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Phonon-Magnon Interaction in Magnetic Crystals. II. Antiferromagnetic Systems
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A theoretical study of phonon-magnon interaction in antiferromagnets is made on the basis of a micro-
scopic mechanism developed earlier. The mechanism, which in essence takes into account the mixing of
excited orbital states with the ground orbital states of the magnetic ions owing to crystal field oscillations, is
applied to a crystal which can be subdivided into two interpenetrating identical sublattices coupled anti-
ferromagnetically.

The interaction terms for one-phonon direct processes are first derived following the methods of the pre-
vious paper. The expressions for phonon-magnon relaxation times are then obtained for these processes in
the low-temperature limit. It is found that the relaxation time v,„is inversely proportional to fifth power of
temperature (T') in this region. Numerical estimate for MnF2 at 10'K gives the tentative value of r~ 10 'sec.

1. INTRODUCTION sublattice antiferromagnets have been developed by
several authors' ' by taking proper cognizance of the
anisotropy energy. Recently, the study of magnon-
magnon interactions in antiferromagnets has been
carried out following the above two-sublattice spin-
wave theory by Genkin and Fain. '

In what follows, we adopt a similar procedure in
conjunction with the mechanism developed in SU(I)
to study the phonon-magnon interaction in antiferro-
magnets. After formulating the interaction terms, the
relaxation time for the establishment of equilibrium at
low temperatures between the phonon and magnon
systems for the one-phonon direct process is calculated.
Two-phonon Raman processes are not considered in
view of their negligible contribution at low temperatures
as expected from the calculations of SU(I).

' 'N a previous paper, ' a microscopic theory of phonon-
& - magnon interactions in ferromagnetically coupled
lattices was developed from first principles. The central
theme of the theory consisted in taking into account
the mixing of excited orbital states with the ground
orbital states of the magnetic ions owing to crystal-field
oscillations of appropriate symmetry. The relevant
exchange Hamiltonian and interaction terms were
obtained by making use of such one-electron perturbed
states in the second quantization representation. This
mechanism gave the right order of magnitude for
phonon-magnon relaxation times in ferromagnetic
systems.

The purpose of the present paper is to develop a
similar theory of phonon-magnon interactions in anti-
ferromagnetically coupled two-sublattice systems. Pin-
cus and Winter' have phenomenologically discussed
the eBects of phonon-magnon interactions on nuclear
spin-lattice relaxation rates of antiferromagnets. How-
ever, experiments aimed at correlating the linewidth of
antiferromagnetic resonance (AFMR) absorption with
the spin-lattice relaxation times are lacking. Some
preliminary suggestions to explain the AFMR linewidth
owing to fluctuations of the effective molecular field at
the site of an individual spin have been made by
Townes.

Although the problem of the antiferromagnetic
ground state of a three-dimensional network of spins
has not been solved, the two-sublattice model, with
spins in one pointing up and those of the other in the
reverse direction can be regarded as representing the
reality fairly closely. ' Spin-wave theories for such two-

2. FORMULATION OF PHONON-MAGNON
INTERACTION HAMILTONIAN

We consider two interpenetrating simple cubic sub-
lattices of magnetic ions with one localized d electron.
The spins on sublattice 4 point up, and those on sub-
lattice 2 point down. The two together form a body-
centered cubic structure of the magnetic system. Thus,
the nearest neighbor of an ion belonging to sublattice
1 is on sublattice 2 with a=8 and vice versa. With the
above model and following the procedure outlined in
SU(I), we get the total Hamiltonian of the system
including anisotropy terms as

H=HL+H. ,+H,„+Hz+H, +H;„„(2.1)

where the symbols, respectively, stand for contributions
to the total Hamiltonian due to lattice, one-electron
terms, isotropic exchange, Zeeman, anisotropy, and
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—n /25)'",
S„=(25)'"(1—gs„/25)'"d„,

5+5 '=~„.(2 3)

(2.4)

H, i=+ E,'JtT,

H. =s Z J(Rg )&g '.

interaction terms. The explicit forms are given below: Likewise, for the other sublattice

H~=Z gb q. (bqs'bq. +s), (2.2) 5„+=(2S)'"d t(1
qy

(2.11)

In Eq. (2.4) l runs over ions on sublattice 1 and m over
sublattice 2 and Eg '——is+2Sg S .

