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Many-Body Aspects of Dipolar Interaction in Crystal Lattices
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The moment expansion of the magnetic resonance line and the semi-invariant expansion of the free
energy of a dipolar lattice are expressed in powers of the Hamiltonian. The expansions are looked at from
the point of view of the number of particles in each term. Intercomparison is made of the terms in a density
expansion and the moment expansions. The third and fourth semi-invariants of the simple cubic dipolar
lattice are evaluated by a computing machine. The results suggest the general conclusion that the cycle dia-
grams predominate for dipolar interaction and a general formal expression for the contribution of the nth
order diagram is derived. The calculation of the higher order moments and semi-invariants is, thus, simplified
but still remains formidable. For the short-range exchange potential, on the other hand, the cycle diagrams
flo not predominate.

INTRODUCTION

HE physical properties of principal interest of a
lattice of magnetic dipoles are the thermodynamic

functions and the real and imaginary parts of the
susceptibility. The thermodynamic functions and the
real part of the susceptibility, y' are derivable from
the partition function

Z= Trgexp( PX/kT) j,—

where X is the spin Hamiltonian. The absorption of
energy from an osciHating 6eld, on the other hand, is
proportional to the imaginary part of the frequency-
dependent susceptibility,

and systems with Ising interactions. The central theme
of these new developments is the analysis of the various
terms in the expansions according to the number of
particles interacting. In the analysis each term is
represented by a graph (a "diagram") and the aim is
to find a subset of graphs which represents the most
important terms of the entire series. For example, in
nuclear matter which is relatively dilute the diagrams
in which only two particles appear are of major im-

portance, whereas in a dense electron gas, the cycle
diagrams, those in which each particle appears only
twice, predominate. The aim of the present paper is to
investigate the dipolar lattice from this point of view.

o) I/'

x"(~)=-
kT

Tref, (t')M,]
coscoI, ' dt', (2)

I. MOMENTS OF MAGNETIC RESONANCE
LINE SHAPES

The moments of a magnetic resonance absorption
may be defined by the relation

where co is the frequency of the oscillating field and
M, is the x component of the total magnetic moment
of the lattice whose volume is V. In the following we
will use the abbreviation

Tr(8)/Trl = (8),

where 8 is any operator.
The evaluation of the traces in Kqs. (1) and (2)

is of monumental difhculty and so far has been attacked
only by the method of moments in which the various
operators are expanded in powers of the Hamiltonian
and the traces evaluated term by term. As one must for
practical reasons truncate the series at an early stage,
one is confined to high temperatures in the case of the
partition function. As far as the absorption is concerned,
one obtains theoretically only the first few moments
which are diScult to measure precisely and not the
half-width, which is easier to observe.

In recent years, there has been an extensive develop-
ment of the statistical mechanics of many-body systems
in particular of an electron gas, Bose and Fermi liquids,

&(~~)'")= g(~ —«)(~—~s)'"d~,

where g(co —cus) is the line shape function with the line
centered on auo. Van Vleck' has deduced the following
general expression for the (2N)th moment:

1 '"Tr K 3'. S,
((g~)sn)—

Tr/S. f'

The Hamiltonian describing the dipolar interaction
in the lattice is given by

where g is the I.ande g factor for the spins, g is the
magneton (nuclear or electronic), and r;s is the radius
vector connecting spins i and j;but only the truncated

' J. H. Van Vleck, Phys. Rev. 74, 1174 (1948).
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Hamiltonian,

2 PART ICLES Bjk

which commutes with the Zeeman energy is used in (4).
The summation over a' runs over z, x, and y which

correspond, respectively, to a'=0, 1, and 2:

3;I, '=3;k, n'=1, 2

3;I, '= C,k= A, J,+B;I„o.'=0,

2 PARTICLES

Bjk

where
3 s —— '8 s

———(g-'-Ps/2r, ss) (3 cos'8 s-')
PARTICLES

Bjk 8

for pure dipolar interaction. %hen there is an exchange
interaction also present, A;&& —38jfg.

From an examination of the commutators in (4) and
the commutation relations'

3 PARTICLES

Bjk BjP. BkL

[5,5 pt7= iS

[5 i,S +i7= iS, — (g) FIG. 1. Diagrammatic representation of the second and fourth
moments of the magnetic resonance.

it can be shown that the (2rs)th moment contains terms
involving 2, 3, , n+1 particles. The classification of
the various terms according to the number of simul-
taneously interacting particles is not only of mathe-
rnatical interest. In a dilute lattice in which most of the
dipoles are replaced by nonmagnetic atoms or nuclei,
it is desirable to know the moments as a function of f,
the fractional concentration of magnetic spins in the
lattice. Each moment can be expanded in powers of f:

n

((g~)se) p C (2n)fs
1

The aim of this section is to investigate the coefIIj.cients
C (2n)

By a direct evaluation, using Eq. (4), one ca.n deduce
the second and fourth moments, as was first done by
Van Vleck. The results are

(10)

3—-2 &ps' &+
5 & 2S(5+1)

S(5+1) '

It is instructive to examine Eq. (11) in some detail. The
various terms in Eqs. (10) and (11) may be represented
by the diagrams in Fig. 1. In these diagrams each line
represents a particle and each vertex an interaction
between the two particles whose lines intersect. Several
variations may be made of the diagrams involving 3
particles by changing the order of the vertices. Since
each vertex represents the occurrence in the commu-
iators in (4) of a specific term in the summation (5),
the order of the vertices is of importance. The possible

2 The subscript, s a are understood to be congruent modulo 3 to
0, 1, 2.

Evidently U;&& ... is much simpler to calculate than U, I,.
It is, therefore, very necessary to obtain information

as to the relative contributions of diagrams involving

f'jo. 2. Diagram-
matic representation
of a vanishing term
in the three-particle
fourth moment ex-
pression. k

l
PARTI C LES

jk Bj

diagrams can also be written down by inspection
remembering that

TrS,=TrS» ——TrS„=0.

