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Fourier transforms, (81) and (813) differ for tt=0
only by 1"0 being replaced by FDO 'D. Hence, the
relation

f's(p q) =De '(q)D(q)l'(p, q) (814)
is valid.

If we assume that I'„(p,q) is analytic in q so that
q f'(p, q) vanishes for q ~ 0, we need only show
D '(q)Do(q) =1 in the limit q~ 0, in order to prove
(4.3). The relation qoi'(p, q)=G '(p+q) —G '(p) then
follows from (85), (814) in the limit q —&0. To prove

D '(qs)Ds(qs)=1 or equivalently Ds '(qe)D(qs) =1 we
use Eq. (812):

Do '(q t)D(q; t,t') =3(t—t') —ta(q)(Tp(q, t) ~ t(q, t')),
where D(q; t t') —= t'(T—(io(q, t) yt(q t') }).Now for q=0,
p(q, t) =IV(t) =Ã is a constant of the motion, i,e., the
total number of electrons. Thus,

qof.Ds '(qs)D(qs)

which completes our proof.
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The general theory of the dynamical motion and gamma-ray cross section for a single impurity nucleus
harmonically coupled to an arbitrary collection of E atoms is developed in supermatrix representation. The
relevant properties of the system are expressed in terms of a functional matrix fe(Q) of order 31VX31V,
where Q is the mass-reduced force-constant matrix. Our approach is to use a Cauchy singular integral
representation for fe(Q) involving an integration along the real frequency, co, axis. Matrix partitioning
techniques are used to reduce our problem to one of evaluating the 3X3 impurity atom dynamic response
matrix, (G}»=(1+e)lI&+reA»] 'A», where r=~' es. Here, S —is an arbitrarily small number, and
e+I =ratio of impurity atom to host atom mass, (Mr/Mrr). For an arbitrary physical arrangement of the
atoms, A» ——((Ie&,+» —D, +&( tFt/Mr)r] 'D*+i}», where the subscript, 1, refers to the impurity atom coordi-
nates, &F is the perturbation in force-constant matrix, and s is the number of sites over which the perturba-
tion extends. The D,+1 matrix has matrix elements obtained from the elements of the pure host matrix
Drr=LrIe+ FtrMrr-r) ', Frr is the pure host force-constant matrix. Ie is a kXk unit matrix.

The general approach is used to study the dynamic response of an impurity atom substituted in the alu-
minum lattice with arbitrary c and nearest neighbor AF. The A matrix is block diagonalized by introducing
the molecular vibration symmetry coordinates and A» is characterized by a 4X4 symmetry adapted Green s
function matrix whose elements have been tabulated. A generalized tensor force-constant model is used with
Walker s force constants characterizing DII, the pure aluminum lattice Green s function matrix. Similar
studies are carried out for a Sn'" atom isotopically substituted in Ge, where the relevant Green s functions
are derived from Phillip's frequency spectrum.

The dynamical motion and gamma-ray cross section of impurity nuclei are characterized by a dynam. ic
response function, E, which is related to the imaginary part of (G}ii.Typical It functions are presented for
Fe" in Al for various changes in AF and for Sn'" in Ge with AF=O. Our results show that the dynamical
behavior of impurity atoms in real lattices is quite sensitive to the vibrational properties of the host lattice.
The resonant fraction of y rays absorbed by the impurity nucleus, f, the Lamb-Mossbauer coefficient, 2t/t/',

and mean-square velocity, (ep), , of Feer-Al are tabulated for several AF changes as a function of temperature.
Our results are extrapolated to study the temperature dependence of 2' and f for Fe"-Cu and Fe'~-Pt. From
the results derived in this paper, it is possible to determine J, 2W, and (or ), for any e and ttF for Al as a
host lattice.

I. INTRODUCTION

~HE purpose of this paper is to present the results
of detailed studies of the dynamical motion and

y-ray cross section of a Mossbauer impurity nucleus
bound in a locally perturbed host crystal at an arbitrary
temperature. ' A completely general lattice dynamics

' For a recent review article on the Mossbauer effect see
H. Frauenfelder, The Mossbauer Egest (W. A. Benjamin, Inc. ,
New York, 1962). Studies of a general nature involving impurity
atom motion, resonant Mossbauer absorption by impurity nuclei,
and optical absorption by impurity vibrational modes have been
carried out by A. A. Maradudin, in Lecture Notes of Brandeis
University 1962 Summer Institute of Theoretical Physics PW. A.
Benjamin, Inc. (to be published)].

model is assumed in which the impurity nucleus is
harmonically coupled to the host lattice with force con-
stants which differ from those of the pure host lattice.

A considerable amount of research has been carried
out on vibrational as well as electronic impurity states
in crystals. Green's function approaches to these prob-
lems appear to have been developed by Lifshitz, ' Koster

2 Qualitative studies of the impurity vibrational problem have
been carried out by I. M. Lifshitz and co-workers in Russia
over the past twenty years. See I. M. Lifshitz, Suppl. Nuovo
Cimento 3, 733 (1956) for references to prior work.
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and Slater, ' and Lax, 4 independently. Techniques have
also been developed by Lifshitz, ' Montroll and Potts, s

and Mahanty, Maradudin, and Weiss' which enable one
to compute changes in thermodynamic functions in
terms of contour integrals involving the host-lattice
Green's functions. This approach has been used by
Wallis and Maradudin7 to calculate the optical absorp-
tion associated with an impurity vibrational mode in a
linear chain. Maradudin, Flinn, and Ruby' have used
these techniques to compute the mean-square velocity of
an atom substituted into the lattice isotopically. They'
have also calculated the mean-square displacement of an
impurity atom valid at temperatures in the vicinity of
the Debye temperature and above.

Brout and Visscher" have pointed out that one might
observe a Mossbauer pip associated with a virtual bound
mode in the continuum arising from the isotopic sub-
stitution of a heavy-mass Mossbauer nuclei into a light-
mass host lattice. Lehman and DeWames, "using tech-
niques described in this paper, have calculated the
cross section for the virtual mode considered by Brout
and Visscher and find it to be quite small.

Visscher" has recently studied the resonant absorp-
tion of gamma rays by impurity nuclei using a nearest
neighbor central-force model for a simple cubic lattice.
The motivation for this approach apparently lies in the
fact that the mathematical development is fairly simple,
However, our goal is to use the Mossbauer effect to gain
insight into the coupling of a substitutional impurity
atom with its surrounding host-lattice atoms. Conse-
quently, our studies have been focused on those host
lattices whose phonon spectra have been determined by
neutron or x-ray diffraction methods.

In Sec. II of this paper, we show that the problem
of determining the dynamical motion and p-ray cross
section of a single impurity nucleus harmonically
bound to X—1 other atoms can be formulated in
supermatrix representation. This formulation leads to
the necessity of evaluating a 3X3 submatrix (associated
with the impurity-atom motion) which is obtained
from a 31VX3E matrix function fs(Q), where
O'=M-'~'FM —'~' M and F are the mass matrix and
force constant matrices, respectively. The customary
practice" of representing fs(Q) as a contour integral
enclosing the eigenvalues of 0 and excluding the poles

' G. F. Koster and J. C. Slater, Phys. Rev. 94, 1392 (1954);
95, 1167 (1954).' M. Lax, Phys. Rev. 94, i391 ~$954).' E. W. Montroll and R. 3. Potts, Phys. Rev. 100, 525 (1955);
102, 72 (1956).