These operators satisfy the commutation relations

ac~ —@~a=1 and dd~ —d~d = 1.

Hz= —Hgggp Q 5;*. (2.5) Using Eqs. (2.10) and (2.11), the spin-dependent part
of the Hamiltonian can be written as

H is the external magnetic field pointing in the z H, =H, +Hz+H, „+H;„s
direction and the other symbols have their usual

significance.
=constant++ J(Rgm)S((agd~+ug d~ +ug ug

l, m

Han= —H~gggp(Zg Sg* Z—m Sm*)~ (2.6)
+d td ))+gggpfH(Z «« Z—d d )

B~ being the anisotropy 6eld.

H; g
——P 2 "J(Rg ) 8RsPg '+higher order terms. (2.7)

l m

In the above S, represents the spin vector of the atom
i, bR~ is the vector representing the change in the
nearest-neighbor distance, ~q„ is the mode branch
frequency of lattice vibration, and b,„t, bq„are the
corresponding phonon creation and annihilation oper-
ators. Here J(Rg ) represents the eRective exchange
integral. Although in SU(I) we expressed this in the
Heisenberg formalism, it may be taken to include all
other types of exchange or superexchange interaction
terms " '4 As defined in SU(I),

"&(R )=Z.(d.~.lV i~.~)

with p and pg, standing for the excited- and ground-
state orbitals, respectively, and V"=—(8V/8 Rs) 0, V
being the crystal field due to the nearest-neighbor ions.
Further, as before, we express 5R~ in terms of bq~t, bq„as

p g . (b t b ) (&gq Rgs &iq Rm0) (2 9)
Ã q»

with gq„= (—i)eq„(A/2g0q„M)"', eq„being the Polar-
ization vector and M the mass of the ion. YVe now
transform the spin-dependent parts of the Hamiltonian
Eq. (2.1) in terms of the spin deviation operators of

the two sublattices, which are expressed below:

Sg+=Sp+iSp= (25)'"(1—eg/25)'"ug,

Sg =Sp iS("= (25)'g'ugt(1 —gsg/25—)'g (2.10)

5—Sg*——ugtug ——ng (the spin deviation).
'g T. Kasuya, Progr. Theoret. Phys. (Kyoto) 16, 45 (19M).
~ P. W. Anderson, Phys. Rev. 115, 2 (1959)."S.Koide, K. P. Sinha, and Y. Tanabe, Progr. Theoret. Phys.

(Kyoto) 22, 64/ (1959); K. P. Sinha, Indian J. Phys. BS, 484
(1961).

'g See P O. Lowdin, .Rev. Mod. Phys. 34, 80 (1962), for other
references,

l fn

+H~(P «tug++ d td„))
I, tlb

+ Q Q Cq„J (Rg„)Lugd„+ugtd„~+ugtug
gQ g, m, qy

+d-'d-1Lbq' —b-q.jLp" ""—p"'"'3

+ ~ (2 12)

In writing (2.12) we have neglected the terms of the
type ng, /25 and higher order terms in the expansion
of (1—

egg /25)'g' and the constant includes the terms
independent of spin-deviation operators.

The Hamiltonian B, can be written in the spin-wave
representation by making use of the Fourier transforms
of the spin deviation operators given by

ug= (2/E)'gs Pg exp( —
ising, Ri')ug„

ugt= (2/Ã)'" P&, exp(ising Ri')u&t

d = (2/E)''Pg, exp(iyg, R ')dg„

d t= (2/E)'g'Pi exp( —
ising R ')dyt,

(2.13)

+ug ux+dg dg j+gggp( (H+HA)Z uX uX

4Ss
+ (H~ —H)Z dg, 'A)+ Z E I„.'~(Ra')

Ã& q»

XL(yi—q yg)&4A —q+ ('ri+q 'yx)ui A+q

+ (1 |'q)ux ui+q+ (Vq 1)A%

X I:bq~' —b-q~J (2 14)

where the propagation vector qgg, runs over X/2 points
of the erst Brillouin zone of the reciprocal space of the
lattice. With the help of (2.13) we can express (2.12) as

H.=const+& zJ(R,')5(yg (ug, dg+ug tdg, ')
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where

v&,
=—[g& exp(aqqq&, .R&') j/2; R„'=Rts —R„o. (2.15)

In the above, J(Rt,') and ~J(Rs') are assumed to be
the same for all nearest-neighbor interactions; the
summation over h extends to nearest neighbors. Further,
in deriving (2.14) from (2.12) we have carried out the
summation over t or m utilizing the following inter-
ference conditions, for the terms in the square brackets:

4SS J(Rs') g,„
Bg„—— —[(yi, »

—yi, ) cosh(81» —81,)

+ (1—y») sinh(81» —81)$.