Therefore, in the expression for (Are)s", no particle can
take part in only one vertex in any diagram. This is
why the term 8;&'8,& represented by the diagram in
Fig. 2 does not occur in the expression for the fourth
moment. Keeping this rule in mind one can show that
in the sixth moment, there will be basically one two-
particle diagram, five three-particle diagrams and ten
four-particle diagrams. A few of these diagrams are
shown in Fig. 3.
There are no terms of the form 8;k'Bq~ or 8;I,'Bk~'B~ .
The contributions from terms involving (n+ 1) particles
in the (2n)th moment are easier to calculate than terms
involving lesser number of particles for two reasons.

(a) The terms involving (n+1) particles contain
traces of products like S„~S,I,'S„P . . as contrasted to
terms involving less than (I+1) particles which
involve traces of products like S„~'S ~' . , where m
and l are greater than unity.

(b) The (m+1) particle term involves commutators
of the form 0';j,g ... where

~ si ."= L' ' ' [&r [&srl & r 5* 777' ' 7 (12)

while the 2-particle term involves for example
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FK;. 4. Energy levels of two spin ~~ particles in a magnetic

held interacting with each other via magnetic dipole-dipole
interaction.
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FIG. 3. Some two-, three-, and four-particle diagrams which
contribute to the sixth moments.

2, 3, (as+1) particles to the (2n)th moment. Before
we do this, it will be useful to consider the case of a
dilute lattice. An example of a dilute lattice is a para-
magnetic species dissolved in a diamagnetic substance.
At very low dilutions, only two-particle interactions
will be signiicant, that is, one would have to consider
only the term depending on f on the right-hand side
of Eq. (9). With increasing concentration, one would
have to consider three-particle interactions, i.e., the
term involving f' in (9) and, subsequently, higher
powers of f.

Kittel and Abrahams' have considered the f
dependent term in the moments of dilute spin--',
systems. They employed the following simple procedure.
The truncated Hamiltonian for a two-spin system in a
magnetic 6eld in the s direction is given by

K= yhB(S).+S2.—)
+A i2(S,&2,+S,+2„—2S,&„), (14)

where y is the magnetogyric ratio. For spin ~, the
energy levels are as shown in Fig. (4), where a, and P;
correspond to the states of the ~th spin with m= ~-,',
respectively. Under the action of a radio-frequency Geld
in the x direction, only the transitions shown, namely
those between the energy levels of the triplet state
differing by ~1 in the total magnetic quantum number
are allowed. One would, thus, expect two lines of equal
intensity at frequencies:

(o =yH~3A g2/2h =yHW8, g/2h.

The 2@th moment is then given by

((g~)2n) —(]/2$)2nB 2e ~ (15)

and, in general, for the f-dependent term in Eq. (9),

' C, Kittel and E. Abrahams, Phys. Rev. 90, 238 (1953).

we have
C (2n) —(1/2$)mn +~I g „'2e. (16)

C2"&= Q 38A, I,'AI p+11A;I,'A I (A, (
128 j,l,«

—21A;k'A kg'+5A; j,'A;)A k)

63
+—A s'Ar. PAr' . (18)

2

Equation (17) agrees exactly with the three-particle
terms in (11) on substituting A;z= —-', B,z. 1t is to be
noted, however, that the contribution to the moments
from three-particle diagrams cannot be obtained in an
analytic form in the general case where we have some
exchange interaction in addition to the dipolar inter-
action between the spins. In the general case,

A jk+ —3~jI (19)

and the factorization of the cubic equations in the
secular equation referred to above, does not occur.
Equations (16), (17), and (18) are not of much use in
analyzing electron resonance line shapes in dilute crys-
tals for in most cases we have appreciable exchange
interaction and also hyper6ne interaction with sur-
rounding nuclei and the e6'ects of these have to be in-
corporated. However, these equations enable us to
obtain valuable information regarding the contributions
of (m+1)-particle diagrams in the (2n)th moment rela-
tive to the contributions from diagrams involving

4 E. R. Andrew and R. Sersohn, J. Chem. Phys. 18, 159 (1950).

Andrew and Bersohn4 have considered the energy
levels of a three-spin system interacting through
magnetic dipolar interaction only. The secular equation
factors into two linear equations and two cubic equa-
tions, the latter further factoring into a quadratic and a
linear equation each. From the energy levels and the in-
tensities of the various allowed transitions, we have
obtained the various moments by a procedure exactly
similar to Kittel and Abrahams' procedure for two-spin
systems. The expressions for the three-particle contri-
butions to the fourth and sixth moments are given
below.

