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Many-Body Theory of Localized d States in Metals. I. The Localized Moment*
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The problem of the localization of a magnetic moment around an impurity is formulated in a rotationally
invariant way, making possible the calculation of the Curie constant. This calculation is carried out in
lowest order, but, in principle, can be extended to arbitrary order.

l. INTRODUCTION

'HE Hartree-Fock method has been used to derive
conditions for the existence of a localized magnetic

moment around a transition element impurity dissolved
in a metal by Anderson' and from a different stand-
point, Wolff. ' Anderson' demonstrated that in the case
in which the impurity is assumed to have only one
relevant orbital state whose energy is below the Fermi
level of the solvent, when singly occupied, but well

above the Fermi level when doubly filled (due to Cou-
lomb energy), the Hartree-Fock equations could yield
solutions in which the eft'ective potentials acting on up-
spins was diff'erent from that acting on down-spins.
This, of course, implies a local magnetic moment.

Because a preferred quantization axis is introduced
into this theory from the very beginning, one is deprived
of the possibility of calculating dynamical quantities
such as the spin susceptibility. Figure 1 (dotted curve)
shows schematically what the Hartree-Fock calculation
will give for the magnetic moment M as a function of
field JI, at a finite temperature. Even for II=0, the
calculated moment is Gnite. Experimentally, however,
one Gnds something like a Curie law until saturating
field strengths are reached (solid curve in Fig. 1). (The
part of M due to the Pauli susceptibility is not shown
in the figure. ) Thus, it seems that the Hartree-Fock
theory is capable of calculating the saturation moment,
but not the effective Curie constant. The same question
of principle arises in a ferromagnet in which the mag-
netic moment is calculated by some self-consistent pro-
cedure, e.g, , molecular Geld theory. If no preferred axis
is given, the experimental curve must again follow the
solid line in Fig. 1; but now it rises extremely steeply
because of the large value of the total spin. On the other
hand, molecular field theory calculates the dotted curve.
In a simple ferromagnet with known total spin, we
know of course how to remedy this defect. In the calcu-
lation of the partition function we include all the col-
lective states of the form (S+)"4', where@ is any eigen-
state included in the calculation, 5+ is the spin lowering
or raising operator for the total spin S, and r is an in-

teger ranging from zero to 2S. Inclusion of these zero
wave number spin-wave states will give the required

* Supported in part by the U. S. Air Force OKce of Scienti6c
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' P. W. Anderson, Phys. Rev. 124, 41 (1961).
s P. A. Wo18, Phys. Rev. 124, 1030 (1961).

Curie law, but of course with an enormous Curie
constant.

In the context of the alloy problem, it is difficult to
see how to derive a correct set of collective states serving
the same function as in the ferromagnet, principally
because the value of S is not delnite (the Hartree-
Fock calculation naturally gives no clue to this). For
this reason it is necessary to formulate the problem in
such a way that rotational invariance is sufficiently
well preserved to yield the solid curve in Fig. 1. In this

paper we demonstrate that such a calculation is, in fact,
possible. We shall use many-body perturbation theory
to calculate the partition function. It must be noted at
the outset that at a Gnite temperature this theory,
which is, in principle, more rigorous than the Hartree-
Fock method, cannot, if carried only to finite order,
produce a sharp "yes-no" condition for the existence
of a moment. However, even in finite order it yields the
correct qualitative behavior for the localized magnetic
moment, all the way from small applied Acids (Curie
range) to the saturation range at large fields.
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FIG. 1. Comparison of
a Hartree-Fock calculation
with experiment.
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2. THE RESOLVENT OPERATORS FOR THE MAG-
NETIC AND NONMAGNETIC MANIFOLDS

We first derive formal expressions for the density of
states of the system consisting of the solvent in interac-
tion with a magnetic solute. It is useful for this purpose
to introduce the resolvent operator

(R(s)= 1/(X —s), (1)

where X is the Hamiltonian proposed by Anderson' for

this system:

