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Spin-Wave Theory of Magnetic Resonance in Spiral Spin Structures:
Effect of an Applied Field
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The possibility of performing magnetic resonance experiments in substances with spiral spin structures
is studied. Particular attention is paid to the variation of spin arrangement and spin-wave spectrum with an
applied magnetic Geld in the plane of the spiral. Perturbation techniques give resonance frequencies for
small fields and for fields near the value, Hy, required for ferromagnetic alignment. These results then allow
a realistic extrapolation for the whole range of H. The effects of planar anisotropy and demagnetizing 6elds
on the variation of spin arrangement and on the spin-wave frequencies are discussed. The actual conditions
of resonance are examined for dysprosium and erbium. There is a discussion of the information that can be
obtained from polycrystalline specimens with particular reference to the experimental results for MnAu2.

1. INTRODUCTION above. Because of the high anisotropy and spiral
structure, the resonance conditions are quite different
from those in usual ferromagnetic crystals.

The normal technique of ferromagnetic resonance is
to vary an applied field in order to make the appropriate
spin-wave frequency equal to the signal frequency.
Thus it is essential to study the change in the mag-
netic structure and the spin-wave spectrum with
magnetic field. Since the anisotropy relative to the
crystal axis is so large, a field applied along the axis
has little effect. A field in the plane, however, can
seriously modify the spiral structure, and hence the
spin-wave spectrum. Nagamiya et a/. '' have studied
the modifications of structure for a spiral where the
spins point entirely in the plane, and there is no planar
anisotropy. For small fields they find a slight distortion
of the spiral with a small net moment along H. At a
critical field H, there is a first-order transition to a
fan-like structure with a large moment along H. As
the field increases still further, the angle of the fan
decreases continuously until complete ferromagnetic
alignment is achieved in a second-order transition at
H=Hy, which is approximately twice H, . Typically
H, is of order 104 G so that all these structures will be
within the range of conventional equipment.

In I these effects received only a preliminary exami-
nation. In this paper, the effect of H on the resonance
frequencies will be studied by a perturbation treatment
at small H and H Hy. This allows a realistic extrapo-
lation over the whole range of H. Comments will be
made on the relationship of the spin-wave spectrum to
the transitions at B, and B~. The effects of planar
anisotropy and demagnetizing fields on the transitions
and spin-wave frequencies will be discussed. The actual
conditions of resonance will be examined for Dy and Er,
and an attempt will be made to interpret the resonance

'NEUTRON diffraction studies have now demon-
strated the existence of spiral spin structures in

a number of materials. One relatively simple class of
such structures occurs in crystals with an axis of
symmetry, where the moments in each layer perpen-
dicular to this axis are aligned ferromagnetically. The
direction of these moments varies, however, from layer
to layer. The heavy rare-earth metals (Tb-Tm), which
are hexagonal, show such structures in some of their
magnetic phases, as does MnAu2 which is tetragonal.
Several authors' 4 have shown that these orderings are
a natural consequence of indirect exchange (via the
conduction electrons) and a strong crystalline electric
field, .The axial variation of the latter fixes the direction
of the moments relative to the symmetry axis. They
often point in the plane perpendicular to this axis
(Tb, Dy, Ho, and MnAus), sometimes along the axis
(Tm) or at some intermediate angle (Er). There is
also a smaller anisotropy of appropriate symmetry in
the plane perpendicular to the axis.

It appears likely that further information about the
magnetic properties could be obtained by a study of
the low-lying (spin-wave) states of these systems.
Inelastic neutron scattering and magnetic resonance
provide convenient techniques for this purpose. Accord-
ingly in a recent paper (referred to as I) Cooper et al. '
examined the spin waves which might be observed by
resonance experiments in the heavy rare earths. A
realistic Hamiltonian may be written down and investi-
gated for all the layer types of structure mentioned
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X=—P J;~S; Sy E2 g S—r2+XPH P S ~ (1)

which contained all the essential features, viz. , exchange,
an axial anisotropy, and a field applied in the plane.
Here f is the symmetry axis and t, i1 are mutually
perpendicular directions in the plane. The possible
anisotropy of the exchange and the planar anisotropy
have been dropped for ease of calculation. The effects
of planar anisotropy are discussed in Sec. 6b. The axial
anisotropy terms of fourth and sixth orders have also
been dropped. In I it was shown that these do not
enter into the spin-wave frequencies when the equi-
librium spin arrangement is a planar spiral. X is the
Lande factor taken with negative sign.

The Fourier transform of the exchange energy

J(q)=g J;;cosil (R;—R;) (2)

has its maximum at q=ko where ko is parallel to the f
axis. This means that when H =0, the spin arrangement
is a spiral with an angle kpc' between the moments of
successive planes of spacing c'. For planar arrangements
E2 is negative.

p, the equilibrium moment per atom at T, is of
magnitude —XPS with

S=MSp, (3)

where M is the normalized moment and Sp the total
angular momentum (orbital plus spin) of the atom. It
is convenient to define

a=S'P(k )—J(0)j,
b =S'P'(kp) —J(2kp)],
c=S'p(ko) —J (3ko)j,
d=s P (k,)—Z(4k, )j.

(4)

It is also convenient to define a rotating coordinate
system such that the Z axis is the equilibrium direction
of magnetization. If 8„is the angle of the magnetization
of the nth layer with respect to the P axis, the unit
vectors of the new system are

Y„=—g sin8„+q cos8„,
Z„=(cos8„+g sin8„.

data of Meyer and Asch" on MnAu2. This work shows
that information can be obtained from polycrystalline
samples, and the theory of such situations will be
discussed.

2. BASIC HAMILTONIAN

In I it was shown that in the case of a plane spiral
the general Hamiltonian applicable to the heavy rare-
earth metals could be reduced to a model form

%e must now proceed to make the approximations
necessary to treat the various cases of interest.

o) (k0) —p
—2E2 (a+b) $ ~ (6)

An rf field along f excites co(0); however a&(0) =0 for
H=O. Some discussion of the behavior of &u(0) for
nonzero H was given in I. In particular, it was shown,
using both the equations of motion method and a
modified perturbation procedure, that the term in a (0)
linear in H vanished. It was, therefore, speculated that
cu(0) H2. In the present paper it is shown that this is
correct and the expression for a&(0) is given.

In an experiment, the signal frequency would be held
constant and dc field varied. For this reason, the
variation of ~(ko) with H is of interest. It should be
noted that for dysprosium, co(ko) at H=O is expected
to be quite high (at least several cm ') because of the
large anisotropy energy present, typical of the heavy
rare earths. An analogous situation holds for the spiral-
cone phase of Er as discussed in Sec. 7.

We will first discuss the value of co(0) for nonzero H.
The variation of 8 with H can be found from the
condition that 8EO/88„=0, where Eo is the equilibrium
energy in the molecular field approximation

Gap/88 =0= 2 Q~ J„„S'sin(8„—8„)+pH sin8„. (7)

This equation can be solved by an iterative procedure
described in I. To third order in H,

8„=rskoc'+ $XH+AH' j sinlkoc'

+YH' sin'ekoc'+BH' sin'Nkoc', (8)

X= —y/(a+b),
Y=p'(4b c)/4(a+—b)'c,

~ = E"/2(a+b)'(b+d)c3((b+d) (—«+bc)
+4abd —12b3—8ab'} (9c)

B=Ep,'/3(a+b)'(b+d)cj(c(b+d)+6b(3b —d)}. (9d)

The Hamiltonian can be written in terms of the
X, Y, Z components of S; using (5). This gives

BC= —Q J;;[(S;„S;,+S;,S,,) cos(8, 8;)+S;,S—;,j
+PL—(pH/S)S cos8 —E2S '$ (10)

3. LOW FIELDS

For H=O, the spin arrangement is an undistorted
spiral with tI „=Nkpc'. The spin-wave spectrum and
resonance frequencies for this arrangement were dis-
cussed in I. It was shown that in this case there are two
frequencies that can be excited depending on the
polarization of the rf field. An rf field applied in the
$-g planes excites cv(ko).