C2&'&= (63/8) Q, , g, (~ t 3A, PAgp

+ (2/7)A;PA GAIA, rj, (17)
and
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((~co)4)= 2.437S' (21)

which is the sum of the contributions 0.21$' from
two-particle diagrams, and 2.227S' from three-particle
diagrams. The two-particle contribution is, thus, 8.6%
only of the total while the three-particle contribution
is 91.4%.

For the sixth moment, the two- and three-particle
contributions are given by Eqs. (16) and (18). We
have obtained an expression for the contribution to the
sixth moment from four-particle diagrams which is too
cumbrous to present here. But we can use it to obtain
the four-particle contribution to the sixth moment for
any orientation of the Geld with respect to the crystal
axes. However, Glebashev, ' following the procedure
of Van Vleck calculated the total sixth moment (sum
of contributions from two, three, and four-particle
diagrams) for a simple cubic lattice with magnetic
field in the L100] direction. He obtains

((hcv)')= (n/2A)'(131 394.96)=0.6133S'. (22)

Using Eqs. (16) and (18) we get

(a/2A)'(1002. 4) =0.0047S' from two-particle diagrams,

(n/2A)'(2811. 04)
=0.0132S' from three-particle diagrams,

and, therefore, from (22) one gets

(n/2A)'(127 581.52)
=0.5955S3 from four-particle diagrams.

Hence, the contribution from the two-particle diagrams
is only 0.76%, from the three-particle diagrams it is
2.14%, and from four-particle diagrams 97.10%. It is,
thus, reasonable to conclude that as the order of the
moment (2e) increases, practically all of the contri-
bution to the moment comes from (I+1)-particle
diagrams. This result could have been anticipated since
one expects the number of diagrams that one could
obtain in the lattice with larger number of particles
will be larger than the number of diagrams with lesser
number of particles. But it would have been difFicult
to demonstrate this without actual calculation. The
calculation of the moments higher than the sixth is
still a laborious problem because in calculating U;~~
at every place that K;I, occurs we can use 0'=0, 1, or 2
which lead to diferent results. However, the cal-
culation is now relatively a lot simpler because we

' I. Glebashev, Soviet Phys. —JETP Sr 38 (1957).

fewer particles. For the second moment, taking the
case of a simple cubic lattice, with the magnetic 6eld
along one of the crystal axes L100], one gets for spin--',

nuclei, by carrying out the summation over A in Eq. (10),

((~(a)')= (a/2A)'(59. 837)= S, (20)

where n= g'g/a' N.ext, using Eqs. (16) and (17), one
gets for the fourth moment,

may omit the 2, 3, 4, , n particle contributions which
are much more difBcult to calculate.

Is there any practical —as opposed to conceptual—
interest in the higher moments' In this connection we
make use of an expansion discussed by Zernike'
for an arbitrary even distribution g(x) with second
moment 0' in terms of the moments of Hermite
polynomials:

1 ~ C„x
g(x)= e *'i"' 1+ P H„, (23)

(2w)'i'o. ~ 2"n! v2a.

where

(24)

C4 ——(x')/(r4 3, —

Cg ——(x')/o' —15(x')/a'+30.

All the C's are zero obviously if the distribution g(x)
is a Gaussian.

Let us consider the unknown distribution g(x) for
the classic case~ of a simple cubic lattice of spin--,
nuclei with the field along the [100)axis. Not knowing
the true line shape we can construct a theoretical line
shape by assuming:

(a) A Gaussian function with the theoretical second
moment, i.e., C =0, n&2;

(b) a function with the theoretical second and fourth
moments as calculated by Van Vleck but with all
higher moments the same as the Gaussian, i.e.,

C4= —0.536, C =0 for n&4;

(c) a function with the theoretical second and fourth
moments as calculated by Van Vleck and the theoretical
sixth moment as calculated by Glebashev but with all
higher moments the same as the Gaussian, i.e.,

C4= —0.536, C6= —5.942, C„=0 for n& 6.

The results are plotted in Fig. 5 from which it is
clear that an attempt to use correct higher moments
results in a negligible change over the simple Gaussian
approximation at least near the center of the line which
is principally what is observed when a line shape is
measured.

The cross-relaxation phenomenon, on the other hand,
depends decisively on the overlap of the wings of two
neighboring absorption curves. Bloembergen et al. '
showed that the probability per unit time of mutual

F. Zernike, in Handblch der I'hysik (Verlag Julius Springer,
Berlin, 1928), Vol. III, p. 448.

7 G. E. Pake and E. M. Purcell, Phys. Rev. 74, 2184 (1948).
N. Bloembergen, S. Shapiro, P. S. Pershan, and J.0. Artman,

Phys. Rev. 114, 445 (1959).
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W)k= —!X)i!

A2
g-(')g) (")~(' "—)d"d"'

1 1

A2 2+'/23 V

8
—(v~—vP) 2/4 (hv) & (27)

spin Qips of two spins, j and k in two spin systems of
resonance frequencies v and vp is given by

considerably reduces the number of arrangements of
lattice points with appreciable contributions. For the
cycle diagram no inverse distance occurs to more than
the third power; hence, the number of appreciable terms
will be large. The importance of the cycle diagrams
depends on the range of the potential, being maximum
for Coulomb forces and least for exchange potentials
limited to nearest neighbors.

