of certain

VIII. DISCUSSION AND CONCLUSION

The main result of this work is combined in the
equation

1
(8.1)

integrals. It is clear that the approximation of a hard-
sphere interaction will be good when the time of vibra-
tion of the diatomic molecule is large compared to the
time of interaction, i.e., the time it takes a gas atom at
thermal energies to travel over a distance equal to the
range of the interaction.

For a real diatomic molecule the vibrational fre-
quency decreases with increasing vibrational energy
and for such a molecule the hard-sphere approximation
will be good for transitions between high-energy levels.
In addition the approximation will always be good for
transitions caused by very fast molecules, i.e., when the
mass ratio y is small or at very high (translational)
temperatures of the gas. For the model considered in
detail here the vibrational frequency (or the spacing of
the energy levels) is independent of the energy and a
high-vibrational energy of the molecule, therefore, by
itself does not assure us the validity of the approxima-
tion. Since our main result LEq. (8.1)), however, is
independent of the exact form of the intramolecular
potential this result presumably remains correct in the
above mentioned cases. It should be remembered how-
ever, that multiple collisions in the sense of Kidom"
have been neglected throughout but we believe this to
cause only a small error in the three-dimensional case
to which our calculations eventually should apply.

In order to compare the results with experiments"
we consider the dissociation of iodine in argon. For this,
the measured rate constant in the range 298—418'K is

k =2.40 X10"exp (—PE)—5.30X10"
Xexp( —PE)ml mole ' sec '

with E=35 500 cal/mole. 'r Substituting numbers in
Eq. (6.2) and setting A = (7r/4) cr' with o measured in A,
we get k=1.13X10isas exp( —PE). This shows that
with a reasonable choice of o., such that o'=25 As, the
theoretical value is too small by a factor of about 12.

If we consider the dissociation of iodine in helium
the experimental value of k at 298'K is 4.42)(40"
X exp( —PE) and the theoretical result, using Eq. (5.13),
again is too low by a factor of about 12. At 1400'K the
experimental rate constant is 1.76X10'4 exp( —PE) and
here the theoretical result is low only by a factor of
less than 2.

The theory presented here, therefore, clearly does
not solve completely the problem of the very large
values of the dissociation rate constants of diatomic
molecules, but we believe it is a significant improvement
both over the simple collisions theory and over the
weak-interaction stepwise-activation theories.

'7 B. Widom, J. Chem. Phys. 28, 918 (1958).' For a review of experimenta1 results, see A. F. Trotman
Dickenson, Gos Iti44etics (Butterworths Scientific Publications,
Ltd. , London, 1955).