'G Aseh and A J P Meyer Compt Rend 246 1180 (1958~
Here the subscript s on 8 labels individual spins rather

' G. Asch, J. Phys. Radium 20, 349 (1959). than layers. The 0, for all spins in the eth layer are
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S,(q) = 1V ilo g.S. e;P.R;

S„(q)=X '~' P; S; c."o R'

(11a)

(11b)

the equation of motion for S,(q) is

equal and given by (8). Additional terms, linear in
S;„and in S;„S;,would be present. These would give
rise to linear spin-wave terms, but vanish to terms of
second order in S,„because of (7). Hence, these terms
can be omitted in the noninteracting spin-wave approxi-
mation.

The equation of motion method is used to find the
energy of the low-lying excited magnetic states of the
system, the spin-wave states. Defining

where to order B'

Dp(q) =SL2J (ko) —J(ko+ q) —J(—ko+ q)]
p'X&H2[ —2J(kp+ q) 2J( kp+ q)
+2J(q)+J(q+2kp)+ J(q—2ko)] &

(13a)

D, (q) =Di(—q) = ——SHXL2J(ko) —2J(2ko) —J(q)
+J(q—2ko)+ J(q+kp) —J(q—p)]

D o(q) =D&(—q) = ioSH'X'[ —J(q—3ko) —2J(q—ko)

+2J(q) +2J(q —2ko) —J(q+kp)+ J(3kp)

+3J(kp) —2J(0)—2J(2kp)]
+iHo FS[2J(q—ko) —J(q—3ko) —J(q+ko)

+J(3kp) —J (kp) ]+pH'X/45, (15c)

(12) Go(q) = 25/J(ko) —J(q)—&o], (16a)

(16b)

(16c)

LS.(q) pe] = iVi8. (q) .

Gi(q) =G i(q) = HXb/5—,

G&(q) =G 2(q) = —(H'X'/25)b.

It may be noted that since E2 appears in K as the
coeKcient of P, S;,', (13) does not contain Ko while

(14) does. One may form the second commutator
[LS,(q),K],K] by commuting (13) with R and substi-
tuting (14). In some cases of interest like the rare
earths, the Eo term in [t 5,(q),R],K] is much larger
than the other terms and it is possible to approximate
the second commutator as

(Aco)'S. (q) = [[S.(q),se],se]

= (—2E&S) P D„(q)S,(q+rkp) . (17)

This yields an eigenvalue equation for cv'. The positive
and negative roots for each solution correspond simply
to left- and right-handed rotation of the spin vectors
in the excited state, or in the quantized formalism to
creation and destruction of excitations.

It was shown in I that Acp(0) had no term linear in H.
It can also be shown that there is no term with aP(0)
~Ho. Therefore, we seek oP(0) H4. To find cd'(0) to
order H4, the terms necessary in the equations of
motion are those for 5,(q)'s and 5„(q)'s linked to q= 0
to order H'. These terms are just those in (13) and (14)
with —2(r(2. The other quantity of interest, cd(kp),
is nonvanishing for H=O as already discussed. The
lowest order change in oP(ko) coming from H goes as H'.
There is an off-diagonal contribution to co (kp) to tllis
order from the r = &1 terms in (17). The r = &2 term
which is of order H' connects kp and —kp, because of
the degeneracy of co(ko) and co(—kp) this contributes
to co'(kp) to order Ho. Thus, both the quantities of
interest, cp(0) and co(kp), can be examined using just
the —2(r(2 terms retained in (13) and (14).

To find or(0), Eq. (17) couples 5 (0) to 5 (rkp) for r
between —2 and 2. Thus, the secular determinant is

—AcpS. (q) =LS,(q),se]

iD„(q)5„(q+rkp), (13)

=AwS„(q) = [5„(q),K]

The random-phase approximation is used in finding the
equations of motion. That is, S;, is replaced by S, the
thermal average, after taking the commutator. This
means that spin waves are defined as deviations from
the equilibrium spin arrangement at the temperature
in question.

Now if S,(q) were an operator generating an exact
excited eigenstate, then LS,(q),K] would be just a
constant times S,(q), and this would immediately give
the energy of the corresponding state. However, in
general any S,(q) in itself is not such an operator. In
general LS,(qi),K] consists of a combination of S„(q)'s
for several q related to q&. Thus, the proper operators to
generate excited states consist of a combination of
S,(q)'s and S„(q)'s for several values of q. The pro-
cedure for finding the co(q) corresponding to the generat-
ing operators is straightforward, but to obtain results
correct to a high order in II, one must solve equations
in which many q are linked. The determinants thus
become of high dimension and impossible to solve
analytically.

However, to low order in H the size of the determi-
nant which must be considered is relatively small.
From (8) it appears that the angle 8 of the Nth layer
contains terms in e+'"~0"" where r is an integer, and
that H" is the lowest order which occurs in such a term.
The energy was expressed in (10) in terms of 0„. If
this is now expanded in powers of H, the terms in
e+"op"" will mix spin waves of wave vector q+rkp to
those of wave vector q. For the present purpose—2&r&2 suffices. This will give the mixing of a spin
wave of given q with all spin waves linked to it to
order H'. The equations of motion are then of the form

iG„(q)5,(q+rkp), (14)
[ (&co)'8„—6„,[

=0, (18)
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where the determinant is symmetric and

A„=P—2EsS]D, „(rkp). (19)

A'~'(sink, )
Es(I H)s

= —2Es(a+b)+ 2b+2a c—
2(a+b)'

The D's have been given to order H' in (15). To
find &o'(0) to order H' requires Dp(0) and Di(0) to
orders H4 and H', respectively. These can be easily
found from the appropriate terms in PC, PC,S (0)j]
using the expression for e„correct to order H' given in
(8). Since oi'(0) is being found to order H', it is appro-
priate to consider just the terms in the secular determi-
nant contributing to &o'(0) to this order so that

Es Esb (2b —c)
App= — (pH)'— ( H)',

(a+b) c(a+b)4

E,(2b+2a —c)
~ii=~ i i= —2Es(a+b)+ (pH)',

2(a+b)'
~22 ~—2—2 2+2C )

Es ( c+2b)—
+py =+p y

= —E2pH- (IJ,H)',
4(a+b)'c

E,(pH)'
~p2= ~p-2=

2 (a+b)

Es(a—b) (c—2b)
~1—1 ( H)',

(a+b)'c

(3b a c~——
~(~H),

a+b )
~l—2 ~—12 ~2—2

and the solution is
Es c 4b) 'i'——(

Aoi(0) = (pH)'
2 (a+b)'c

(21)

A'pps (cosk p)

Es(IJ,H)'
= —2E, (a+b)— 4b 4a+c— —

2 (a+b)'

The behavior of the frequency oi(kp) to order Hs may
be obtained from the same determinant. )Although
the 6 in general are required to a lower order than in

(20).]In a plane spiral the states of &kp are degenerate
and A„„=A „„,h„,=A „,. It is therefore simpler to
consider the symmetric and antisymmetric combina-
tions 5*(kp)&5,(—kp). The positive combination will

be designated coskp and is coupled to the q=0 and
cos2kp states. The negative combination is designated
sinkp and is coupled to the sin2kp state. Explicit calcu-
lation gives

2 (—b+a) (c—2b) (—a+3b —c)'

(a+b c)— (23)

For the heavy rare earths, as discussed by both de
Gennes" and Cooper, " one expects that the Fourier
transform of the exchange field is a rapidly decreasing
function of q~ for q~&kp so that c))b&a. Under these
conditions, these frequencies may be approximately
written

Ii'oi'(coskp) = (—2Es) (a+b)
(pH)'(5a+b)-

4(a+b)'
(24)

Now the creation operator for the state with energy
Ao&(0) differs from 5 (0) by terms which go to zero as
II goes to zero. Thus, for small values of pH/(a+b) (the
expansion parameter)K, r corresponds to a creation
operator for the spin waves of energy Puo(0). Since the
expression (26) is independent of H, the transition
probability does not go to zero as H goes to zero. Thus,
an rf field polarized along l excites oi(0), given by (21)
with intensity typical of ferromagnetic resonance.