6 J. Mahanty, A. A. Maradudin, and Q. Weiss, Progr. Theoret.
Phys. (Kyoto) 20, 369 (1958).

7 R. F. Wallis and A. A. Maradudin, Progr. Theoret. Phys.
(Kyoto) 24, 1055 (1960).

A. A. Maradudin, P. Flinn, and S. Ruby, Phys. Rev. 1Z6, 9
(1962).' A. A. Maradudin and P. Flinn, Phys. Rev. 126, 2059 (1962).

's R. Brout and W. Visscher, Phys. Rev. Letters 9, 54 (1962)."G. W. Lehman and R. E. DeWames, Phys. Rev. Letters 9,
344 (1962).

"W. M. Visscher, Phys. Rev. 129, 28 (1963).

of fs(&u), where to is a complex frequency variable, breaks
down for our dynamical motion and cross-section prob-
lem since the fs(co)'s involved are unbounded off the
real axis. Consequently, our approach is to use a Cauchy
singular integral representation involving an integration
over the real frequency axis. Procedures of this type
have also been used by other workers, notably in 6eM
theoretic problems. The details of our approach appear
new and are designed for the problem at hand. Briefly,
our problem reduces to that of obtaining a simple repre-
sentation of {G(r))tt——{LrIgv—0'] ')tt, where r=co'

i5—, I» is a 31VX3X identity matrix, the subscript on
the curly bracket refers to the 3X3 impurity atom sub-
matrix obtained from the 3EX3X supermatrix G, and
8 is a small positive number which is set equal to zero
after the integration is carried out. We use partitioning
techniques, whose importance has recently been stressed
by Lowdin (see Ref. 21), to establish the remarkably
simple result that {G(r))tt=(1+e)[Is+reArt] 'Art,
where e+1=Mr/M~, where Mlr and Mr denote host
and impurity atom masses, respectively, and A is G when
the impurity atom mass is M~. The A matrix, in turn,
can be expressed in terms of the host GJI and a matrix
AF describing the perturbation in F introduced by the
presence of the impurity atom. Further simplification
results when the host assembly forms a periodic lattice.
In this case, one should introduce molecular vibration
symmetry coordinates as basis functions and construct
the matrix elements of G~ in this basis. The total num-
ber of symmetry coordinates is 3(s+1), where s is the
number of perturbed neighboring atoms of the impurity
atom. The 3X3 Art matrix is then expressed in terms
of a symmetry adapted Green's function matrix whose
order is equal to number of symmetry coordinates which
couple to the impurity atom motion. This motion is
characterized by a dynamical response function, K,
which depends upon frequency. This function has the
valuable property of always being normalized to unity.
We also establish in this section that the gamma-ray
cross section, mean square displacement, and mean-
square velocity of the impurity nucleus are simply
related to averages over the E function.

In Sec. III, the general formulas of Sec. II are used to
calculate the dynamic response function, E, for a
Sn'" atom isotopically substituted into the germanium
lattice. The Green's function for this problem is tabu-
lated using Phillip's frequency spectrum" for ger-
manium obtained from 8rockhouse and Iyengar's
neutron data. " The temperature dependence of the
Lamb-Mossbauer coefficient, ' 28', is calculated for the
Ge —Sn'" problem and compared with experimental
and theoretical calculations of Sn —Sn'".

In Sec. IV, we consider the general problem of deter-
mining the K function for an impurity nucleus sub-
stituted in the aluminum lattice. A complete character-

"J.C. Phillips, Phys. Rev. 113, 147 (1959).
'4 B. N. Brockhouse and P. K. Iyengar, Phys. Rev. 111, 747

(1958).
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ization of the vibrational spectrum associated with this
general impurity problem requires 39 symmetry co-
ordinates. Fortunately, the Green's function for this
problem transforms according to the full cubic group
and only three impurity modes associated with arbitrary
changes in. nearest-neighbor force constants couple to
the impurity nucleus. Consequently, a 4X4 Green's
function symmetry adapted matrix is needed in order
to calculate the dynamical behavior of the impurity
nucleus. This Green's function matrix is tabulated using
Walker's generalized tensor force model for aluminum
derived from x-ray data. "Detailed calculations of the
dynamic response function for Al—Fe'~ are also pre-
sented in graphical form. The temperature dependence
of the Lamb-Mossbauer coeScient, 2$", is also given
for various changes in first-neighbor force constants of
the Fe'~ nucleus. By appropriate scaling of the fre-
quency spectrum, we also study the cases Cu—Fe'~
and Pt—Fe'".

II. GENERAL THEORETICAL CONSIDERATIONS

As a prelude to deriving formulas which enable us to
calculate the Mossbauer absorption coefficient of an
impurity nucleus bound harmonically to E atoms in a
crystal, we consider the classical motion of an impurity
nucleus of mass, Sf', which has received a momentum
transfer pi at time, t=0. We denote the amplitude
of motion of the X atoms in terms of a supervector,
y= (yi, ys, .

,y&), where y; refers to the harmonic dis-
placement of the ith atom. The subscript i= i always
refers to the impurity atom; similarly, the next s sub-
scripts label the s nearest neighbor atoms. The equations
of motion of our E coupled atoms are

My'(1) = —Fy(t), (1)
where M and F are the mass and force-constant super-
matrices. " The mass supermatrix is diagona1 with a
block of 3)&3 matrices on the diagonal denoted by

M;, = bye Is, i,j= 1, 2, 3 (2)

M,,= 8@MrrI, , i,j)3, (3)

where &II refers to the mass of a host-lattice atom, and
Is is a 3X3 identity matrix. Dots over y(/) in Eq. (1)
and elsewhere refer to time differentiation. The time
dependence of the momentum of the N atoms will be
denoted by

p(&)=—My(&) . (4)

Equation (1) is to be solved under the boundary
conditions

p(0)=(pi 0,o, ",0),
y(o)=(o0 "0)

where 0 is a 3-component null vector.
"C.3.Walker, Phys. Rev. 103, 547 (1956).
' We follow the convention that all nonsubscripted bold-face

symbols are supervectors or supermatrices; similarly, double-
subscripted bold-faced symbols are 3X3 matrices and single-
subscripted bold-faced symbols are 3-component vectors, with
the exception that 0 is always a 3-component null vector.