3c=p es~lk~+g ed~Sd~+UNdtSdi

+V Q(cs,*cd +cd *cz,). (2)
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where

whereas

(R= R+R,,

(Pbr, R) = (P~,R) =0,

P~Ri= RiPs,
PsRi=RiP

The complete R satisfies the integral equation

Here cg„and e~ are the energies, and e~„n~, the occupa-
tion numbers, of the band electrons and the d electron,
respectively. k is the wave number and 0. the spin index.
U is the Coulomb repulsion of the electrons in the d
state. The last term, involving creation and annihilation
operators of the band and the d electrons, describes the
scattering of electrons from the d level to the band and
vice versa. The spin index on the single electron energies
allows for the presence of a magnetic Geld.

The unperturbed states (V=O) can be divided into
two manifolds M and S, according to whether a single
electron occupies the d state with up or down spin (M),
or whether it is empty or doubly occupied (5). We now
obtain an exact expression for a new resolvent operator,
R, which has no matrix elements connecting states in
M with states in S.

Let Hi denote the term in 3C proportional to t/", and
Hp the remainder. Clearly, if P~ and Pz are the projec-
tion operators of the M and S manifolds, H p commutes
with each:

(P~,Hp) = (Pe,Hp) =0,
whereas

P~Hi= HiPs ~

PBHi ——HiP~.

We may similarly write

it is easy to see that

Hp —HiL1/(Hp —s))Hi (4)

acts as some kind of Hamiltonian, and the projection of
Hi(1/(Hp —s))Hi onto M closely resembles an exchange
interaction between the localized, singly occupied d

state, and the conduction electrons.

3. PARTITION FUNCTIONS

Next we make use of (3) to derive an expression for
the partition function of the perturbed system. The
density of the perturbed system is

p(s) = (1/n. ) Im TrN. (s+ib)

in the limit 5 ~ 0 (which from here on will always be
implied), where s is real. The trace may be evaluated
in the unperturbed representation, and in this repre-
sentation TrRi=0. The density of states is, therefore,

p(s) = (1/s.) Im TrR(s+i5) .

We may erst take the partial trace over the band states,
arriving at

pbr. (s)= (1/pr) Im Tr&b&RM, (s+ib)

for the contribution to the density of states from the
part of the M manifold with the one localized electron
having spin orientation o-, and at

pe f(s)= (1/pr) Im Tr'b'Re, ,f(s+i5)

for the contribution to the density of states froln the S
manifold completely empty (e), or completely Glled

(f). Trace "& indicates: trace over all the band-electron
states. Clearly, if pb(E, ) is the density of band states
(evaluated. in the presence of a magnetic field), then

S= — HiS.
Hp —s Hp —s

which may be resolved into two equations:

p~. (s)=- dRpb(&)

Im g (e (E), Rbr, (s+i8)%'„(E))
X ~ (5)

R= — HiRi,
Hp-s Hp-s

Ri——— -HiRp.
Hp —s

Substituting the latter equation in the former, we arrive
at the starting point of our theory:

R= + Hi HiR
Bp—s Hp —s Hp —s

or, equivalently,

Hp —s —H, L1/(Hp —s))Hi

This equation is exact, and obviously decouples the
magnetic manifold 3f and the nonmagnetic manifold
S. Though we shall not make explicit use of this fact,

Here n is the set of all quantum numbers consistent with

energy K We write

Im g (@.(E),Rbr.@ (E))/Q 1=Dbr, . (5a)

The important point about D~, is that to a good ap-
proximation, provided the temperature is not too high,
it is a function of s-E alone. This property results from

replacing band-state occupation numbers by their aver-

age values Lcf. Eq. (8) et seq).
One further point must be made here: If the system

as a whole has %+1 electrons, then pb(E) in the above
formula is the density of states of a system of exactly
X band electrons, i.e., the density of levels with energy

p eb,nb, subject to Qb, nb, ——X. We should, therefore,
write pb(E,S).In the same way, we may define De, and

Bgf, and in writing down the corresponding formula,

(5), we must use pb(E, %+1) and pb(Z, X—1), re-
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spectively. Since we expect to find a local moment of
the order of a single Bohr magneton, it is safest to work
for the time being in a canonical ensemble.