In I, it was shown that oi(kp) at H=O is excited by
an rf field in the $-q plane. When HQO, as was shown
above, oi(kp) splits into two frequencies, oi(coskp) and
oi(sinkp). Which of these is excited by an rf field in the
plane depends on the polarization of the rf field relative
to the dc field.

If the rf field is polarized along g,

BC„,i=C Q, S;„=C+,LS,„cosg,+5,, sino, ]. (27)

The resonant effect comes from the 5;„term. To lowest

(pH)'(5b —7a)-
5'oi (sinkp) = (—2E,) (a+ b) 1+ (25)

4(a+b)'

The frequency of the coskp mode decreases slowly with
It while that of the sinkp mode increases slowly.

The method using a second time derivative does not
give the mixing of the 5,(q) with the S„(q) to form the
generating operators. This information can be obtained
from (13) and (14) to zero order in H The pro. per
combinations are of the form oS,(q)+PS„(q) with
P/n= + (Dp/Gp)'" (evaluated for EI=0).

Next we look at the way in which these frequencies
may be excited by an rf field at low values of H. First,
the case when the rf field is polarized along t is con-
sidered. Then,

Kr f
——C Q, S,r = —C Q, 5;.=CilP"5.(0) . (26)

' P. G. de Gennes, Compt. Rend. 247, 1836 (1958)."B.R. Cooper, Proc. Phys. Soc. (London) 80, 1225 (1962).

2(—b+a) (c—2b) ( a+3b c)'— —
(22)

c ( c+a+b)—
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order in pH/(a+b), cos8, =cosko. R, ; so that

Kq pegp~ C Q j Spy cosko R,
=C,V»~LS„(k,)+5„(—ko) j. (2S)

Now Sy(ko)+Sz( —ko) is equal to a combination of the
creation and destruction operators for the spin-wave
state with energy Aa&(cosko) plus terms that go to zero
as pH/(a+b) goes to zero. Thus, an rf field along g
(perpendicular to the dc field) excites co(cosko) given
by (22). Since (28) is independent of H, the transition
probability is independent of H to lowest order in H,
and a&(cosko) is excited with intensity typical of ferro-
magnetic resonance. Other frequencies which tend to
&u(rko) as H goes to zero are excited with intensities
which are higher order in pH/(a+b). For small pH/
(a+b) these will have much lower intensity.

For an rf field polarized along (
BCt. ,i=C P;5;~=C P;(—5;„sin8;+5,, cos8;), (29)

+i reson= C Ei Ry sln8i

=C 1V'i'LS„(k,)—5„(—ko) j, (30)

to lowest order in H. $5„(ko)—5„(—ko)7 is equal to a
combination of the creation and destruction operators
for the spin-wave state with energy AM(sinko) plus
terms that go to zero as pH/(a+b) goes to zero. Thus,
an rf field along & (parallel to the dc field) excites
&a(sinko), given by (23). As in the case of the cosko
mode and for the same reasons, this resonance has
intensity typical of ferromagnetic resonance; while
other frequencies are present with intensities higher
order in pH/(a+b). For small pH/(a+b) therefore
these other frequencies have much lower intensity.

4. THE HIGH-FIELD CASE

intensity by an rf field polarized in the g i-plane. The
orbit described by the magnetization in the ru(0) mode
is strongly elliptical with the major axis of the ellipse
in the g-|' plane in the g direction because of the strong
anisotropy from K~. Thus, the greatest intensity will

be obtained when the rf 6eld is polarized along q.
For H just less than Hy, the spin arrangement is a

ferromagnetic fan,"given by

sin(8, /2) = 28 sinko' R, , (33)

5~+=5, +iS,„,
S; =S;.—iSy.

(34a)

(34b)

Omitting the terms linear in raising and lowering
operators this gives

X=—P I;;(-', (5~+5;++5; 5; )(1—cosL8,—8;])

+—,'5, 5, (1+cos[8;—8;])+5;,5;, cos(8;—8;)}
—(pH/5)Q S;, cos8;

'K QL(5;+)'+—(-5 )'+2S,+5; $. (35)

This can be transformed to spin-wave operators using
the usual transformation

(25~'~'
S~+—

~ ~

Pg~—iqRg

kiv)
(36a)

8= (p, (Hf —H)]'"/2(2tlyb)"'. (33b)

We now examine the spin waves for the fan structure
and see what resonance frequencies can be excited by
a uniform rf field. The Hamiltonian can be written in
terms of the usual spin raising and lowering operators

Hr ——2a/p, , (31)

We will next treat the case of high dc field. As has
been discussed by Nagamiya et al.' ~ there is a value of
magnetic field

Pg O~qa
xi

S;,=S—X 'Q a *a t."" "R'.

(36b)

(36c)

such that for H) Hf the equilibrium spin arrangement
is ordinary ferromagnetic alignment along the dc field.
For H &Hy, as shown by Nagamiya et al. , the energy is
lower for a "fan" spin arrangement to be described
below. That a transition occurs at H=H~ can also be
seen by examining the spin-wave spectrum for case A II
of I, when the spin arrangement is ferromagnetic. From
equation (I.55) (with 8=~/2, so that H, =H), it is
seen that kco(ko) is zero for H=Hr, indicating some
transition.

For H&Hf, the situation is just that for ordinary
ferromagnetic resonance. The only frequency excited
is A~(0) obtained from (I.56).

h(u (0)= $( 2KgS+ pH/S) (pH/S) jv' — (32)

This frequency can be excited with usual ferromagnetic

Using the thermal average value for S is equivalent to
the random-phase approximation of Sec. 3.

Comparing (36) and (11), it can be seen that

(37a)

(25)1/2
S.(a) = (~.—~-.*)

2i
(37b)

Using (33), the Hamiltonian (35) may be expanded to
terms of second order in 5 and transformed to spin-wave
operators using (36). The omission of the terms in (35)
linear in S,+ and S; is justified since these vanish to
second order in 8. The transformed Hamiltonian to
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order P can be written as

K=Ep+Kp+PBC«.