A. Time Dependence of Impurity
Atom Momentum

We now recall that the eigenvalues of I' are positive
definite. Hence, we can construct the positive square-
root symmetric matrix

Q = (M—'i'FM —'i') 'i'

and obtain a formal solution to Eq. (1) which vanishes
at t=0 given by

y(t, ) =M "'Q ' sin(Q~)M "'p(0)

The matrix operator Q 'sin(Qt) has a unique repre-
sentation in power-series form since the eigenvalue
spectrum of Q is bounded. One can also express this
operator in spectral form using the eigenfunctions of Q.
However, the formal development is more compact in
matrix form. The solution given by Eq. (7) satisfies the
second boundary condition My(0) =p(0). Our final re-
sult for p, obtained from Eqs. (4) and (7), is

p(t) =M'i' cos(Q/) M 'i'p(0),

so that the momentum of the impurity atom is given by

pi(t) = {cos(Qt)}iipi(0), (9)

where { }ii refers to the 3)(3 matrix associated with
the impurity atom in the supermatrix representation
of cos(Qt).

An explicit representation of cos(Qt) suitable for the
impurity atom problem will be developed in Sec. II C.

B. Formulas for Calculating Mossbauer Cross
Sections for an Impurity Nucleus

Lamb'~ has derived the absorption and emission cross
section for a process in which momentum is suddenly
transferred to an atom of the lattice and Mossbauer"
has applied this theory to the resonant absorption of
gamma rays in crystals. Kaufman and Lipkin" have
re-examined Lamb's treatment and show that his ap-
proximate formulas are, in fact, exact. The derivation
given by Kaufman and Lipkin is valid for an arbitrary
collection of X atoms harmonically bound. The total
cross section for absorption of a gamma ray having
momentum, p&, by an impurity nucleus of mass, 3Ez,
can be written as

f 2'l
8'(E)=

(

—
i
Re dy,

jr&

&«PL—p(-'l')+ip(& —~o)3e""', (1o)

where Eo is the energy difference between excited and
ground state of the nucleus, I' is the natural linewidth

'r W. E. Lamb, Phys. Rev. 55, 190 (1939).
's R. L. Mossbauer, Z. Physik 151, 124 (1958).Also see Ref. 1."B.Kaufman and H. J. Lipkin, Ann. Phys. (N.Y.) 18, 294

(1962).
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2g(/) = —E ~.'
1+ps &s +|'s&8

(11)

where

of the nuclear excited state, and E is the energy of the
gamma ray. . The function g(/z) is given by

—~ & r & . This approach avoids the usual pitfalls of
contour integral techniques for functions which are un-
bounded when one goes oB the real axis as is the case
here when p, or /, —+ ~. We note that for fo(x) continu-
ous, fo(—x) = fo(x), and bounded for —m &x& m,
one has

and

y, = exp( —ka&, /k T) and x, = exp(+iI'zan, /z), (12)
lim dr f0(~ r/, '/'){[z i/—'z x—'] z -[—v+9 x—'] z)

0,'= (pz uz, )'/(/z(o, Mr) . (13)

we can write
+Ps=&8/s p (14)

2g(/) = Z(1zz uz. )'H(~.)

The vector u&, denotes the amplitude of the impurity
atom in the sth mode belonging to the frequency co, .
The co, 's are eigenvalues of the Q matrix de6ned by
Eq. (6). Since uz. is the element of the supervector of the
generalized amplitude function, y„associated with the
impurity atom motion, where

=—lim
~ 8~0

= fo(&)

according to Cauchy's well-known singular integral
theorem. " Since all of the functions discussed in this
paper are bounded and continuous on the real axis, we
can replace x by Q in the first line of Eq. (18) and obtain
a useful representation of a large class of matrix opera-
tors. Hence, we have established, using Eqs. (6) and
(18), that

= 2 [1zz H(~.)uz.](uz. 1zz) (15)

fp(Q) = (1/zr) lim

where

dz fo(~ r )
"-') ImG(r —ib), (19)

for suitably defined H(/d, ), see Eq. (11) or Eq. (17)
below. Setting p= (pz, 0, ,0), it follows that pz and uz,
can be replaced by p and y„respectively. Now, formally
H(a&, )y,—:H(Q)y„and since the y„s=1, 2, , 31V,
form a complete set of orthonormal vectors, one has

G(z.) = [7.I3~—M z/2FM z/2] (20)

and Im stands for the imaginary part of the expression
which follows it.

In order to obtain pz(t) and g(/z), we simply need

{G()& ={II —M "'FM "'] ') (21)
P(a Ay, )(y, a)=(a Aa).

Consequently, Eq. (15) can be written as

2g(/) =[1 H(Q)1]—=[» {H(Q))zz»]. (16)
M= MHI, ~+aM (22)

that is, the 3&(3 matrix associated with the impurity
atom.

We now set

From Eqs. (11) and (13), one can write

H(&u) = (1/s3fr) [(cos//s 1) coth(s/2k T)——i sin/zs], (17)

where 2;= Ace.

Consequently, g(/z) can be determined from the 3)&3
matrix {H(Q))zz. One should also note that H(cv) is
bounded along the real frequency axis, is an analytic
function for all 0(T&~, and has simple poles at
s =2mimkT on the imaginary axis, where m is an
integer.

C. Integral Representation of Matrix Operators
Associated. with Impurity-Atom Motion

In order to calculate yz(t) and g(/z), we need an
explicit representation for the 3X3 matrices, {cos(Q/)) zz

and {H(Q)jzz which are even functions of their argu-
ment, Q. We now develop an integral representation
of a matrix operator fo(Q) in terms of fo(~ r~ '/ ) for

F= FH+AF, (23)

Dzz(r) = [rI, v —FzrMH
—']—', (24)

where the subscript, H, refers to the pure host lattice.
By straightforward matrix manipulation, one finds,
using Eqs. (21), (22), (23), and (24), that

[rIs~—M "'FM "'] '
=Mz/&[I, +A&(PM/~ )]—zAMz/&~ —z (25)

where
A = [I3~—Dzz(AF/MIz)]

—'DH .
In deriving Eq. (25), we have used the fact that

[B—'C+ I,~]-z—=[B+C]—'B

(26)

for arbitrary C and nonsingular B. Next, we obtain a
simple form for the inverse matrix shown on the right

I E. C. Titchmarsh, Introducti on to the Theory of FONri er
Integrals (Oxford University Press, I,@@don 1937},p. 30.
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kA„, A„)
(2&)

where the subscript 1 refers to the impurity atom and b

refers to the remaining E—1 atoms of the crystal. By
direct construction, one finds that

side of Eq. (25) by using partitioning techniques. " In
supermatrix form, one has

2. Construction of D,+i for a Cubic Crystal

We now pass on to the case of an arbitrary cubic
crystal lattice and take our impurity atom to be located
at the center. The most convenient description of the
motion of the atoms is given by using a supermatrix
representa, tion for D,+i. We denote the (j,k) element of
D,+i by a 3X3 matrix, d, &, where j and k refer to the
positions of the impurity and s perturbed sites. Using
periodic boundary conditions it is easy to show that'

AM —' (I,+A„re, 0 ) '
I, +A.