If we accept the assertion that the D's are functions
of s-E only, we may derive the partition function of the
system from (5) (and analogous formulas for S), by
taking the Laplace transform of Eq. (5).The total parti-
tion function is

fmld dependence LSM cosh(gpBH/2kT)], but for small
B it determines the effective Curie constant C. Neglect-
ing a certain small g shift due to the band electrons, we
have

Csff L1+ (SS/~M)EI 07 +free ~

If we wish to ascribe this result to a new effective mo-
ment, we have

where

Z= ZM+Zs
=Q e ZMe+ZSe+ZSf )

ZM. (P) = Zb (g,N) &M.(P) .

lfeffsetive P+(~S/~M)ff 0] PB ~

However, at large fields, such that

coshgpBH/2kT»(bs/SM)ff 0,

Here p=1/kT, h is Boltzmann's constant, Zb(p, N) is
the partition function of exactly S band electrons, and
SM,(p) is the Laplace transform of (1/fr)DM, . Similarly,

ZS.=zb(p, N+1) s„(p),
Zsr ——Zb(P, N —1)Ssf (P) .

We shall also write sM= SMf+'bMt, and ss ——use+ &sf.
The D's and, therefore, the 5's may be evaluated in
terms of linked-cluster methods to any desired order in
H~L1/(H0 —s)$Hf. Before doing this, however, we shall
first derive a formula for the magnetic moment.

4. THE TOTAL MAGNETIC MOMENT

Since the energy due to a uniform magnetic 6eld com-
mutes with H, we may write, for the total moment

5K= (1/Z) (BZ/BPH) .
This may be cast into the form

BR= (1/Z)$Zb(N) SMOR.+Zb(N) &MBA', (N)
+Zb(N —1)SSf5K„(N—1)

+Zb(N+1) Ss,5K~(N+1)], (6)
where

2=Zb(N) SM+Zb(N+1) SS.+Zb(N 1) dSf . —
In formula 6, the various 5R„denote the Pauli magnetic
moments of the indicated exact number of band elec-
trons, ' and

OR, = (1/SM) (88M/ffPH) (7)

is the part of the moment that will be shown to follow
very nearly a Brillouin curve of the free ion. Derivatives
of Ss have been neglected in (6), since they are very
nearly zero. (See Appendix. ) All the Pauli moments are
very nearly temperature-independent, and the various
different Z(N)'s differ very little from each other.
Therefore, the effective strongly temperature-dependent
part of the moment is, from (6),

Olr, (eff) =DR, /(1+ (Ss/SM)). (7a)

As we shall see, the factor (1+Ss/SM) —' has a strong

3 Note that if the number of band electrons is odd, the corre-
sponding M„will also have a Curie contribution, but for a Qnite
concentration of impurities this effect will not be seen. See also
the discussion in Sec. 6.

p,,gg reverts to p~.

S. CALCULATION OF Ss/%r

Equation (7a) shows that the effective moment will
be largest when Ss/SM is smallest. From the discussion
of the previous section we may infer the following quali-
tative behavior of this ratio:

Suppose that the situation is favorable to the existence
of a magnetic state, that is eq(0 (all energies are meas-
ured from the Fermi level) and eq+U) 0, as explained
by Anderson. ' In the lowest linked-cluster approxima-
tion, the imaginary part of D~ has a numerator of the
form

The second term in this expression is simply the
damping of a particular "magnetic" state calculated
by the lowest order "golden rule" formula. This damp-
ing, when averaged with the Boltzmann factor as weight
(to obtain bM), goes to zero with the temperature, be-
cause then no nonmagnetic states are available for the
magnetic one to decay into. It follows that b becomes
dominant everywhere in D~, so that eventually

be
—I'*

~Ma ds
x'+5'

as b —&0.
On the other hand, the S manifold, since it is not the

ground state of the uncoupled system, can decay into
magnetic states even at zero temperature. Therefore,