(~) —e—(v—v,v) /R(ki ) (2g)

where (dv) is the root-mean-square second moment of
the two lines which are assumed for simplicity to have
the same shape. If we introduce the parameter
u= (v —vt))/hv, we have, from Eqs. (23) and (27),
the following asymptotic form (for large a) for
J'g. (v)gp(v)dv, namely,

C2„C'"
1+2 P

2si)2(dv) ~ 2"(2p)!

C2„C2 C2(2

+2 2 +" (29)
v-2 ~ 2v+'(2p)! (2q)!

Q'hat the numerical values show is that —judging
on the basis of the C4 and C6 terms —the series in a
hardly converges for u&~3. The value of the overlap
deduced from the Gaussian function has no obvious
validity.

The problem of the line shape is thus highlighted.
%hat is really needed to determine the shape of the
wings of the resonance curves are the high moments.
A clue to the approximate calculation of these moments
is the conjecture that in high order only the cycle
diagram is of any importance. The unfinished tasks are
to prove the conjecture and to act on it, that is to
calculate the general 2nth moment. The validity of the
conjecture is related to the range of the potential.
Wherever an interaction between a pair of particles j
and k is repeated n times a factor r;~~" occurs which

'

, X!/k T«1.

On expanding Z in powers of 1iT one finds

(30)

(X) (X-") (X')
Z=(X')— + — +, (31)

kT 2!(kT)' 3!(kT)'

where the eth moment (X") is defined by

(X")=Tr(X")/Tr(X') =M„. (3-')

The matrix (X") would have (25+1)~ dimensions in
our case where 5 is the spin of each particle and E is the
total number of particles. In general, M will contain
terms proportional to cV, E2, S', . , etc. The terms
not proportional to X are physically meaningless and
would have to cancel out in any expression for an
observable. Also it is rather laborious to compute lnZ
from Eq. (4). Both these difFiculties can be avoided by
using the method of semi-invariants, ' viz. ,

II. PARTITION FUNCTION OF A LATTICE OF
MAGNETIC DIPOLES

A. General Form of Semi-Invariants

The interaction of a lattice of magnetic dipoles was
rigorously studied by Van Vleck' who expanded the
partition function in powers of X/kT. What is presented
below is essentially a recalculation by a computer of
Van Vleck's expansion and an interpretation of the
various terms through the linked cluster expansion.
It is not our intention to obtain quantitative results for
comparison with experiment but merely to analyze the
relative contributions from diagrams involving
1, 2, 3, , n particles. %e shall, therefore, consider only
the cases of pure exchange (Sec. III) and pure dipolar
(Sec. II) interactions. In the general case when both
interactions are present, there will be cross terms
bet~veen the two interactions but these are omitted
here.

The basic problem is to determine the partition
funct ion Tre +/~~. The apparent impossibility of
obtaining exact eigenvalues of this Hamiltonian forces
one to approximate in some way. Here we investigate
the high-temperature limit.

-2.0
\ I t 1

- l.6 - l.2 -0.8 -0.4 0 0,4 0.8 l.2 l,6 2.0 1nZ= p ()i„/I!)(1/kT)", (33)
Fxo. 5. Line shape for a simple cubic lattice of spin-~ dipoles

with H0 along the
I
100j axis. Abscissa is the field in units of the

square root of the second moment which is the same for all curves.
' J. H. Van Vleck, J. Chem. Phys. 5, 320 {1937}.' J. G. Kirkwood, J. Chem. Phys. 6, 70 (1938}.
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where the X„satisfy the equations

n —ly =M..
yg —g)

action, Xq; is given, respectively, by

XI, ———JSI, S.
(34) and Eq. (5), where J is the exchange coupling.

From Eqs. (32), (36), and (5),

(36)

Expressions for a few of the semi-invariants of lower

order are given below:

Kg=My,

Xg= M g
—3MgM2+2M p,

X4= M4 —2MgM3 —3M''+ l2M)'M2 —6Mg4)

x~——M~ ——p;(g (x;g)=0,
which simplifies the semi-invariants as follows:

XO=Mg,

X,=M„
),4

——M4 —3M 22,

Xg,
——Mg —10M~3.

(3"t)

(3g)

Kg= My —5MgM4 —10MsMg+12MpMS It can easily be seen from Eqs. (32) and (34) that ),„
+30M iMP —60M~'Me+6M P. involves contributions from 2, 3, 4, , n particles. One

can assemble the contributions to X„ from terms in-

In the cases of pure exchange and pure dipolar inter- volving diGerent numbers of particles as follows:

l 2= 2~&~ &xt")

&~= 2 (x ~'&+2 2 2 (x ~)(x~~&&x»)

(39a)

(39b)

),= g $(x; ')—3(x, ')']+ p L4(x; 'x x;)+2(x;pc x;pc;)+2(x; 'x p)+(x;~„,x;~„,)

—3&x,g'&&x,p&]+ p &x;@eaux( x;)+3 p L(x,a'x, ')—(x;g')(x,„')]. (40)

It is useful to write this equation in a symbolic
fashion representing each term or group of terms by a
diagram with a line segment representing each pair
interaction. Figure 6 shows symbolically the various
contributions to the first three semi-invariants.
Diagrams can be classified as connected, disconnected
or reducible. A disconnected diagram contains separate
diagrams with no vertices in common. A reducible
diagram contains two diagrams with one vertex in
common. All the diagrams in Fig. 6 are irreducible
(except the next to the last).