MIr k Ap, re, Ipl
(28) d, v,

——S—' P [v.ip —A.(q)$ ' exp[iq (R,—Rv,)j, (35)

where

e= (Mr/Mg;) —1,
where q labels the 1V (continuum) propagation vectors

(29) which range over the appropriate reduced Brillouin
zone, R, denotes the position of the jth atom, and

and 0 is a 3X3(X—1) null matrix. By inspection, one
notes that

Bii, 0)—' B„—' 0)

since BB '=B 'B—= Ipvv. Hence, when the previous re-
sults are combined one obtains from Eq. (21)

A.(q)= P [1—exp( —iq R,)jF(R,)3Ivr '. (36)
R)'&0

{FH},v,
——F(R,—Rv) . (3&)

The form of Eq. (36) arises from the fact that the (j,k)
element of the force-constant supermatrix, Ftv, depends
only upon R,—Rq, i.e.,

where

{G(r) }„=(1+p) Ai, [I,+A„v ef
—') (31) The polarization vectors, gv„and frequencies, &o,~, are

obtained by solving

Aii ——{[Ip~—DIr(~F/~iI) j—'DIv} ii, (32) ~(q)4= (~,a)'4. (38)

00

lim Im—
8~0

dv. {G(r —vb) }„—= Ip, (33)

a result obtained by setting fp(! r!"')= 1.

is the 3&(3 matrix associated with the impurity atom in
the supermatrix representation of A.

Equations (31) and (32) are completely general and
hold for arbitrary AF, (FIr/cV&&) and e for an arbitrary
collection of E harmonically coupled atoms. An inspec-
tion of our integral theorem, Eq. (19), now shows that

V IIt

+p(q) ~ &&~ Vo'~ Vo&
2

(39)

Physically, it is obvious that D,+I transforms accord-
ing to the group of operations associated with the posi-
tions of the s atoms relative to the impurity atom.
Equation (35) involves a summation over the entire
reduced Brillouin zone. It can be shown that [rip —A 1 '
transforms like A.(q) with respect to rotational operators
on q. The symmetry properties of A.(q) are identical
to those of

1. Iiorce-CorIstant Perturbatio&I, Restricted to s Sites

In practice, one restricts the perturbation in F to
atoms in the neighborhood of the impurity atom. If s
denotes the number of atoms over which the perturba-
tion extends relative to the impurity atom, then A» is
considerably simplified. Using steps analogous to the
construction of Eq. (28), one readily finds that

A»= {[ip(+i) D.+i(~F/~It)l 'D+i}» (34)

where D,~i is a 3(z+1)X3(z+1)matrix obtained from
the appropriate 3(z+1) elements of DIr[Eq. (24)j.
"Per-Olov Lowdin, Studies in I'erturbation Theory. IU. Solution

of E&genoatue Problem by Proj cotton Operator Formatvsm (Quantum
Chemistry Group, Uppsala University, Uppsala, Sweden, 1960).

which is a special case of A in the long-wavelength limit.
Hence, the symmetry properties associated with d, v,

[Eq. (35)] are identical to

dp(R) =Pp A.p exp[iq Rj,
which can be written as

~ex)—dp(R) = cl,„,
.~az)

~ay) ~xz

~op~ ~o& Zp exp(~q R) &

~yz) ~zz

(41)

where 8„=it'/Bet', 8,„=8'/ctxBy, etc. The sum in
Eq. (41) belongs to the completely symmetrical or I'&

representation with respect to symmetry operations on
R (as can be seen by making a power-series expansion
of the exponential factor) and we conclude that d, ~ has
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2~jk )

SjkSjk)

&jkpjk)

3'jk )
. 2

jk~jk

~jk

transformation properties isomorphic
mation properties of

d(v E(cu) = 1. (49)

to the transfor- where X(co) is the density of vibrational states per unit
frequency and ~~ denotes the maximum frequency.
The X(co) function is normalized to unity, i.e.,

The momentum transfer and p-ray cross section of
an impurity nucleus of mass, 3E&, isotopically sub-
stituted into the germanium lattice are studied in this
section. In this case, tiF=O in Eq. (32) and Eq. (31)
can now be written as

3. Constrgction of Di for Diamond Lattice

We now construct Di for a lattice having the diamond
structure. One easily finds that

{G(r))11——Is(1+2)$(r)L1+T2$(r)) ', (50)

where the xjk) yjk, sjk denote the differences between the
Cartesian components of R, and R&. Equation (42) is III. MOMENTUM TRANSFER AND y-RAY CROSS SEC-

simply a bond-stretching molecular vibration force TION FOR AN ISOTOPICALLY SUBSTITUTED

constant matrix. This proves our previous assertion
concerning the transformation properties of D,+,.

where
(A. A,

)~A-12 All

where

$(r) = d~ &((g)Lr —cd2)
—1 (51)

The asterisk on A.»2 denotes a complex conjugate trans-
pose operation. The Bravais lattice for a diamond struc-
ture is face-centered cubic. The 3)&3 matrix A.»» refers
to atom motion on the same lattice, while A.»2 refers to
coupling of the two sublattices. Clearly,

is the scalar part of Eq. (48). From Eqs. (19) and (5{)),
one obtains

{fo(&))1,——12(1/2r) lim drf2(r"2)(1+2)
0

)&Imx)(r')L1+r'es(r')) ', (52)

and one can show by partitioning that

(45)
where v'= 7.—ib. One should note that the contribution
to the above integral for 7&0 vanishes identically for
a stable lattice.

Bil= {TI3—%11 %12 [TI2 A 11) %12) . (46)

The symmetry properties of this matrix in q space are
isomorphic to the symmetry properties of A.o, defined

by Eq. (39). The simplest way to visualize this is

examine the long-wavelength limit, where A»» is propor-
tional to I2 and

A. Behavior of $(~) Near Real Axis

From Eq. (51), one notes that

4'M M

X)(r—ib) = d(v $((u)-
0 tr 6))+IV

( c,
+12— ZC2q„-

zc2qy

zc2qg

C»

zc2qg

'LC2qy
e

ZC2qz )
C1

(47) de rV(cv) —, (53)
~2)2+ $2

D» ——I3 dcd N(co) Pr (48)

where c» and c2 are constants. The dependence of A.»2

is dictated by the tetrahedral site symmetry in the
diamond lattice. From Eq. (47), we construct A.12*A.12

and find that its symmetry structure in q space is iso-
morphic to A.2. These arguments show that p2 Bii is
proportional to I3, since the q„and q, axes can be rotated
into q and the o6-diagonal elements vanish by reAection
in the q, q„, or q, plane. Finally, since the upper right
and lower left 3)&3 blocks of Eq. (43) are identical, Di
can be expressed in terms of the trace of I TI,—A) ' or
more simply as

where ~ is considered to be real, i.e., 0&v& ~. The
density of modes function X(cv) is proportional to ~2 for
small co, vanishes at co=co~, and is continuous over the
interval 0&co&coM for a three-dimensional crystal.
Phillips" has shown. that 1V(&v) has a finite number of
critical points, ~„ for which X(cu) is proportional to
al

~
M G7

~
+a2 for ~ near cd„where ai and a2 are

constants.