Im S Hg -II'g S

dominates the expressions for D8 and for 58. Hence,
58 depends on t/', e~, and V. It will, in fact, turn out
that in the lowest linked-cluster approximation 58 is
least when sq is as far below the Fermi level as 0q+U
is above, and this agrees with Anderson's Hartree-Fock
calculation. On the other hand, in contrast with the
Hartree-Fock result, while 58 decreases with increasing
U and decreasing V, no sharp lower bound on U/V'p, is

4 Corresponding to ordinary lowest order damping theory.
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obtained in the present theory, which is only carried
as far as the lowest linked-cluster approximation. It is
not inconceivable however that the inclusion of an in-
finite class of linked cluster terms' might give such a
sharp lower bound. (p, denotes the density of states of
single band electrons of both spins. )

In the basically nonmagnetic situation (es, ee+U
both above or both below the Fermi level) the opposite
situation prevails; 5q is of order unity, and 5~ comes
from low-order damping processes. However, in that
case the moment becomes exponentially small in 1/T
as the temperature tends to zero.

The linked-cluster theorem' states that

(2- 1)D~.(E)
=Im P (+ (E),Rsr.%' (E))
= Im Q {1/LE+es,—s—ib —G2r, (s,E,n)]},

where

Gsr. (s,E,n)

E —'U 'U '0 — 0 E
Hp —s—iB —linked

We also note in passing that in writing (8), we have
neglected the shift in the eI„resulting from R1G~,.
Since RlG~, is spin-dependent, this amounts to neglect-
ing any g shift of the d electron arising from coupling
with the band electrons. But because of the factor
(1+5e/&sr) ' this will almost always be masked by the
practical uncertainties concerning e~, U, and V.

Subs'tltlltlllg H) = V Q(es~ ee~+eer es~)) we find 1II1-

mediately

oGsr. (s—E)= V' Q
s E s io+—2ee—+U es—

(1—r»g„)
+V2 Q

s E s i—5+—e),.. (9)

In the calculation of Im'G~„we will, henceforth, neg-
lect the spin dependence, i.e., we will calculate ImpG~,
in the limit of zero 6eld. This is obviously justi6ed so
long as the magnetic single-particle energies are much
less than the critical energies ~g, U, and V.

In analogy with (8) and (9) we have

D..r( -E)
and where the subscript M(T always implies that the ex-
pectation value over the single-particle d state, with
spin orientation 0- is to be taken, although it is not ex-
plicitly shown. The effective perturbation here is

'0 = —Hl L1/ (HO —s—ib)]HI.

where

5+ImGs, ,r (s—E)
(10)

pE —s+E.,r(d) j'+@+ImG, I (s—E)j'

E,(d) =0,
Ef(d) =2ee+ U,

Thus, we have

5+ImG .(s E, )
(2 1)D~.=Z

(E s+ ee.)2+{f—i+ ImGII, (s,E,n) }'
and, in lowest approximation, we take

l'
'car. (s,z, )=~~ 2.(s)s, s,e.(e)) .

H, —s—ib

and where, in lowest approximation (neglecting spin
dependence)

8
+Iso

'Gs, .= V' Q
&r E—s—sb+eq —eq

OGS f V2-
s. E s zb+e&+—e&—

Ultimately, we thermally average D. Clearly the n
represent the various possible distributions of band-
state occupation numbers consistent with E. At low

temperatures the overwhelming weight will be attached
to those distributions for which the eI,'s are very nearly
Fermi factors, (1+e~'k) '. Therefore, we retain only
this one distribution, and then P 1=1, and the sum-
mation over n on the right-hand side of (8) can be
omitted. It follows that G, and therefore D is a function
of s-E alone.