One can see that disconnected diagrams contain
independent summations over lattice points, and
therefore, are proportional. to higher powers of E, the
number of particles in the system. They, therefore, do

I J

not represent any physically observable quantity and
should not appear in the expression for the free energy.
It has been shown quite rigorously by Bloch and de
Dominicis" that unlinked diagrams cancel in all orders
as they must. One has the paradox that Z contains
unlinked clusters in its expansion according to powers of
1/T but that the free energy kTlnZ contains —no
such terms. The explanation is that the contribution
of the unlinked clusters can be factored from the
contribution of the linked clusters and added together
to give —kT ink.

The reducible diagrams do not cancel. It was shown
by Brout~ that in the Ising model the reducible dia-
grams cancel but this is because Hamiltonians K;; and
3C,& commute with each other. In quantum mechanics
the noncommuting Hamiltonian operators give rise
to nonvanishing contributions from reducible diagrams.
These contributions should become smaller as the spin
5 of the individual dipole increases.

FIG. 6. Diagrammatic
representation of the
hrst three semi-in-
variants. The vertices
of the diagrams repre-
sent particles and the
lines the interaction X;;
between them.

A~=i 3 +

+ i~k +
i

, .k

B. Evaluation of Semi-Invariants of
Bipolar Lattices

1. Calculation of X2

The semi-invariants ) 2, xa, and x4 are again given by
Eqs. (35) and X,L by Eq. (5). For 4 we, then, have

"C. Bloch and C. de Dominicis, Nucl. Phys. 7, 459 (1958),» R. Brout, Phys. Rev. 115, 824 (1959).
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X~=+;&q (3C,P&=g'P' P,&a r;q '[((Sa S;)')—6((Sq S;)(S~ r;q)(S; r;))r;), '&+9((S, r";q)'(Sq r,))'r;q~)j . (41)

Taking the necessary traces, one has

~~= 3g'P'5'(5+ 1)' Z~&. r~' '=g'O'5'(5+1)'(5 5g).~~a '

for a simple cubic lattice with interatomic spacing a.

Z. Caloulalioe of X3

X3 according to (39b) contains a two-particle as well as a three-particle term. The two-particle term is

5'(5+1)'
x,~»= P (sc;,'&=g&p' g r. —9

(42)

=g'P'5'(5+1)'X(2. 210)a ', (43)

for a simple cubic lattice. The three-particle term is

S'(5+1)'
(3) —gep8 Q Q Q [1 3+—3(cos'gyes)+cos'yg), +cos'y(;g) 9c—os', ),( cosypg; cosy(, )j(rj)r) tr jr) ', (44)

9 j&k&l

where y, ~g is the angle between the vectors r~; and r~~.

Subsequently, we shaH also use the notation of y, ~, I,~

for V,I t.
The value obtained by a computer summation for

this series on a simple cubic lattice is

total contribution predominates. It is obviously not
clear how close the quoted result is to the true value
but the length of the calculation even on the IBM 7090
forbids use of more terms.

Collecting terms we have

Xg"'=g'P'5'(5+1)'XX23. 69a '. (45) 1''P'5'(5+1)'

It is worth commenting about the technique of
summation. Each particle index j, k travels over a cubic
section of the lattice whose eight vertices are given by
~n, ~e, ~n. For e= 1, 2, 3, 4 the cumulative sums
are, respectively, 7.980, 19.27, 22.48, 23.69. In contrast,
Van Vleck estimated 3.68 from the contribution of all
right triangles with a given vertex multiplied by a
factor of 1.3 to take into account other contributions.
The machine calculations show that the number of
triangles with small contributions is so large that their

X[2.210+23.69S(S+1)), (46)

from which result it is clear that the cycle diagram
predominates.

3. Calcula1ior), of X4

As shown in Eq. (40), X4 contains terms involving
two, three, and four particles, i.e., X4 ——X4(')+),4(3)+),4(4).
X4") is, according to Eq. (40c),

24 16 ii 11 1 4
P;&a [(K,a') —3(&;a'&(~;~'&j=g'P'5'(5+1)' E rye " —— +—

25 25 S(S+1) 25 5 (5+1)' 3-

28 16 1 ii i
Ng'O'5'(S+1)'s "(=+——(6.202), (4i)

75 25 5(5+1) 25 5'(S+1)'
for a simple cubic lattice.

X4&') is composed of two different types of terms (c.f., Fig. 6), the "triangle bubble" and the "double bubble".
The triangle bubble consists of the terms

Z~~) ~~ I 4(~~W~P~o)+2(~;WI i~),x~i&j
After a lengthy calculation one finds

1 (r, iXni)' 1 (r;aXrw)'
(JCgaK) PKi;&= —(K;aXaPCaPC) i)=5'(5+1)'g'P'r, q 'rai 'r~, '

6
—

6 cos'y), ;&
——

6 r;pr) p 6 r;p'r). p

rjk rjprkp

1 (r;), r, ~)(r;),Xr~~) (r;&Xrq~)+—
2

(49)



DI POLAR I X rERACTION I X CRYSTAL LAT rI CES 105

A machine calculation out to n=4 gives for the total contribution of the triangle bubble on a simple cubic lattice

''tjS'(S+1)'(g'p'/48") (64.62).