In deriving (2.20) from the interaction part of (2.14),
we have omitted the terms which represent processes
involving simultaneous creation or annihilation of two
magnons and one phonon as they will not conserve

energy. '~

K/1 1CQ —~g) (2.16) 3. PHONON-MAGNON RELAXATION PROCESSES

Noting the properties of the boson creation and
annihilation operators pertaining to transitions between
different states in the occupation number representation
[see SU(I)j, the transition probabilities of the various

processes contained in Eq. (2.20) can be easily written
as

with the plus sign before q being used for the first and
the last terms and the minus sign for the second and
the third terms in the first square bracket of (2.14).
It can be seen from (2.14) that the pure spin part of

H„ i.e., terms in the curly brackets, is not diagonal.
To diagonalize the pure spin part as well as to write the
interaction terms in the same representation, we make
use of the following canonical transformation":

W(n„n, „N»y~ (n, —1)(n1»+1)(N»y+1))
= (22r/trt)

i
A1»„~2 (n),) (ni, »+1)(N, y+1)

Xb (Ez»+E,—Ei,), (3.1a)tty=r21 cosh81,+P) t slnh81„

an't
——cri,t cosh81,+Pi, sinh81„

di, =ni, t sinh81+Pi, cosh81„

d1t =r21 slnh81+Pit cosh8y,

(2.17) W(n1, ni, », N»y ~ (n1+1) (n&, » 1) (N—»y
—1))

= (22r/1'2)
i
A 1„„i

'(ni, +1)(ng») (N„)
X&(E1 q+E» —Ei), (3.1b)

tanh 281,= —(to,yi, /to, +co~), (2.18)
W(ni, , ni, »', N»y~ (ni, —1)(ni, »' —1)(N,y+1))

= (22r/5) ~&&»„I2(n&)(n&-»')(Nq„+1)

X&(Ei+Ei,-»' —E,), (3.2a)

and the symbols co,=2SSJ(Rs')/fz and to~=gtittH~/It.
Using the magnon operators n, P, the pure magnon and
interaction Hamiltonian in (2.14) take the forms given
below. W(n~, n~ »', N,.~ (n1+1)(n1-»'+1) (N». —1))

= (2~/@)
I &~»y I'(n1+ 1) (n~- »'+ 1)(N»y)

X&(Ei,+Ei, »' —E,), (3.2b)
H =&1,~1+(~it~~+2)+Z~ tt~i, (PitP1+2), (2 19)

where
to~+ —[(to~+to )2 to 2~12jl/2+to~

terr =gtipH/k.
W(ni, ', ni, »', N»y~ (ni,

' —1)(n1»'+1)(N,„—1))
= (22r/tq)

~
A 1»y ~

2(ny') (n1»'+1) (N, y)

X 8 (Ei,'+E,—Ei, »'), (3.3a)The above for xq=0 gives the well-known relation for
AF MR frequency. " Likewise, the phonon-magnon
interaction terms reduce to W(n, ', n&, ', N, „(n&'+1) (n&, '—1)(N,.+1))

=(2 /&)l~ ..I'( '+1)( -')(N.+1)
X 8(E),'+E» —Ei, »'), (3.3b)

Hint= P [Ax»y(trier& q bqy rr& rr& qbqy)
Xqp

where

4SS J(Rs') g „
[(yi, »

—y),) sinh(8), »
—81,)S

+J3xqy (ct) PX qfiqy rr—x px—q fiqy)

where nq, ni, ', N»„, respectively, represent the occu-
pation numbers of magnon associated with energies
Ace&+, A~z and phonons of energy Acv~p. The 5 functions
ensure the conservation of energy. The rate of transfer
of energy between the magnon and phonon systems is

+(1—y ) cosh(8&, —81)i,
(2.21)

'~ T.Nagamiya, K.Yoshida, and R.Kubo, in Advuncesin Physics,
edited by N. F. Mott (Taylor and Francis, Ltd. , London, 1955},
Vol. 4, p. 1."C. Kittel, Phys. Rev. 82, 565 (1951).