ImoGe, (()= 2r Vsp, rr( —&+ ee)

ImoGer(&) =2rV2p, (1—22(]—ee)j.
(12b)

(12c)

In these formulas, the variation of the single-particle
density p, with energy has been neglected. It follows,
then, that

As we have already remarked, the eI,'s are Fermi func-
tions of eI,. Thus, we have

Im G ro, ($s)=~22rV2p, D 22($)+r»—( $+2eq+—U)j (12a)

'D .(~) -'»d»

{'rrV'p $1—rr($)+-22( —$+2ss+U)+b}e e»d$. (p ...)'+ {2r—~vsp,1 n(p)+I(—g+2«+—U)+5}2
+"{ V'p, $'1—22($+ )+22(—$+ +U)$+b}e e»d$—g

—P&do

P+ {2rVsp, (1 22($+ es)+—n( $+ee+ U—)j+5}2
' Or of a finite number of irreducible linked-cluster terms using modified propagators (that is to say, self-consistent propagators}.' For example, L. Van Hove, Physica 21, 901 (1955}.
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state, because this spin dependence eventually enters
the exponentials multiplying the integrals A and B.

The A term arose from an intermediate state in which
the d electron with spin 0-, was destroyed, and replaced
by a band electron with spin 0.. The 8 term involved an
intermediate state in which d electron with spin —r was
created, and a band electron with spin —0. was de-
stroyed. Suppose now that the levels are such that both
eq and eq+ U are negative. Then the 8 term dominates
at low temperatures. If, in the analysis leading to the
expression for 5~ careful count is kept of the spin in-
dices, it is found that the exponential coe@cient of the
8 integral inside the parenthesis of Eq. (12d) is

exp( P(«—, +~—+V .))-
where, for short, p . is the magnetic energy of a band
electron in spin state —0.. Together with the coefficient
outside the parenthesis of (12d) we get, since
~g,.+ eg, =2cg, a factor

—Pg—
ye

—I3 (2 eg+U)

outside the 8 integral. This would give the appearance
of having yielded a Curie-law-type band electron but
with negative intrinsic moment. This should indeed
occur, since one of the band electrons has become a d
electron in a real transition. Had we started with an
even number of band electrons, we must end up with an
odd number, and hence, with a Curie moment, after
the transition. Had we started with S odd, this Curie
moment should go away in the transition, and indeed it
does. Referring to Eq. (6), we see that the Curie part
of the band electron moment is very nearly equal to

L1/(1+ 58/5~)]LOR„(X)]c „..
This is cancelled by the newly acquired term just dis-
cussed, since that term corresponded to an electron
with negative moment.

Of course, as the number of impurities is increased
to a Gnite concentration, the question of even or odd
numbers of band electrons becomes immaterial, since
these will always arrange themselves in such a way that
at T=O, Ot @cost one has a Curie moment, thus con-
tributing negligibly to the total moment.

7. EXTENSION TO PARTIALLY FILLED d SHELLS

Quite obviously the above method can be extended
to magnetic states in which the d shell of the impurity
has more than one hole. It is necessary only to introduce
additional magnetic manifolds corresponding to two,
three, or more, holes. This will be done in a later paper.

APPENDIX. THE WEAK FIELD DEPENDENCE OF
&8 IN THE MAGNETIC CASE

Here we examine the very small Geld dependence of
8g, insofar as such dependence enters the exponential
factors outside the various integrals. In the process
leading to bq„a d electron of spin 0. is created, and a
band electron of spin 0 destroyed. The zero of the real
part of the denominator in EI'L1/(Ho —z—i5)]IV is
thus at

ea= ]+—eg+ g.'
where g" and g~ are the magnetic energies of the d and
band electrons, respectively.

Eventually, in the calculation of S~„ the difference
of these quantities appears in the exponential. It
follows that 5&, is given by

58,= (58,)Jr=0 coshL(g" —g') p~HP/2].

In the calculation of Sqf, we note that a d electron of
spin r, say, is destroyed and a band electron of spin r
created. The relevant denominator now vanishes at

and so, once again,

~sr= (~sr) ocoshL=(g" g')I ~&—P/2]

Thus, to the extent that d and b electrons diRer in g
value, there is an additional magnetic moment, ap-
proximately equal to

L1/(1+ &~/&s)]~

where M is the magnetic moment of a free electron with

g value g"—g~.