The double bubble consists of the terms

p +&X';k'&kP)+&~jWkj+jkxkj) 3—(~;k')&~kP)] (51)

Lengthy calculations yield the results

S8(S+1)8g2p2 1 -2 (rjk. rkj)2
(BCjk2Xkp) = —S(S+1)+—+ —S(S+1)——

rjk rkl 30 15 10- rjk2rkl2
(52)

S8(S+1)8g2P2

&~,k&kjx'ski) =
r jk'rkl'

-2 7- -2 (r;k rk4)'
—S(S+1)——+ —S(S+1)+—
5 15 15 15 r jk'rkl2

1
(~ k')&~kP) = S'(S-+1)'g'P'

9 rjk rkl
(54)

The total of the double bubble is, then,

6 2 2 2 (r, r 8)2 4 g'P'
& (S(S+1))' -S(S+1)—+ -S(S+1)— —-S(S+1)

j'Wkgl 5 5 5 15 r;kkrkp 9 -rj'k rkl

On a cubic lattice,
(r;k rk4)2 1 1

~~l rjk2rkl2 rjk6rkl6 j~~l r jk6rkle

so we have as a 6nal sum
-28 4 1

g'p'S'(S+1)' —S(S+1)——
45 9- j&~«jk rkl'

(57)

The cumulative sum has the value X/ar2 times 45.53, 66.47, 69.28, 70.00 when 28 takes on the values 1, 2, 3, 4,
respectively. The 6nal contribution of the double bubble is

g8P8-28
XS8 (5+1)' —S(5+1)—— (70.00).c" 45 9

'A4('), the sum of the triangle bubble and double bubble contributions is

ÃS4(S+1)4 (g8P8/ar2) L43.55—(33.51)/S(S+ 1)].
The four-particle contribution to ) 4, the square diagram is given by

(S(S+1))4
2 2 2 2 (~jk~kj« ~ )=g'P' P P g P rk 8rkj 8r8„8r; '

7

(59)

X L1 4+3(COS yjmlm+COS Vjkk, l+COS Vjkj,m+COS Vjm, ,kj+COS 74m, kj+COS 'yjk, l )(60m)

9(COS'rm j,kl Cosrmjjm Cos'ski, ,[m+Cos'rim, kl Cosrkl, jk COSQ jm, jk+ Cos'rkljk COS|'j k, m j, Cos'rk 4 mj

+Cospjk, mj Cos'r~m, mj Cospjk, tm)+2? Cosrmj, kl Cospjkmj Cospjk, ,kl C S Oi Tmj]m,
= [gkp8S4(S+ 1)4/a"]X constant. (61)

The determination of the constant in the above
equation is far more dificult than with the other
summations. For with three particles indices to be
summed over the number of terms necessary is (228+1)'
which for n& 2 is too lengthy on the presently available X4"') (g'P'/a")?VS4(S+ 1)'(48.73), (62)

IBM 7090. For n= 1, 2 the constant is 14.33, 48.73,
respectively. This is as far as we can go at present.
If we write
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it is clear that

X,(4) g Z, &»&&a, ('-).

suggested hypothesis could be tested with the use ok

more highly convergent series for the dipole sums.
(63)

Although we have failed to obtain a numerical value

for X4, Eqs. (46) and (63) clearly indicate that in

calculating P „, X„&"' will be of real importance. Only

the cycle diagrams in all probability need to be con-

sidered. In spite of the failure in the present paper, the

C. General Exyression for Cycle Diagram

Inspection of Eqs. (44) and (60) shows that it is
possible to write down the general form of the cycle
diagram with e particles because the trace of any
particular product of n operators of the form
X;,3C;PCk~ can be evaluated. The general expression

( )
(1—I+32 cos''r —9g P P cosy cosy' cosy,

o ~ ~ a a P v

Sn S+] n

(n) —g2nP2n

+27 g P P P cosy cosy' cosy~ cosy'
a P y b

aPy ~ ~ ~ n
+ +Q. /cosy costs .cosy„(—)"3" ']r» 'r» ' r„,', (64)

is where p, yp, . refer to angles between pairs of sides
of the n-particle cycle diagram.

If ~, —X„&"' then, formally, Eq. (64) constitutes the
solution to the dipole-dipole interaction problem. This
equation clearly needs to be investigated further but
one definite result can be extracted without evaluating
the e-particle sums. If the dipolar lattice possesses a
Curie temperature, it will be proportional to the
limiting ratio 'A /X-', " hence to S(S+1).The results
obtained above will be relevant to future measurements
on nuclear magnetic dipole systems at extremely low

temperatures.