Here Ep is the equilibrium energy. The terms quadratic
in spin-wave operators and independent of 8 are given
by Kp.

p,H
Xp ———2S g[J(q) —J(0)]a,*a,+ P a,*a,

S e
E2S

P (aqa «+uq*a q*+2aq*aq) (39)
Q

The term given by %2 is a rather complicated expression
quadratic in spin-wave operators which links a given uq

to aq & aq+o», a q, a «+»o. To find Aoi (q), in (38) we
consider X,p as the unperturbed Hamiltonian and PK2
as the perturbation for small 5. Since BCp gives a nonzero
value of Aoi(q) for all q but &kp, to find Ao&(q) [except
oi(&ko)] to order P we need consider only the terms in

X diagonal in
~ q ~. The spin-wave frequency for kp is a

special case to be considered below. Then keeping only
terms diagonal in q, to second order in 5,

Kg;,o= Q[25A«a«*a«+ SB,(a,*a,*+a,a,)], (40)

where

and —kp to order P) are

K(ko)=252k, [ako*ako+a k,*a ko]

+25Bk [ak a k +ak a

2Pa
+ [ 4(ako a—ko+a—ko ako)+uk«uk«

S

+,*,*+, ,+a- .*a-,*] (46)

Then we seek a transformation to new creation and
destruction operators, nj,0* and e~„which diagonalize

(46).
nko qikoako+fikoa- ko +«O'-koa-ko+k-koako ~ (47)

There are two different nk, that diagonalize (46). One

of these is the symmetric solution labeled coskp as in

(22).
n„,k osn, (coskp)+tn„(coskp),

where

n*(COSkp) = (ako+u —ko )+ (a—ko+ako )
= (2/5)'I'[5, (kp)+5, (—kp)7, (49a)

no(COSkp)= (ako a-ko )+(a—ko ako )
=q(2/5)"'[5. (kp)+5„(—kp)], (49b)

pB
2SAq=

S

with energy given by—25[J(q) —J(0)]—E«S
Aoi(coskp) = [(8/S) (—E«5) (f —u)]'lob. (50)

28
+45+ 2J(q) —J(q+k, )—J(q—k,)+—,(41) The other solution is the antisymmetric solution

labeled sinkp as in (23)

2SB,= —E&5—455'[2J(q)

—J (q+kp) —J(q—kp)]. (42)

The Hamiltonian of (40) is easily diagonalized using
the procedure described in I, that is by transforming
to new spin-wave operators nq and Aq

n„„ko=pn, (sinkp)+rn„(sinkp),

n, (sinkp) = (ak,+a k,*)—(a k,+ak,*)

( 2 )1/2

[S,(ko) —5*(—ko)],
ksi

(51)

(52a)

nq =co«a«+A«a

The resulting spin-wave energies are

(43)
no (slnko) = (ako a—ko ) (a—ko ako )

(2 ~'I'
= q(

—
)

[S„(kp)—S„(—kp)] (52b)
ES)

Aoi(q) =25[(A «+ Bq) (A q
—Bq)]'~' (44)

correct to order P. In particular, for q=0 this gives

IIV (pH
Ap~(0) =

5&5
8—2E«5

i

— (—2E«5) 'I', (45)
i 5

so that for IJ, (Hr H) small compared to (—2a+k), Aoi(0)
diGers by only a small amount from the expression for
H)Hr given in (32).

The spin-wave energy for q=&kp is a special case
for two reasons. First, for q=&kp the unperturbed
energy, Ko, in (38) gives Aoi(&kp)=0. Second, O'K&

connects these two degenerate states, and the problem
must be properly diagonalized to remove this degener-
acy. The pertinent terms in & (all terms linking +kp

with energy given by

8 1/2

Aoo (sinkp) = —(—E«5) (Sa+k) h.
S

(53)

The next order contributions to (50) and (53) are of
order 5'.

It remains to be seen which of these frequencies can
be excited with a uniform rf field. If the rf field is
polarized along 1

3C,i r= C Q; 5;,=Cia"'(up+a«*)
= Co&'"(qi ono —&ono*+«i«no* —&ono) . (54)
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This excites the frequency pp(0) where the intensity and from (52)
dr(0) is given by Kp,...„=Cplil'"'lpga (sinkp) . (66)

8r(0) = CN(w p b—p)' (55)

The coefficients m)0 and bo can be found by the same
diagonalization procedure used to find the energy
expression, (44). dr(0) for H(Hy differs from that for
H&Hy only by terms of order P, so that the inte»sity
in the fan region is essentially the same as in the
ferromagnetic region.

If the rf field is polarized along g,

From (51) an.d (52)

iis(sln~p) = (nsinpo+asinie*)/2r y (67)

The condition

d„. i,s EP/r'. (68)

so an rf field polarized along g excites the frequency
cp(sinkp) given by (53) with intensity

X f s
——C P; S;„=C P, (S,, cosg;+S;, sing; ) . (56)

The resonant effect comes from the term in S;„
gives

(69)

(70)

~s reson =C Pi Sis costi s (57) and the transformation which gives the energy has

and to second order in P

cosg;=1—8P sin'kp R, .
So,

(58)
Thus,

—2E2S

r (4P/S) (Sa+b)

1t2

(71)

Xs „,.„=C(ap—ap*)+terms of order P. (59)

Thus a field polarized along rl excites Sip(0), where the
and

intensity ds(0) is given by

(72)

(73)

~( reson= C g Sip slngj
& (63)

8; 0;
sin8;=2 sin—cos—

2 2

=45 sinkp R;(1—45' sin kp ' Ri) i'

=4& sink, R, , (64)

to order P.

Kp,.„„=CbP;S,„sinkp R,
=CilP"SLSs(kp) —S„(—kp) j, (65)

ds(0) = CE(wp+bp)',

with the same constant as in (55).It is a straightforward
procedure to find bo and mo and to examine the ratio
ds(0)/dr(0). This is given by

&s(0)/&r(0) = 2EpS'/@HE as—b —&0, (61)

so that for large anisotropy ds (0)))dr (0) as expected from
the ellipticity of the magnetization orbit for this mode.
Thus, an rf Geld polarized along g (planar) will be more
effective than a field polarized along f (perpendicular
to the plane) in exciting the cp(0) resonance. The
frequency cp (2kp) will also be excited by a field polarized
along g but with intensity proportional to b4, which is
probably negligibly small.

Finally, we examine the resonance excited for an rf
field polarized along g (parallel to the dc Geld).

K i )=C Q; S't=C g;(—S;„sing;+S;, cos8;) . (62)

The resonant eBect comes from the term in S;„.

This means that the intensity of the &p(sinkp) resonance
goes to zero with 5 in the same way as the frequency
goes to zero.

5. EXTRAPOLATION TO INTERMEDIATE FIELDS:
BEHAVIOR AT H,

The theory discussed in Secs. 3 and 4 deals with the
circumstances for very small magnetic held, and for
magnetic field in the vicinity of HJ. It is desirable to
extend the discussion to intermediate fields, in partic-
ular for fields near H, . To the present time, it has
proved impossible to give an exact theory for the
first-order transition at H, . Nagamiya and co-workers'
have given an approximate expression for H, /Hr.

H./Hf = L(1+p~) (2+p~) 3" (1+p~), —(74a)

where
pN= bla (74b)

This expression is quite insensitive to the value of p~.
For Pili ——0, H,/Hy 0.41; for Ppi=i, H, /——Hg 0.45;——
while the ratio tends to 0.5 as Pili goes to op.

To obtain the values of the resonance frequencies at
fields intermediate to 0 and Hy, one can extrapolate
towards H =H, from both sides using the formula for
H 0 and H Hy. Since the frequencies are discon-
tinuous at H„as discussed below, it appears that these
extrapolations may be adequate right to H, . In eGect,
the pertinent low-field resonance frequency expressions
in Sec. 3 are expansions in pH/(a+b) while those for
high fields in Sec. 4 are expansions in pH/(2a+b).
Thus if b»u, as it is in the two-layer interaction model
for the rare earths, ' " the expansion parameters are
still small at H= H, .
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I k'dk/(expLE(k)/kT) —1), (75)

Since the transition at H, is first order, the spin-wave
spectrum is expected to change discontinuously. In this
respect, the behavior is much different from that for
the second-order transition at H~. For the HJ transition
there is a spin-wave energy that goes to zero, and the
spin-wave spectrum for the fan goes over continuously
into that for the ferromagnetic region. This is expected
since the spin configuration changes continuously at a
second-order transition. The new ground state is a
state reached by small continuous deviations of spin
arrangement from the old ground state, and may
therefore be described by spin waves. The equality of
energy for the new and old ground states at the transi-
tion implies that some spin-wave energy goes to zero.
In the ferromagnetic phase the average number of
spin waves with q kp will measure the tendency of
the order to distort into the fan. This number,

Q(o)
Hg

FIG. 1. Variation of resonance frequencies with applied 6eld
for the case of zero planar anisotropy. (The resonances can be
excited only for values of H where the variation is indicated by
a solid line. )

where k= q—kp and P(k) H& C~P + (H Hf)3 at
small k, remains finite and well behaved as H~ Hy.
(Hg is the anisotropy field, 2EsS/

~

X—
~ P in the present

case.) However, the derivative Bn/BH diverges (near
k=O) as is expected for a second-order transition.