1. 0&v&v~

%'hen 7. Hes in the continuum 0&7&v-~=—co~2, the
real part of $(r—i{i) tends to an improper integral inde-

pendent of 8, while the imaginary part tends to
i2rE(r"')/(2T"') according to the same analysis which
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R(x) =P=I' dy 1V(y)[*'—y' dy 1V(y) = 1 (60)

r"')/(~~ —r"')3[N(—r"')/(2 "')3l C( +
1V (cd-) 1V(—r"')

dc'
GO 7

(54)

and

1V(y) =0, y) xik. .

be written asEquation (52) can now be

(61)

CO~X)
dx fo iE(x,e), (62){fo(&))»=13
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where

rr= (hrosr/xsr)tr, p= fuusr/(2xsIkT) .

1. Lamb Mos-sbauer Coegcient, 2W

(69)
f) e '~, where 2W—=2W, +2Wr. , when a localized mode
is present, particularly if 25'I. is large compared to
unity and 2$',((28'I..

The resonant fraction, f, of y rays absorbed, using
Lamb s original formalism, is given by f=exp( —2W),
where 28' is the Lamb-Mossbauer coefFicient defined as
the negative of the tr-independent part of Eq. (68).
LThe factor, f, is commonly called the Debye-Wailer
factor because of its similarity to the Debye-Wailer
factor occurring in x-ray scattering theory. '] From
Eq. (68), one has

2W=x dx K(x,e)x ' coth(xp), (70)

where

x = [p'xsr/(2Mr bros)] . (71)

g(tr) = —2W+y dx E(x,e)

X{cos(xo)coth(xp) —i sin(xo))x '

+y(al/xl. ){cos(xr,o) coth(xl p) —i sin(xlo) ) . (72)

It is easily shown that the second term tends to zero for
large p and does not contribute to the resonant f The.
third term contributes to f since it does not vanish as
p —+ ~, but oscillates and an analysis similar to that
given by Kaufman and Lipkin leads to

f=e ' 'e ' Ie{2L(Wr)'—(Wls)'j"') (73)

where

28'.=x dx K(x,e)x ' coth(xp) (74)

2. Resonant Absorption Cross Section
whee Localized Mode Exists

Kaufman and Lipkin" have pointed out that the
resonant fraction of p rays absorbed is the p,-inde-
pendent part of e«» and not e '~. If a localized mode
exists, i.e., if a&40 in Eq. (63), then they argue that
fWe '~ We note . that Eq. (68) can be written as

D. Numerical Results for the Germanium
Lattice

The frequency spectrum for Ge, derived by Phillips, "
has been used to construct the R(x) function (Eq. (60)],
which was calculated from S(x)=E(x)/(2x) by taking
$(x) to vary linearly between the tabulated points.
LTables of R and E can be obtained from the authors,
if desired. ]

One can construct E(x,e) from X(x) and R(x) for any
desired Mr/M& ——1+c from Eq. (63). In Fig. 1, we
show the behavior of K(x, e) for Ge-Sn"' for which
&=0.63. This dynamic response function can be ap-
proximated by three Breit-Wigner resonances. The
highest frequency resonance at x,=0.79 has a long life-
time and has a frequency half-width of hx= 0.007. Reso-
nances occur in the continuum when 1+ex,'R(x,) =0
and the resonance half-width is Ax given by

ax= ~(x,/2)X(x, ) ~
Lx,sR(x,)7' ~, (77)

where the prime denotes differentiation with respect
to x at x=x,.

In Fig. 2, we have plotted the 2' function for a
Sn'" atom in a Ge lattice as a function of temperature
using Eq. (70). The Sn'" recoil energy, p'/(2 M)r, is
26 keV and S~~=k8~, where 0,~=372'K for Ge. It is
quite interesting to note that at room temperature 28'
for an isotopically substituted Sn'" atom in Ge is
almost a factor of 3 times smaller than 25' for a Sn'"
atom in a Sn crystal as determined experimentally. "
We also show two theoretically determined curves for
the Sn-Sn'" for sake of comparison. Both of the curves
were derived from the A-S lattice dynamics model"
with curve A referring to results derived on the basis of
elastic constant measurements of Rayne and Chandra-
sekhar'4 and curve 8 based on similar measurements of
Bommel and Mason. "The fraction of resonantly ab-
sorbed y rays is given by f= e '~, here. One can also
determine the total absorption cross section from
Eqs. (10) and (68).

represents the continuum contribution to the Lamb-
Mossbauer coeKcient, Is(x) is a Bessel function of order
zero having an imaginary argument,

and

2WL x(al/xI) coth(xJp——),

2Wr, s
——x(ar, /xr, )

(75)

(76)

is the contribution to the Lamb-Mossbauer coeKcient
from the localized mode at 2"=0 or p= ~.

It is clear that an enhancement in f occurs, i.e.,

"A. J. F. Boyle, D. St. P. Bunbury, C. Edwards, and H. E.
Hall, Proc Phys. Soc. (Lond. on) A77, 129 (1961).

2'The theoretical curves shown in Fig. 2 were derived from an
application of the A-S lattice dynamics model. See G. W. Lehman,
T. Wolfram, and R. E. DeWames, Phys. Rev. 128, 1593 (1962).
For a discussion of the lattice dynamics of white tin, see
T. Wolfram, G. W. Lehman, and R. E. DeWames, ibzd. 129,
2483 (1963).The calculation of the Debye-Wailer factor for white
tin is given in another paper, see R. E. DeWames, T. Wolfram,
and G. W. Lehman ibid. 131, 329 (1963).

'4 J. A. Rayne and B. S. Chandrasekhar, Phys. Rev. 120, 1658
(1960).

"W. E. Mason and H. E. Bommel, J. Acoust. Soc. Am. 28,
930 (1956).



G. W. LEHMAN AND R. E. DEWAMES

l2-

IO-

9-
8-

'&II 7"
X-6-

5-

denote unit-vector displacements of the jth atom in the
x, y, and s directions, respectively, then one can easily
show by group theory that the 4 symmetry coordinates
transforming irreducibly as x are

PI —DX]
p

q2
——(12)—"' P hx

n~2

5 13

q, =(24)—'~'(2 Q Ax„—Q Ax„$,
n=2 n=6

I I

O. I 0.2 0.5 0.4 0.5 0.6 0.? 0,8 0.9
X

FIG. 1. Dynamic response function for Sn"I' isotopically
substituted in germanium.

Iv. DYNAMICAL BEHAVIOR OF AN ISOLATED IM-
PURITY ATOM SUBSTITUTED INTO ALUMINUM

WITH ARBITRARY CHANGES IN FIRST-
NEIGHBOR FORCE CONSTANTS

In Sec. II, we established a simple prescription for
calculating Ifo(Q)) ii in terms of the Aii matrix, which
depends upon D.-~i and AF/Mir but is independent of
a+1=Mr/MIr. In this section, we express Aii for the
case of arbitrary nearest neighbor changes in I"& for a
face-centered cubic lattice in terms of the matrix ele-
ments of a symmetry adapted Green's function. Physi-
cally, the impurity atom is coupled to the host-lattice
atoms in the fashion of a giant molecule. Only those
modes which transform like (x,y, s) interact. Clearly,
5F transforms occurring to the cubic point group and
we have already shown that D,+i does likewise. Con-
sequently, it is most convenient to construct the D,+i
matrix using the molecular vibration symmetry co-
ordinates associated with the impurity atom and the
12 nearest neighbor atoms. A simple group theoretical
calculation shows that only 3 of the 36 symmetry co-
ordinates associated with the 12 nearest neighbor atoms
couple to the x component of the impurity atom co-
ordinate. Of course, the y and s motion is degenerate
with that in the x direction and need not be considered.