D. Classical Dipolar Lattice

Rosenberg and Lax" have reorganized the terms of
Van Vleck's treatment of a lattice of classical dipoles
in a fashion exactly analogous to our reorganization of
Van Vleck's treatment of a lattice of quantized magnetic
dipoles. Their treatment included four basic diagrams
shown in Fig. 7. Term C corresponds to the ordinary
dipole sum whose value depends on the shape of the
sample. E, T, and S are the shape-independent higher
order terms which we have described as the second-
order bubble, the triangle, and the third-order bubble.
In Lax's words C represents the direct action of dipoles

j and k, whereas the higher diagrams represent the
reactions of dipole j on itself via one or more inter-
mediate dipoles. The efI'ective molecular pola. rizability

j~k
FzG 7. T~o- and three-particle diagrams representing

interactions on the dipolar lattice.

» G. S. Rushbrooke and P. J. Wood, Proc. Phys. Soc. (LondoII)
A68, 1161 (1955).

I R. Rosenberg and M. Lax, J. Chem. Phys. 21, 424 (1953).

N "g (66)

where p,; is an erstwhile unit vector with the orientation
of the ith dipole. A more stringent requirement is
Ps =1.

The restriction of a partition function to cycle
diagrams implies that the individual dipoles are as
independent as possible and that the density is very
high. Brout" has shown, for the Ising model, the
restriction to cycle diagrams corresponds to a Gaussian
distribution for the p,P. The spherical approximation is
only slightly more restrictive and it is plausible, but not
proved, that the spherical model gives results close to
the approximation of using only cycle diagrams.

E. Dilute Lattices

In one special case the partition function can be
calculated accurately. This is the case of particles with
spin 2 in a dilute lattice, as for example, paramagnetic
ions dissolved in a diamagnetic material. Brout has
calculated the partition function of a dilute lattice
where only the exchange interaction is considered.

"T.Berlin and M. Kac, Phys. Rev. 86, 821 (1952)."M. Lax, J. Chem. Phys. 20, 1351 (1952).
'7 R. Brout, Phys. Rev. 118, 1009 (1960).

o8 can be written as a series in .Vo, where n is the
isolated molecular polarizability.

~,=u(1—R(1Va)'+ LT+ (4/25)S](Ea)'+ ) (65)

For a simple cubic lattice (4/25)S is 2.12 and T is
38.7, leading to the now familiar conclusion concerning
the cycle diagrams.

Lax makes another point: The spherical model of
Kac and Berlin" corresponds to the omission of diagram
S. The spherical model originally introduced for the
Ising system and generalized by La,x" to the classical
dipole moment only requires that
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The partition function Z is given by

&exp( —2 P~)a))= ( II L1+exp( —P~la) —1j)

=1++ &exp( —PX,a) —1)

+ (3 4 N-particle terms), (67)

where p= 1/I3T, not to be confused with the magneton
or spin function.

Suppose that the X lattice points are not aQ occupied

by spins but only have an average fractional occupancy
f. The pa, rtition function is to be averaged over an
ensemble of different crystals with the Nfparamagnetic
spins on random sites. Then

nearest neighbor exchange interaction has been carried
out extensively by Rushbrooke and Wood.""

The formalism of Sec. II can be applied to the
calculation of the semi-invariants for this system. For
example,

7 3=23&a &~3a') =J' 23&a 2- (5;-')&5~'), (74)

where the summation over 0. extends over the three
components x, y, and z. As TrS '=S(5+1)/3, one has

Xz ——LJ353(5+1)3/31 Q,&a "lines".

Corresponding for X3, one gets

—J'5'(5+1)'
X3= g "lines"

6 j.&k

(Z) 1++ half Z fa

The two-particle term is

(68) +3J35'(S+1)' p "closed triangles, " (76)
j&k&l

and for X4

Z =P; (exp( —P7('.; )—1). (69)

jk ag2P3r —3 3J .„
Ez"= 'g'P'r a' aJ3a, —— . —

g'p'r, a
' ,'J, a, ——

Ea)k= —,'gagr, a 3+aJ;a, —

(71)
(1/~&) (~,Pa+P;(aa)

(1/v2) (~ pk p)~a)—
putting g'p'rla ' E,a we have— ——

Z P L (2+(K;al +J al )+z Z(xla &al )——

j&k

+ZtZ(lrlk&la)) 1$ (-72)

If we put E;a=0, then Eq. (72) reduces to Brout's
equation. One can use Eq. (72) for Z to obtain the
magnetic speci6c heat of dilute solid solutions when
only the f-dependent term is important, viz:

The average in brackets needs to be taken only over
the known energy levels of the two-spin system, i.e.,

Zz= Q;&a Q. /exp( —PE.'a) —1],

where E 'k is the energy eigenvalue of the two-spin
system (jk) for the state (3. (There are four such states
corresponding to the three triplet and one singlet state. )
The energy eigenvalues are obtained from the Hamil-
tonian given by the sum of the terms (5) and (36).
The eigenvalues and corresponding eigenfunctions are

J45'(5+ 1)'- 7
5'(5+1)-"——5(5+1)+-', P "lines"

3 j&k

——
3 J353(5+1)' P ("closed triangles"

j&k&L

8
+"open triangles")+ —J'5'(S+1)4

9

X P "quadrilaterals". (77)
j&k(L&m

The summands of the above equations are lines,
closed triangles, open triangles, and quadrilaterals
connecting lattice points. In all these polygons, each
side has to be one joining nearest neighbors because
the exchange interaction vanishes between non-nearest
neighbors. One can evaluate these summations by
counting the number of two point line diagrams,
triangles, etc. , around any lattice point as origin. Thus,

P,&k "lines" = Nz/2, (78a)

p;&a&( "closed triangles" =Nqaz/6, (78b)

p, &k&("open triangles"=Nz(z —1)/6, (78c)

P,&a«& "quadrilaterals" = iVqaz/8, (78d)

and, in general,

p, &a&(&... 33-sided cvcle diagram= Nq„z/233. (78e)

In Eqs. (78), z is the number of nearest neighbors
around any lattice point, q3 is the number of triangles
with sides equal to nearest neighbor distances around
a lattice point as vertex, -. , and q„ is the number of
e-sided 6gures with sides equal to nearest neighbor
distances around a lattice point as vertex.