For the first-order transition at H„on the other
hand, the spin-wave spectrum is expected to be discon-
tinuous with no spin-wave state of zero energy. Such
behavior is expected, in general, for a first-order transi-
tion because the equilibrium spin configuration changes
discontinuously, and the new ground state cannot be
described by small spin deviations from the old ground
state.

While it is impossible to give an exact description of
the behavior at H, in the present case, there is an
analogous problem that can be described exactly, which
illustrates these ideas. This is the situation where the
Hamiltonian for the system consists of the same terms
as (1) plus an additional planar anisotropy of the form,

PP;S,ts, where I'—is positive and small compared
to E2. The exchange is taken as antiferromagnetic
between neighboring layers only. At zero field the
equilibrium spin arrangement is antiferromagnetic
along t. As H increases, the equilibrium arrangement
does not change until a 6eld H,*where the spin arrange-
ment changes discontinuously to a canted structure
with the two sublattices inclined at &8(0(8(pr/2) to
the +$ axis. As the field is increased further, 8 decreases
continuously until 8=0 (ferromagnetic alignment) is
reached at a 6eld Hy*.

For this antiferromagnetic model, it is possible to
calculate both the equilibrium spin configuration and
the spin-wave spectrum exactly for all values of H as is
shown in the Appendix. The behavior at the two
transitions agrees with the general discussion above.

A schematic plot of the relevant spin-wave fre-
quencies (q=O, &kp and combinations) as a function

of H obtained from the extrapolation scheme described
above is shown in Fig. 1 for the case, valid for the
rare-earth spirals, wherec))b))aand theaxial anisotropy
is large. The q=0 mode energy rises quadratically at
small H and is still small at H=H, if 5))a. At H,
there is a sharp discontinuity, and pp(0) goes to the
value given by (45) which has only a small correction
in the fan amplitude from the ferromagnetic result (32).
In some cases of interest (e.g. , dysprosium discussed
in Sec. 7) the usual signal frequencies for ferromagnetic
resonance would fall in the range of the discontinuity
at H, . In these cases, the &o(0) frequency would be
observed at the critical field, H, . Nagamiya" has
discussed an analogous critical resonance for the
antiferromagnetic resonance in CuC12 2820.

The q=kp mode energy is large in the spiral phase.
For nonzero H, &v(kp) splits into two frequencies, one
increasing, the other decreasing with H, but the change
is small for H(H, if b))a. There is a discontinuity at
H, from about ~) ~P(HgB')'~' to ~'A~P(H~A')'~' where
Hz denotes the axial anisotropy field,

H~ = 2EsS'/p—
A'= a/p, , 73'= b/IJ,

(76a)

(76b)

represent the fields corresponding to the energies g and
b. The energies for both the sinko and the cosko mode
fall to zero at H~. Only the sinko mode is expected to
be observable with reasonable intensity for H&H, ;
and since its intensity goes as 8, it is likely to be weaker
than the usual ferromagnetic resonance intensity.

In general, for the parameters pertinent to a partic-
ular material at a particular temperature, one can draw
a diagram such as Fig. 1. The signal frequency then
would correspond to a horizontal line at the appropriate
value of ~, and resonances would be observed at fields

n T. Nagannya, Progr. Theoret. Phys. (Kyoto) ll, 309 (1954).
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given by its intersections with the curves. For the
case where H~ is large and 8' larger than A', resonance
is most likely to be observed at H=H, and weakly at
an H slightly less than Hy. If H& and 8' are smaller,
more complex patterns may be observed.

Sec. 5. At a critical 6eld H&, a fan structure is formed
which closes up to give a ferromagnetic structure as
H& is increased to a value HLy. The ferromagnetic
alignment is in the H plane at an angle to l slightly
greater than the cone angle. The 6eld H&~ is given by

6. EXTENSIONS OF RESONANCE CONDITIONS
pH, r ——2a sing. (80)

The magnetic moments here lie along the generators
of a cone of semivertical angle, P, so that their projec-
tions into the hexagonal plane is a spiral. This con6gu-
ration occurs at low T in Er. The components are

S~(R,)=S sing cos(kp' R~),

S„(R;)=S sing sin(kp R,),
Sr(R;)=S cosP.

(77)

The resonances for the unperturbed spiral cone have
been discussed in I. For H=O, both the resonances
corresponding to IqI =kp and that for q=O can be
excited depending on the polarization of the rf 6eld.
Just as for the planar spiral, co(0) =0 for H=O. The
+kp and —kp frequencies, however, are split at H=O
for the cone. From (I.45),

(a—b) cosP 1
A(o(akp) =+ +—([a+bj[cos'P (a+b)

S S
2SP sjn&P(Q& —L)j)i/& (78)

(with correction of a misprint in the sign of L). Here,
L depends on higher order anisotropies and is de6ned
by (I.28). In the presence of a Geld along the t direction
the cone angle changes by a small amount

b (cosP) =H/H~', (79)

where H~' 2S'(—Ep+L)/IJ, is th——e axial anisotropy
6eld which stabilizes the conical configuration. For a
Geld along i, the value of A&a(&kp) for nonzero H is
obtained from (78) by simply replacing f by its new
value. Thus, the change in (78) is small for attainable
Gelds along l in the rare earths where Hz' is very large.
o&(0)=0 is unchanged by a Geld along l'. As for the
plane spiral, a 6eld in the plane is necessary to affect
the resonance frequencies.

In the presence of a field H, in the plane along g the
change in cone angle f is small, but it is possible to
break down the spiral structure. The components in
the plane show a behavior similar to that discussed in

Various more complicated cases than that of a pl'ne
spiral with no planar anisotropy were considered in I.
The labor of extending the calculations of Secs. 3 and 4
to such cases proved prohibitive, but it is possible to
make qualitative estimates of the behavior of the
pertinent spin-wave frequencies based on those calcu-
lations.

A. Cone

For small fields in the plane, in analogy to the
results of Sec. 3, one expects the changes in &u(0) and
co(&kp) to be small; the expressions for the resonant
frequencies are clearly expansions in pH, /(a+b) sing
rather than pH/(a+5). As H& passes H&. there will be
a discontinuous change in the frequencies, and at
II&&H&, the energies will change to join continuously
on to those obtained in the ferromagnetic region. From
Eq. (55) of I, cv(kp) goes to zero at H, i. At H, r the
co(0) frequency goes to the ordinary ferromagnetic
frequency

App(0) =
sing sing

—2S sing[Ep —L]
1/2

(81)

which is excited by an rf held in the plane perpendicular
to the magnetization. Thus, the general behavior of
the spin-wave resonant frequencies is again that shown
in Fig. 1, and the conditions on HL likely to provide
resonances are as for H in the planar spiral. The
principal change is the splitting of the +kp and —kp
frequencies at low dc 6eld. The expected behavior for
erbium is discussed in Sec. 7.