A. Symmetry Adayted Green's Function for
Face-Centered Cubic Lattice

In order to proceed further, it is necessary to work out
the symmetry coordinates which transform like the
x-direction motion of the impurity atom. If the impurity
atom is located at Ri——(0,0,0), then the equilibrium
coordinates of the 12 nearest neighbor atoms can be de-
noted by R2= (0,1,1), Rz= (0, —1, 1), R4= (0, —1, —1),
R,= (0, 1, —1), Rg ——(1,0,1), R7 ——(1, 0, —1), R,= (—1,
0&

—1)& R9= ( 1& 0& 1)& Rio= (1&1&0)& Rii= (—1& 1& 0)&

Ri2=(—1, —1, 0), Ria=(1, —1, 0), where the unit of
length has been chosen to be a/2, half of cube edge.

If d x, = (Ax, ,0,0), Ay, = (O,hy, O), and Ax, = (0,0,hs;)

n=6

A = LI39—d(AF/MIi) j—'d, (79)

Here, q1 denotes a unit displacement of the impurity
atom in the x direction, while y2 denotes a unit displace-
ment in the same direction of the 12 nearest neighbor
atoms rigidly locked together. If isotropic restoring
forces are assumed, as in the case of Visscher's calcula-
tions, "then the x, y, and s motion of the entire system
decouples and q» and p2 completely specify the coupling
of the impurity atom to the nearest neighbor shell re-
garding motion in the x direction. When tensor restoring
forces are involved, then q3 and q4 must be included.
The symmetry coordinate p3 involves an optic-type
motion in the x direction in which the 8 atoms in the
x-y and x-z planes move in phase with each other and
out of phase with the 4 atoms lying in the y-s plane. The
rigid y-s plane motion has an amplitude which is twice
that of the rigid x-y, x-s motion and, hence, q3 is
orthogonal to q 2. The q4 motion is likewise pure optic
with no displacement in the x direction. This motion is
most easily visualized as a distortion of a cube in which
the two cube faces perpendicular to the x axis preserve
the symmetry of a square with one face expanding while
the other face contracts, the amplitude of the motion
of the 8 atoms involved is the same.

A complete description of the vibrational modes for
an impurity atom in a face-centered cubic lattice with
nearest neighbor changes in force constants requires 39
symmetry coordinates. As previously noted, only 4 of
these are required for a complete study of the Mossbauer
effect. However, if one were interested in computing the
thermodynamic properties of our system, it would be
necessary to determine the other modes which are not
degenerate with Eq. (78). We shall discuss this problem
further in the next section of this paper.

Our final task is to construct the fG(r))ii matrix
from Aii which can be written, according to symmetry
arguments given previously, as Aii =C,(r) I3, where C,(r)
denotes the (1,1) diagonal element of the A supermatrix
associated with the x coordinate of the impurity atom,
i.e., the &pi symmetry coordinate. From Eqs. (34)
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where d is a 39X39 matrix, whose 3X3 supermatrix
elements are defined by Eq. (35). We now establish that
the (1,1) element of A is simply the (1,1) element of a
4X4 matrix whose elements are constructed from
Eq. (79) in a basis using the symmetry coordinates
defined by Eq. (78). Our assertion is physically obvious;
however, for completeness we establish the result
mathematically. Let ( be a matrix whose elements are

6.0

5.5

5.0

and for brevity put

and observe that

fv=0 (i S)&(1,1)

C= ~F/m~

(80)

(81)

4.0

5.5

{(8/ci|') ln det[I —dC+ d(]) r=p

= ((ci/a|') ln det[I+(I —dC) 'd(]) r=p
= ((ct/Bi) Tr in[I+(I—dC) 'd&]) r=p

—= ([I—dC]-'d) ii, (82)

where ln denotes natural logarithm, det denotes determi-
nant, and Tr denotes trace operation. Equation (82)
holds for arbitrary d and C as long as I—dC is non-
singular which is the case in this paper. We have used
det (AB)=det(A) det(B) and lndet(A)—=Tr ln(A) in
Eq. (82). Next, let U be a unitary matrix transformation
relating the symmetry coordinate q s with the atomic
displacement vectors dx„„Ay, and Az„. In Eq. (82),
let dr= U 'dU, and note that

C4

2.5

2.0

l.5

I.O

0.5

I ~ ~ I I I I I

IOO 200 500 400 500 600 700 800
T oK

det[I —dC+ d(]
—=det[I —drCr] det[I+(I—drCr) 'dr(],

since (r=(. The 39X39 matrix in the second determi-
nant can be written as a 4)&4 block whose elements
are associated with the q s of Eq. (78) and a 35X35
matrix involving all other symmetry coordinates. We
now denote the 4X4 block of the transformed d and C
matrices by dr and Cr and observe that

Fn. 2. Lamb-Mossbauer coefIjLcient, 2W, for Sn'" isotopically
substituted in germanium as a function of temperature. The other
curves refer to Sn"9 in natural white tin and are included for sake
of comparison. LSee text for labeling. )

of Ax„by (100) exp( —iq R„)and similar representations
of Ay„and Az„. From Eq. (78) and the definition of
the R„'s,one obtains

where
A„=C,(r)I„

C,(r) =([I,—d'(ZF')M&-']-'d')»

det[I+(I —drCr) 'dr(]= det[I4+(I4 —drCr) 'dr(]
=1+([I—d C ]—'d ) f'. (83)

Using the procedure shown in Eq. (82) and the relation
given by Eq. (81), we obtain our final result

0, gs ——(s')"'[C,C„+C„C,+C,C,]pi,.0.
es= (s)"'[2CVC —C.(C.+C.)]et,

Q4
——2"'S, S„

.S, ,

where C,= cos(aq, /2), S,=sin(aq, /2), x=x, y, s.

(87)

1. Construction of dr in Terms of Symmetry
Adopted Functions

The matrix elements of dr, denoted by X)„z, are easily
constructed by noting the form of Eq. (35), In fact,

&is=& ' Zp(4)[rIs —&(q)] '%e),

B. Numerical Results for Symmetry Adapted
Green's Function for Aluminum

Since

&4= [~.(q)]%., (88)

where cp„(q) is the eigenfrequency associated with the
pth polarization vector g„, we can write

where (a,b) denotes an ordinary inner product between
a and b. The Q, 's are 3-component vectors constructed
from the y„-'s by replacing the row vector representation

dtp[T tp ] X~y(tp) &— '(89)
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where

»'(~)=~ ' dq Z ~(~—[~,(q))')Q nQk. , (9o)

and

(91)

The integration in Eq. (90) is to be taken over the
reduced Brillouin zone having volume v.