If Eqs. (78) are substituted into Eqs. (77) and (76),
' P. J. Wood and G. S. Rushbrooke, Proc. Phys. Soc. (London)

A70, 765 (1957)."G. S. Rushbrooke and P. J. Wood, Mol. Phys. 1, 257 (1958).

+.z z(xia &okla)+ztP(xja &—ja)) —1j) ('73)—

III. EXCHANGE COUPLED LATTICES

The high-temperature expansion of the partition
function of a lattice whose dipoles interact via a

Cp 8 8
pa—ln(1+jQ p(2l/l( k&+~k&la)'

BP BP j&k
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one obtains

J35'(5+ 1)'&Vs

L
—1+85(5+1)q31

—y (2)+y (3)

J45'(5+ 1)'rVs
L1——,'S(5+ 1)+-',5'(5+ 1)']

15

(79)

5 3——
Lq3+ 5(S+1)(s—1)$+—q45'(S+ 1)'

3 3

=A4 "&+X4"'+X4"'. (80)

The individual terms inside the curly brackets
correspond to increasing numbers of particles. For the
simple cubic lattice s=6, q3=0, F4=12, for the face-
centered cubic lattice s=12, q3=0, and q4=6. Inspec-
tion of Eqs. (80) and (79) shows that there is noparticu-
lar predominance of any one sort of diagram over

another as was observed in the longer range dipole-
dipole potential problem.

The Curie point has been inferred by Rushbrooke
and Wood" to be proportional to S(5+1).A sufficient
condition for this is that the ring diagrams predominate
in their contributions, for the ring diagram with n
vertices has a factor [5(5+1)j".The results on X3

and X4, however, conirm one's intuitive feeling that for
a very short range potential the cycle diagrams do not
predominate. In contrast to the situation with the
dipolar lattice, it is, therefore, not possible to obtain
a natural explanation for the S(S+1)dependence of the
Curie temperature for an exchange-coupled lattice.
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We use the method of Part I of this series of papers to study the influence of s-d interactions, thus extend-
ing the work by Potapkov and Tyablikov to higher spin values and that of Vonsovskii and Izyumov to
higher temperatures. Expressions are given for the energy shift and damping caused by the s-d interaction,
using the 6rst nontrivial approximation to the Green-functions equations of motion.

1. INTRODUCTION

' 'N the erst two papers of this series' (we use through-
' ~ out the same notations as in I and II and refer to
these papers for the deinition of the various symbols)
we discussed an ideal ferromagnet with a Heisenberg
Hamiltonian, that is, the interaction between the spins
was assumed to be an isotropic exchange interaction. It

* Permanent address: Pakistan Atomic Energy Centre, Fero-
zepur Road, Lahore, Pakistan; Address for 1962j3: Department
of Physics, University of Pennsylvania, Philadelphia 4, Penn-
sylvania.' R. A. Tahir-Kheli and D. ter Haar, Phys. Rev. 127, 88 and
95 (1962). These papers are referred to as I and II and their
equations are quoted as (I3, 5), (II2.11), and so on. We should
like to use this opportunity to rectify an incorrect statement in
Appendix 3 of I and to apologize to Dr. Kawasaki and Dr. Mori
for incorrectly criticizing their work. We have now found that their
theory gives, indeed, the correct high-temperature expansion, at
least up to terms of order 1/v', our misinterpretation was caused
by a misprint in their paper.

is, however, well known' ' that, on the one hand, in
crystals of metals and alloys of the iron group as well as
direct-exchange interaction there is also an indirect
interaction produced through s-d exchange while, on the
other hand, this s-d exchange mechanism may well be
the dominant one in crystals of rare-earth elements and
for the case of solutions of paramagnetic ions in diamag-
netic crystals where the direct exchange is small.
Potapkov and Tyablikov' have used a Green-function
method to discuss this problem for the case where S= ~&,

~ S. V. Vonsovskii, J. Exptl. Theoret. Phys. (U.S.S.R.) 16, 981
(1946).

'S. V. Vonsovskii and E. A. Turov, J. Exptl. Theoret. Phys.
(U.S.S.R.) 24, 419 (1953).

4 J. Owen, M. Browne, %'. D. Knight, and C. Kittel, Phys. Rev.
102, 1501 (1956).

'K. Yosida, Phys. Rev. 106, 893 (1957).' K. Yosida, Phys. Rev. 107, 396 (1957).
7 N. A. Potapkov and S. V. Tyablikov, Fiz. Tverd. Tela 2, 2733

{1960))translation: Soviet Phys. —Solid State 2, 2433 (1961)j.