B. Effect of Planar Anisotropy

In addition to the applied magnetic field there is an
additional force which tends to produce some distortion
of the spiral arrangement of spins in the plane, namely
the anisotropy within that plane which in the rare earths
is hexagonal. Calculations of this effect are complicated,
but the calculations carried out in I and Sec. 3 above
indicate the form of the results which might be ex-
pected. As in Sec. 3 the change in the spin-wave
frequencies due to this distortion alone may be ex-
panded in powers of

(12Hp/G)' (82)

where the hexagonal anisotropy 6eld H& is related to
the hexagonal crystal field energy ipPpP[(S+) +(S )'j
by

IxIpH. =—supp (83)
and

Il IPG= [2~(ko)—~(7kp) —~(5kp) jS.
In the spiral structure this may be expected to cause
changes in the kp energy given by (6) to order (12H&/
G)'. For the sharply decreasing J(p) expected for the
heavy rare-earth metals"" and typical values of kp,
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G is quite large and the change in the kp frequency is
likely to be small. More interesting is the change in
co(0) which in analogy with (21) may be expected to be

P~(0)5P-(12H,)4H./G. (85)

overcome this torque to form a fan. At the first-order
transition, however, the energy is compared and the
factor 36 is absent. The resonant frequencies in the
intermediate case are shown in Fig. 2.

C. Demagnetizing Field EBectsThis gives a small nonzero co(0) as H ~ 0.
The addition of an external field in the presence of

such an hexagonal field raises further complications.
For example, the observed values of H, and H~ will be
affected since the anisotropy field may help (or hinder)
the creation of a ferromagnetic arrangement as it does
in Dy.' ' "The effects on the transition at Hy can be
seen from the results of I for the ferromagnetic phase
using (I.87)

Pico(ko)5'= IHIP(a —2A'+36H )
X(a.+H+6ay, —2A'), (86)

For H&H„where the crystal has a sizeable static
magnetization OR, the long range dipole-dipole inter-
actions will give rise to large demagnetizing fields for
some sample shapes. These 6elds will modify the static
properties, in particular the transition fields H, and H~,
as well as the resonant frequencies. If there is a large
demagnetizing factor in the direction of H (i.e., the P
axis), the transition at H, cannot be sharp. The crystal
will presumably form domains of fan structure where
the local 6eld is above critical, while in the rest of the
crystal it remains below critical. Under these circum
stances the transition will begin at H=H, but only
be completed at H= H, +NOR (where N is the demag-
netizing factor). The resonance which occurs at the
transition field will now have a width in 6eld comparable
to the demagnetizing Geld. It will therefore be essential
to use crystals with zero demagnetizing factor in the
direction of the applied Geld. This is the case in the
usual disk geometry used in ferromagnetic resonance
with the dc 6eld parallel to the surface. Since the rf
field is applied in the plane of the disk, the best intensity
for M(0) with H)H, and &u(coskp) with H&a, is
obtained with the 1 axis out of the plane. On the other
hand, to observe the low-frequency &u(0) resonance at
H&H„ it would be necessary to have t in the plane.
Since OR is continuous at Hy, there will be no similar
width effect near this Geld; the external 6eld at which
the ferromagnetic phase begins will, however, be
Hr+NPR.

In addition, the resonant frequencies will be modified
throughout the fan and ferromagnetic structures.
Following KitteP' as in (I.88), the main resonance will
become

which goes to zero when H=2A —36By„and at some-
what higher fields when H is applied in a direction
other than an easy hexagonal axis. Thus, the second-
order transition takes place at a new critical 6eld
Hr'=2A' 36ap. Belo—w this field the kp energy will

increase again from zero in a roughly symmetrical
fashion as in Sec. 4. Also at H) Hy' the q= 0 frequency
is modified.

I ~(0)5 = 2& ~+ (H —(N$ N„)n—lt)— —
S

P~(0)5'= I'IP(36H, —H)(a, —H+6H. ), (88)
p

X —(H—(N(—N„)0lT)
S

9"(0)5'= I~I P(a+36Hz)(HA+H+6H p) (87).
At H(H f it has an extrapolation only slightly different
from this while the fan structure persists.

The transition to a spiral takes place at a new
critical Geld H, '=H, —By,. Below this the effects of Hy,

are additive to (21), (24), and (25).
When H p is large enough (Hp) A'), rather than just

slightly perturbing the spiral structure, it may (as in
dysprosium'' at low T) stabilize the ferromagnetic
structure so that (87) holds down to H=0. The hexag-
onal anisotropy then causes a 6nite spin-wave energy
at q=o as calculated in (I.107). This energy gap in
the spin wave spectrum has important consequences
in the specific heat" and other properties. The gap
may be destroyed by a field in the hard hexagonal
direction. Then from (I.107)

so that &v(0) goes to zero for H=36H„.
There is an intermediate case A') Hp) A'/35 where

the BJ transition is eliminated, and only a single
first-order transition from spiral to ferromagnet is
observed. (In this case the kp spin-wave energies are
greater than zero for all H.) The origin of the difference
of a factor of 36 multiplying Hy, in H, ' and Hy' may be
seen by considering a spin of small angular deviation c

from the hexagonal easy axis. The energy is then
~P'6' cos6c and the anisotropy exerts a torque

—d(Pp'cos6p)/dp=36PpPp The ex. change forces must

13 D. R. Behrendt, S. Legvold, and F. H. Spedding, Phys. Rev.
109, 1544 (1958).

(89)

instead of (32) in the ferromagnetic region. In the fan
region (50) and (53) will be modified as g becomes
Ep(af+NpR H)/4(2o+$)5'".

D. Polycrystals

The resonance expected from polycrystalline samples
of crystals with a plane spiral spin structure due to a
strong axial anisotropy 6eld are readily calculated in
the case where the planar anisotropy is small. Taking

' C. Kittel, Phys, Rev. 7$, f55 (&$48)
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the applied field along (0,0,1) a typical crystallite will

have its axis ( at 8 to this, say (sin8, 0,cos8). If H&&H&

the magnetization will remain in the plane perpendicular
to this axis, along g= (—cos8, 0, sin8). The y axis,
perpendicular to ti in the plane is then (0,1,0). For the
normal resonance condition, H, &J H, say along (cosQ,
sing, 0).

Thus the main effect of the applied field is to produce
an effective field H sino in the plane, which can distort
the spiral. This particular crystallite will make a
transition to a fan structure when H sino=H, . For a
given H those crystallites with 0&0, will have fan
structures and those with 8(0, spirals, where

The k= 0 resonance is given by (93c) for Hp(+, and
by (93b) when Hp) H. although in the latter case there
is a weak component like (93c).The coskp resonance is
like (93b) for H p(H, and is not observed if Hp)H, .
The sinkp resonance is like (93a). Thus, it appears that
interesting information can be obtained from poly-
crystalline samples.

'l. NUMERICAL ESTIMATES

The above theory allows a more complete discussion
of the results to be expected in typical cases than was
possible in I.

8,= sin —'(H, /H) . (90) A. Dysprosium

(H )2-1/2

. (91)
&Hi

A similar expression is shown plotted by Herpin and
Meriel. " A discontinuity occurs in dp/dH at H=H, .
In the presence of planar anisotropy this discontinuity
is smoothed out.