From Eqs. (90) and (91),

da&»i(~) =v ' dq (g, , itii)i—= b,i, (92)

The element X»(cu) is the ordinary density of modes
function for a monatomic face-centered cubic crystal.
We refer to 37,1, as density-of-modes matrix elements and
note that critical points occur in these functions at
frequencies which are identical to the critical points
for lVii(co).

as can be established from Eq. (87) and the orthogo-
nality relations

.V ' P, exp[iq (R,—Ri,))=b,i„.

tion of width her=0. 005~u and height (1/h~d). The re-
sulting histogram indicated that more points should
have been taken for our her used. The ten histograms
for S;& were carefully examined by plotting and cross
plotting. Our E» function agrees quite satisfactorily
with Walker's density of modes but has more structure.
We were able to choose 88 ~d/&uu points which allowed
us to calculate Ã;A, by linear or quadratic interpolation
for 0«o/&vu(1. The final »i, curves satisfied the
orthonormality rule, Eq. (92) to about 1% in the worst
case. This error was actually introduced by our smooth-
ing technique as our histograms satisfied Eq. (92) to
better than 0.2%%uo in all cases. [Tables of »i, and E,i,

are available from the authors upon request. $

C. Construction of LFr Matrix

One of the simplest ways to construct a DFr matrix is

by examining the A-S lattice dynamics model which is a
special case of the generalized tensor force model" used
by Walker for aluminum. "In fact, Walker's force con-
stants for aluminum are essentially axially symmetric.
According to this model, the 3&(3 matrix which de-
scribes the interaction between the ith and jth atom is

1. numerical Ualues of E,,(x) and 1V,,(x) for Aluminum {F),,=8;; P k„—k... (99)
According to the detailed analysis of the previous

section on the Green's function for Ge, we see that the
dynamic response function given by Eq. (63) can be
used here provided R(x) and 1V(x) are replaced by

ff(x) and cV,«(x), respectively. We find

where

/m, Is
k,, =CB (r,,) lm, m', mn +C (r;,)I, , (100)./Ized ms, 0'

and
E fi(x) =Re([I4—Du] 'D), i

1V «(x) = (x/ir) Im([I4 —Du]-'D)„,

(94)

(95)

and

D= R+i7rS,
I N

R(x) = dy N(y) [x'—y')—', S=—,
vo 2x'

v. = aFr/(MIi~u') .

(96)

(98)

We have used Walker's atomic-force constants"
derived from diffuse thermal x-ray scattering data on
aluminum to calculate the 4X4 N matrix whose ele-
ments are defined by Eq. (90). A mesh of 45 000 points
was used over 1/48 of the Brillouin zone and 1V;i, was
computed by suitable symmetrization of Q,~Q». The
delta function in Eq. (90) was replaced by a step func-

with C~~ referring to the difference between a stretching
and a bending force constant and C~ denoting a bending
force constant. The vector r, = (x,,y, ,s,) denotes the
equilibrium position of the jth atom, r, i,

——~r, i, ~, and
(l,m, n) is (r;;) '(x;;,y...s, i,). Equations (100) and (101)
hold for an arbitrary arrangement of the X atoms.

The {hF);,matrices for the A-S model are obtained
from the above equations by replacing the k,, 's by Ak...
and C» and C& by ~C» and AC&, respectively. When
the perturbation is restricted to the nearest neighbor
shell of the impurity atom in a face-centered cubic
crystal, it is easy to construct Ak;, for the generalized
tensor force model used by Walker. "In fact, one need
only multiply the off-diagonal terms in Eq. (101) by a
scale factor, thereby introducing a third force constant
for the 6rst-neighbor shell. In Walker's notation, the
change in k» associated with the impurity atom nearest
neighbor coupling is

[2hniP+ APi(m'+ n') ]
2hyI/m,
2~~,t~,

2+QIlm,
[2+aim2+ +Pi(n2+12))

26ygme,

2hyIle
25yIme

[2hnin'+ APi(P+m'))-
(101)



)DYNAM I CAL MOTION OF I M PURITY NUCLEUS i019

where I, m, and e denote the direction cosines between
an impurity atom and a nearest neighbor atom. It is
further assumed in this paper that hk;;=0 when i or
j/1. These perturbations are easily included but are
not warranted in the present work, unless higher
neighbor interactions are included. The correlation be-
tween the A-S force-constant changes and the general-
ized tensor force model changes are"

t) fr i = 2 CB+(ECBB/2),

t) Pt= t),CB,

hyt t)nt f4 p—t ——ti C——sff/2.

(102)

The force constants for pure aluminum are shown
in Table I.

Ktt=12fit, Kis ——(12)"'fvt& Kis=(12)'f'rts,

Ki4 (12) rts) Kss 'g 4 )I Kss — res f Ks4 fis )I (103)

K33—1(4 ) K34 —$5 ) K44 —g6 )

where

MJro)M'rti 4(theft+ Ap——t)/3,

MHfdM re = (2/9) "'(2hfrt —hpt),

MIffd M'f1 4
——(8/3) "'Apt,

MMofM'f)4 ——(2bfri+5t) pf)/3,

MnofM'ffs ——(4/3)' 'hy„
M Jrof Msff 4

=2hnt+ hpi .

(104)

2. Isotropic Changesin, sf

If &pi=2hfrt and t)y, =0, Akt, =22)ntIs, the perturba-
tion in restoring force acting between the impurity
atom and the nearest neighbors is independent of

1. Construction of the 44 Matrix

The next task. is to construct the 4&(4 matrix, x,
defined by Eq. (98) using the q s of Eq. (78) as basis
vectors. The calculations are lengthy but straight-
forward and we find that the matrix elements K@=K;;
of x can be written as

direction or isotropic. In this case, g2=g3=q~ ——0 and
4= g6 and

12

44= $46nt/(MIIfdM')]
—(12)"'

0,

(12)1/s

0,
0,

0 0
0 0
1 0
0 1.

(105)

TABLE I. Atomic force constants for aluminum
(in units of 10' dyn/cm).

Force
constant

PI
Y1

A2

P2
A3

P3
V3
83

Walker's
value

8.45—0.93
10.67
2.14
0.40
0.27—0.31
0,10—0.19

A-S value

8.45—0.9
9.35
2.0—1.0
0
0
0
0

The numerical calculations reported here were carried
out on the IBM 7090 electronic digital computer using
Fortran programming. These programs were constructed
for the general case of arbitrary e and x. The frequency
dependence of E and the temperature dependence of
28' and the mean square velocity of the impurity atom,
(mr' ), can be obtained in less than 5 min for a particular
choice of e, Deft, Apt, and Apt.