If a resonance occurs for a field Ho applied in the
plane, it will be observed at H in those crystallites with

8= sin '(Hp/H) . (»)
Those resonances excited by H, &ll $ have an intensity
d(8) proportional to cos'8, H, &ll( to sin'8, and Hrfllr/ to
unity, when averaged over g. The resonant intensity
as H varies

rJ (H) = d (8) sin8 (d8/dH)

)H ~s-r/s

HP &Hi
H, ll~, (»a)

H 2- ( H )2-—1/2

(»b)
H' &Hi

H 4- pH ~'- —'/'

(93c)
HP &Hi

The last two cases give a discontinuous rise at H=HO
followed by a gradual tail. The first case gives a rise
at H=HO with infinite slope and a maximum at
H =V3Hp/2.

'4 A. Herpin and P. Meriel, J. Phys. Radium 22, 337 (196t).

The number of crystallites with axes lying between 0

and 8+d8 is proportional to sin8d8. If the magnetization
of each crystallite changes discontinuously by p' at
H sin8= H„ the magnetization observed along H
coming from such crystallites in the fan phase is

x/2 /4& 4r (H )
/t4' sin'8d8= ———sin 'l

&Hi

The value

a= 2.4M' cm—',
b= 18.4' cm—'

c= 102.4M' cm—',
P6'5'= —1.56M' cm—',

/4=0. 467X10 'M cm '/G.

E2= —1.48 cm '

was found in Ref. 11 by fitting the difference of the
parallel and perpendicular paramagnetic Curie temper-
atures with an axial anisotropy of the form —E25„~'.
The point-charge crystal field model of Elliott' gives a
value about 0.8 times this. This difference is not
sufhcient to affect the qualitative behavior discussed
below.

The possibility of exciting the ordinary re(0) reso-
nance in the low-temperature ferromagnetic phase of
dysprosium was discussed in I under Case A V and in
Eqs. (104)—(107) of the Discussion. As discussed there,
and in. Sec. 6B of this paper, &u(0) might be brought
to quite a low value by applying a sufficiently strong
field along a hard hexagonal axis. The field necessary
to do this, however, is of the order 36Hy, . Since P6'5'
is about 1 or 2 cm ', this field would be of the order of
fifty or a hundred thousand gauss. This can also be
seen from the magnetization measurements of Behrendt
et al. '~ The value of field necessary to align the magnet-
ization along a hard axis at equilibrium is also 36H&.
From Fig. 1 of Ref. 13, it can be seen that at 4.2'K
with a held of 8000 G applied along a hard direction,
the magnetization is not saturated, and is approaching
the value with H along an easy axis quite slowly as H
increases. Thus, the field necessary to bring Are(0) into
the range of usual microwave frequencies is likely to be
higher than that usually obtainable in a laboratory.

It is interesting to look at the possibility of doing
resonance experiments in the high-temperature spiral
phase of dysprosium. The three-layer model of Elliott
is used to obtain the values of a, b, c and P6' for a
typical case at T 100'K when kpc'=4r/6 and M
=0.846. The parameters so obtained are
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in the f rI-plane, probably most strongly for an rf field
along g.

Crb (cos ko)

4) (ko)

Hc

FIG. 2. Variation of resonance frequencies with applied Geld
for the case of planar anisotropy large enough to eliminate the
fan phase.

Since the hexagonal anisotropy energy drops off as
M', its magnitude has decreased su%ciently at this
temperature so that its effect is to give rise to the
intermediate case discussed at the end of Sec. 6(b) and
illustrated by Fig. 2. The value of H, from exchange
effects alone is 4.3X10' G. For a field along an easy
axis, hexagonal anisotropy lowers this to II,'=2.9X10'
6, while for a field along a hard axis the critical Geld

H,"=3.4X10' G. Below H, ', the hexagonal anisotropy
has negligible effect on the resonance frequencies for
the sharply rising J(il) of dysprosium. For H&H, ',
a&(0)cxH' is given by (21). At H=H, ' for field along an
easy axis, fin&(0)=0 01 cm '. .Thus, throughout the
region H&H. ', or(0) is very low compared to the signal
frequencies usual for ferromagnetic resonance experi-
ments. It is possible that the curve of o~(0) versus H
for H(H, ' could be measured by radio-frequency
techniques. The line has the intensity characteristic of
ferromagnetic resonance, but its width may be too
great. For H) H, ' along an easy axis, pi(0) is given by
(8/), and at H„ho~(0) =8.2 cm '. Thus, for the usual
signal frequencies between 0.1 and 1 cm—', p~(0) is
probably observed as a resonance at the critical field H, .

At H=O, Ace(kp) =6.6 crn '. The M(sinkp) frequency
increases by less than 1% for H=H, ', while &u(coskp)

decreases by a similar amount. At II,', these frequencies
change discontinuously to the value 7.4 cm ' obtained
from (86). (The values of pp(0) and &v(kp) at H,"with
field along a hard hexagonal axis obtained from (I.85)
and (I.87) are about 1% less than the corresponding
values at H, ' for field along an easy axis. $ Thus, the
kp frequencies are probably too high to be observed
with the usual signal frequencies even as a critical
resonance.

Therefore, the only resonance for dysprosium in the
spiral phase observable with the usual signal frequencies
is a resonance at II,' (for dc field along an easy axis)
coming from pp(0). This is excited by an rf field polarized

B. Erbium

The Geld for ferromagnetic alignment HLy is given in
(80) in terms of a and iP. The cone angle (27') can be
found from the neutron di6raction results'6 and the
magnetization data. " On the other hand, H&, corre-
sponds to the critical field" of 17 kOe at 4.2'K. Then
if Hir=2Hi, as in the planar ease, since P is known,
a can be found from (80). In the two-layer model, ' b is
determined from a and the spiral angle (41').

From a and b the splitting of the two frequencies for
Wkp at H =0 is found to be 19.6 cm '. It is of interest
to see whether the lower of these two frequencies would
fall in the usual microwave range. This depends on the
anisotropy term, (Ics—L). If this is evaluated on the
point-charge model, ' then the lower kp frequency is
about 9 cm—'. The anisotropy constants obtained from
the point-charge model give a value for the difference
of the perpendicular and parallel paramagnetic Curie
temperatures that is about half the correct value,
although the cone angle is only slightly smaller than
the measured value. One can obtain values of the
anisotropy constants by fitting the Curie temperatures
and cone angle which give values of the lower ho
frequency varying by 2 or 3 cm ' from the value for
the point-charge model. However, the values are still
much greater than the usual maximum signal frequency
of 1 cm '. For H=O, pp(0) is zero. (The planar ani-
sotropy is negligible for erbium even at low T.) o~(0)
for H) H, / is given by (81), and is about 8 cm ' at H, /.
On the other hand, o~(&kp) go to zero at H, /.

Thus with the exception of the splitting between the
+kp and —kp frequencies, one expects much the same
sort of behavior for the resonance frequencies in erbium
as discussed for the plane spiral in Sec. 5. There is
probably a resonance at H&, which is most strongly
excited by an rf field along g (because this is tangent
to the cone surface where it cuts the H plane); and
also a weak resonance just below HLy excited by an
rf field at the cone angle in the g &plane (pa-rallel the
magnetization at Hir).

C. MnAu2

This substance is known to have a spiral structure
below 360'K with moments p, =3.5P on the Mn atoms
at T=O, pointing within the layers perpendicular to a
tetragonal axis." The static magnetic properties of
polycrystalline samples have been studied by Meyer

' J.W. Cable, E. O. Wellan, W. C. Koehler, and M. K. Wilkin-
son, Suppl. J. Appl. Phys. 32, 49S (1961).» R. W. Green, S. I.egvold, and F. H. Spedding, Phys. Rev.
122, 827 (1961).' A. Herpin, P. Meriel, and J. Villain, Compt. Rend. 249,
1334 (1959).
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and Taglang. "From these data it is possible to derive
some of the constants required in the theory to predict
the resonance conditions. Between the Neel point and
room temperature H, and Hf are given in this reference,
and have a ratio close to two as predicted by Nagamiya
eI, a/. In fact, the observed Hf'= Hf —16H, is less than
twice the observed H =H Hq The quadratic ani-
sotropy field H, here occurs with different numerical
factors obtained by analogy with the discussion in Sec.
68. This indicates that Hq&300 6 in this temperature
region. Assuming that this is negligible, the axial
anisotropy may be obtained from the observed approach
to saturation in large applied fields. Using the expression
given in Ref. 19

p, (H) =p(1—b/H'); b= Hg'/15, (94)

with Hz defined as in Eq. (76a), Meyer has calculated
Hg=4. 1X10' 6 at 170'K, 3.5X10' at 290'K and
3.2)&104 at 320'K. This is roughly proportional to p
although the low T value is smaller than expected.

The value of A' Ldefined in Eq. (76b)] can be
determined from the measured H„but unfortunately
there is no evidence on the other Fourier transforms of
the exchange. Full numerical estimates can only be
made if some assumption is made, and in the absence
of other information we use a three layer model similar
to that in the rare earths. Here pc=2m/7 (approx. ) so
that the relation c))b))a can again be used. This
predicts h&o(kp) 4 cm ' at 320'K )from (6)] and
somewhat larger at lower T. For H(H, this is little
changed and A~(0) is very small 0.05 cm ' at H=H,
Lusing (21)]. At H just greater than H„A&a(c sokp)

from (50) is about 2 cm ' and A~(sinkp) a little larger.
These frequencies tend to zero at H f At H) H,

Resonance experiments have been carried out on
polycrystalline samples of this substance by Meyer and
Asch. '' The resonance conditions of a polycrystal in
Sec. 6D show that the peak occurs at the same field
as it would for an applied field in the plane. Most of
the results are then in agreement with the above
discussion. At T= 290 and 320'K the resonance is at H, .
By 350'K just below T& the resonance is broader and
might consist of the ko resonance at H, and the k=0
resonance at higher fieMs. At T&T~ normal para-
magnetic resonance is observed. A serious discrepancy
between theory and experiment exists, however, in the
case of the single low-temperature experiment. At
T= 170'K the magnetization curves indicate H, = 10' G
but a strong resonance occurs at H=6000 G. Further
low-temperature measurements are required to establish
the origin of this eGect.
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APPENDIX

In this Appendix we summarize a study of the
behavior of an antiferromagnetic model in which both
a first-order and a second-order transition are present.

The Hamiltonian for the system is

Z= —P I;;S,"S;

++L—(yH/S)S;) EpS,r' I'S,—P]. (A—1)
i

A(o(0) =2PLH(H+H~)]'~', (95)

since the last term in (45) is negligible. This is also
about 2 cm ' at H =H, .

Thus, for T&320'K the discontinuous change in
A&a(0) at H=H, covers the microwave range and
predicts resonance at that field. A second weak reso-
nance from the ko modes should occur near Hf.

At higher temperatures H, and II~ will decrease
rapidly. The eGect of this may be roughly seen by
expanding the scale of Fig. 1. Then the ordinate
appropriate to the resonant frequency increases. Since
in this substance &p(0) and ~(sinkp) are similar at H
just greater than H„ it appears that as T increases the
pp(0) resonance will move to higher fields. Eventually
as H~ —& 0 at T~ this becomes the normal paramagnetic
resonance at A~= 2PH. The kp resonances will move to
lower fields and replace the &p(0) resonance at H=H, .
At still higher T this resonance will abruptly disappear
to lower fields.

19 A. J. P. Meyer and P. Taglang, J. Phys. Radium 17, 260
(1956).

Here J;, is taken only between spins in adjacent layers
along the t direction. It is assumed that there is a very
large exchange within each layer holding all spins in a
layer parallel. Then I;; is such that for S„and S„+i
any spins in the nth and (n+1)th layers, respectively,—2JS S~i gives the exchange interaction of S„with
the total spin of the (n+1) th layer, and I is negative.
The anisotropy terms have EC2 negative and P positive
with I'&(~E&~. Also E&is taken much larger 'than any
other interaction in (1) so that Ep serves to hold the
spins in equilibrium in the planes perpendicular to the
1 axis ($-rl planes). The term in I' then gives an easy
axis along the P direction within the planes. So if H is
zero, the spins are aligned parallel to the g direction
with alternate layers antiparallel.

The behavior of the equilibrium spin configuration
as H increases is as follows. For H less than a certain
value H,*, the spin configuration is unchanged. The
spins are antiparallel in alternate layers. At H=H, ~

the spin arrangement "Oops" to one where alternate
layers are canted at angles +8 and —0 to H, respec-
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tively, (0&8&2'7r). Here,

H,*=2LP(4IJ [
—P))'"

cos8=H/2(4f J [ P),—
(A2)

(A3)

Region (2). H,*&H&Hf* Canted
Spin Arrangement

The spin-wave frequencies are given by

(putting p= 1, 5'= 1 for convenience).
As H increases, cos8 increases continuously (8

decreases) until H=Hr*, where the spins are ferro-
magnetically aligned. For B&Bf*, the spins remain
ferromagnetically aligned.

H,*=2(4(J (
—P). (A4)

The spin-wave behavior in each of the three regions
can be summarized.

a)'(q) = (—2E2) —2
(4~J( —P)

&&L2i Ji (cosq —1)+Pi+ (A8)

For H) V2 (4
~
J

~ P), the—minimum of a&'(q) is at q = s",
while for H&V2(4~ J

~

—P), the minimum of oP(q) is at
q= 0. For small I', this means that at B,~ the minimum
of the spectrum is for q= 0, and at Bf*the minimum is
at q=x. Thus, at B,*

Region (1).0 & H &H,*Antiferromagnet

4P'';.(q) = (—2E,)~

E4[Ji-P
(A9)

For q along ( the spin-wave frequencies are given by
(with lattice spacing c'= 1 and A = 1)

~'(q) = (—It2)L4(2I JI+P)
~2(16J& cos~q+H2) 12j. (A5)

~(q) and &o(x—q) are degenerate. The maximum of the
spectrum occurs for q=0 or m and the + sign before
the square root. The minimum occurs for q=0 or x
and —sign before the square root. So that at B=B,*,
the minimum of the spectrum is

M2„,„,.=4(—z,)L2~ J~+P
—(4J2+4P~ J

(
—P2)»~j (A6)

but since

(4J'+4P
(
J I —P')'"& (4J'+4P I J[+P')'"

=2(J]+P, (A7)

this is positive. So that at the limit of B=B,* coming
from the antiferromagnetic region, all spin-wave
energies are positive.

This is positive, so that at the limit of B=B,* coming
from the canted region all spin. -wave energies are
positive. At B=B,*, the spin-wave spectrum is
discontinuous. It is easy to show that for small I', at
B=B,*, the bottom of the spin-wave spectrum is lower
and the top higher in the antiferromagnetic region as
compared to the canted region.

For II=Hf*, the minimum of (A8) occurs for q=m
and is equal to zero. Thus the transition at By* corre-
sponds to the spin wave frequency ~(7r) going to zero.

Region (3). H) Hr* Ferromagnet
The spin-wave frequencies are

~'(q) = —4E2$2[Ji (cosq —1)+~H+Pj. (A10)

The minimum of this is for q=n. . At H=Hr*, &u(m. ) is
zero. Thus, the transition at B=B~*corresponds to
co(~) going to zero in both the canted and ferromagnetic
region. Since the equilibrium state is the same at the
B=Bf*limit for both the canted and the ferromagnetic
arrangement, the spin-wave spectrum is continuous
at Bf*.