D. Numerical Resu1ts for A1-Fe"

Experimental Mossbauer studies on the Al-Fe' sys-
tem are currently being carried out at our laboratory.
However, at the present writing, no experimental data
are available. Consequently, we have calculated the
response function, E, for several sets of hnf, Apt, and
Ap&, with ~=1.1111. We recall that K is given by
Eqs. (63), where R(x) and X(x) are replaced by R,ff(x)
and E,«(x) defined by Eqs. (94) and (95). In these
equations, the matrix elements of R(x) and S(x) are
those appropriate to aluminum, and the matrix elements
of the reduced force-constant matrix, x, are given by
Eqs. (103) and (104).

TABLE II. 2W = [pf/(2MfkcoM)g(1/x) and Mf (srf),„=(3keM/2) (x) as functions of temperature for various sets of force-constant
changes, in units of 10' dyn/cm, for Fe" in Al. Here, fits&M =keM and a&M= 5.94X10"rad/sec. (x") is defined in text.

Aai
API

2 /eM

—1.0—2.0
0

(1/x) (x)

—0.8—1.6
0

(1/x) (x)

—0.4—0.8
0

(1/x) (x)

0

0
(1/x) (x)

0.4
0.8
0

(1/x) (x)

—2.0
0—2.0

(1/x) (x)

2.0
0
2.0

(1/x) (x)

4,0
0
4.0

(1/x) (*)
0
0.1
0.2
1.0
2.0

10.0

9.73
21.9
41.5

203.2
~ o ~

2030

0.16
0.27
0.45
2.05
~ ~ ~

20.42

5.07
7.21

12.2
57.2

~ ~ ~

570.0

0.24
0.30
0.46
2.01
~ ~ ~

19.94

3.37
4.02
6.01

26.3
~ ~ ~

261.0

0.34
0.38
0.51
2.02
~ ~ ~

20.00

2.72
3.03
4.18

17.2
~ ~ ~

170.6

0.42
0.44
0.55
2.03
~ ~ ~

19.97

2.40
2.71
3.66

14.7
~ ~ ~

144.9

0.48
0.49
0.59
2.04
~ ~ ~

20.01

3.56
4.32
6.53

28.8
57.4

286.7

0.30
0.34
0.48
2.02
4.01

20.00

2.36
2.69
3.66

14.7
29.2

145.5

0.50
0.52
0.61
2.05
4.02

20.00

2.15 0.58
2.46 0.59
3.28 0.67

12.9 2.06
25.6 4.03

127.4 20.01
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where

with

{G(r=0)}»(af~)'=(1+e)R,ff(0), )

R. (0)=([I,—R(0)x)—'R(0))„,

(109)

(110)

R(o) = — zy N(y)y- .

E s. (16), (17), (70), and (106)Consequently, using Eqs.
and the above results it can ee shown t a
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An examination of Table II shows that (1/x) is practi-
cally linear with T for T/8&&&1, so that Eq. (114)
provides us with a useful tool. Furthermore, one should
note that the matrix elements of R(0) can be obtained
from

q p=l

lO

A BX

V
4

by combining Eqs. (90) and (111).Our experience shows
that one can evaluate these sums quite accurately by
using no more than 1000 points in 1/48 of the Brillouin
zone, thereby skipping the troublesome problem of
constructing N(x).

One can easily work out Eq. (115) analytically, if
R(0) is known. For aluminum, we find, for an isotropic
sp [cf., Eq. (106)j, that

dx x—'E(x)e)=4.2950(1+e)Ji(a)[Js(a)j ', (115)

where

Ji(a) = 1+14.016a+47.79a'+47.38a',
116

Js(a) = 1+41.648a+171.37a' j184.39a',

and a=2.5&10 'Dnl. The numerical coeScient on the
right side in Eq. (115) is simply —R»(0). It follows
from Eqs. (106), (108), and (115) that

(1/x) ~ 8.590(1+e)Ji(a) [Js(a)j '(T/8sr), (117)

at high temperatures for isotropic x. Table II shows that
the above result is quite accurate for T/8pr~1 for the
cases shown in columns 2—5 inclusive. One can also
derive a high-temperature result for (1/x) for the case
of arbitrary x, but such a formula is a bit unwieldy and
will not be given in this paper.

O. I O.R 0.'5 0.4 0.5 0.6 0,7 O.B OS I.O

T/M

Fro. 4. Relative mean-square displacement, (1/x), as a function
of Tjesr for Fe" in copper for various isotropic changes in nearest
neighbor force constants. 8~—335'K.

b = dxEx" (118)

denotes x " averaged over the continuum response
function. The conservation-of-states theorem, Eq. (66),
shows that

2. I'f Fe" (e=-—0.7)

For this case, (1/x) is plotted in Fig. 5 for a= —0.02,
—0.01, 0, 0.01, and a= ~ as a function of T/8'. For
Pt, we estimate o&sr

——3.0)(10is rad/sec and 8sr ——225'K
from heat-capacity data. The case a= 00 corresponds
to the case in which the 12 nearest neighbor atoms of the
impurity atom are rigidly coupled to the impurity atom.

In all of these cases, a triply degenerate localized
mode appears at a frequency determined by solving

Eq. (65), where R(xr,) is replaced by R, '&(x&) given by
Eq. (95). The position, xz, , and the strength, ar, , of the
localized modes are presented in Table III along with

bo, bl, and b2, where

ar+bp=1. (119)
E. Qualitative Results for Cu-Fe" and Pt-Fe"

Since Cu-Fe'" and Pt-Fe" are used extensively as
Mossbauer sources, we felt that it was worthwhile to
carry out quantitative studies of the temperature de-
pendence of 28" and (~r'), using the symmetry adapted
Green's function obtained for the aluminum lattice
with an appropriate choice of co~. Our experimental
colleagues inform us that no reliable data exists on
these two systems so that we have used the isotropic
x to study the behavior of 25'.

1. Cu Fe" (e= —0.1)-

Equations (63) and (115) give us

(xr) 'ar+bs —(1+e)([I,—R——(0)sp] 'R(0))ii. (120)

The above two equations allow us to determine uL, and
xL, if bo, b~, and the expression on the right-hand side of
Eq. (120) are known. Conversely, if al. and xl. are

TAmz III. Frequency, xi=coL/cow, and strength, uL„of a
localized mode appropriate to Pt-Fe~', e= —0.7, for various iso-
tropic force-constant changes b pI =2hnl, Apl ——0,. where
a=4hnI/(&~co~'). For Pt, co~=3&(10" rad/sec and the b„'s
PEq. 120] have been calculated using the aluminum dynamic
response function, E.

For these cases, no bound mode appears for the calcu-
lations carried out and the temperature dependence of
(1/x) is shown in Fig. 4 for the isotropic sp case when
a= —0.01, 0, and 0,01. The Lamb-Mossbauer coeS-
cient, 2W, is given by Eq. (108) with rpsr=4. 4)&10"
rad/sec appropriate to Cu.

—0.02—0.01
0
0.02

1.012
1.122
1,257
1.532

0.353
0.700
0.839
0.927

bp

0.647
0.300
0.161
0.073

bI

1.411
0.623
0.298
0.151

3.718
1.299
0.761
0.486