'7 It may be remarked that in the processes involving P and Pt
/see Eq. (2.20)j the momentum conservation law for particles
is not apparently satisfied. However, we are dealing with quasi-
particles and the momentum of the particle should not be taken
identically equal to kx), . See J. M. Ziman, Electrons end Phonons
(Clarendon Press, Oxford, 1960); G. H. Wannier, Elements of
Solid State Theory (Cambr-idge University Press, New York, 1959).
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given by

Q=Q-+Q-p+Q/

=EL'(&qn)-+&&«.)-s+(&q.)sj&~q.

where if we use

tanh28/, = —((u,vg)/(a), +co~) = —vg,

cosh2(0i «
—0/, )

(3.9)

= (2qr/A) Q A(vq„f~ A/, «„~'f (/qi, ) (/qi, q+1) (1V«„+1)

—(e/, +1)(ex q) (cV«„))8(E/, «+E« —E/, )

+ I
~i „I ((iq.)(",)(~,.+1)

—( +1)(/q, '+1)(A,„))8(E+E,'—E,)
+IA.„I ~(- +1)(-. , )(~,.+1)
—(~~')(~~-, '+1)P,.))8(»'+E,—Ei-.')j. (3.4)

where

X f ~Ai, „~'e~""~8(Eg «+E«—E/, )

+
~
Ili ~2~x«/kryo(E +E„E)

+ lA/qual'ex" q/'~8(Ei+Eq —Eg q)), (3.5)

F(xqp) —=

(ezra, q/kT 1)(eEilkT— 1) (eE«/kT \ )
(3.6)

We change the summation into integration, and use
the Debye approximation for phonons, namely, orq„
=k8Dqa//q, a being the lattice constant and for magnons
neglecting ~~ compared to co,

In proceeding further, we neglect the Zeeman energy
contribution to the magnon energy, i.e., coq+=co),———orq.

Hence, (ez) and (ez') may be expressed by the same
Bose distribution function 1/Lexp(Eq/kT) —1j.

As in SU(I), we define AT= T,—Ti T Ti and-——
making use of the Taylor expansion of terms containing
(T hT) in p—owers of hT and keeping only the first-
order terms, we get

2qr AT (hcuq„)'
Q=— Z E(l ~p)

5 T»~~ k

= (1—v~-«v~)/L(1 —v~-«') (1—v~') j"', (3 1o)

sinh2(8i, «
—0q)
= (v —v — )/I:(1—v — ') (1—v ')j'"

Substituting (3.10) into (3.8) and using the approxima-
tion v/, =1—zi,qa'/s for qqi a((1, we get after making
use of the relations Ez= kg, aK& and E~= kgaaq, etc. ,

16) A ~ 1
IA,«nl'= —

]
ISq(.Z(R&o)]q

1V ~2o)«„Ml k4

1—(E),'-Ei'E~ ' E"Ei, '+—%, )
g 4

1 2
+ (E«'E/'+E«'E~ «') — (E«'Ei, '

g 4 g 202

+Eq'Ei-«' —2E«'»'E/, -q')

1E,4 1+- ——(E/'+»-«' —2E/'»-q') (3 11)
2 0D4 0,4

2& AT 1 Xa' '
Q =—

A T' k-Sm'
~A„„(E, Ep, qp)

We get a similar expression for ~B/, q„~' except that the
sign before the second square bracket in (3.11) is minus.
It is interesting to recall that as in the case of ferro-
magnets )SU (I)], the dependence of

~

A iq„~
' is of the

fourth order in propagation vectors. However, the
present expression Lcf. Eq. (3.11)j is more involved
than the corresponding expression for ferromagnets.

We discuss the integration of the three terms in
(3.5), i.e., Q, Q ji, and Q/i separately. Thus, we have

h(og=h&o. (1—vi, ')' '=2JS~ia(2s)' '—=k0 ~ia where
Xe~"/"~8(Ex «+Eq —Ei,)dr)dr«, (3.12)

where we have used the approximation (qqi, R/, ')((1.
The above defines the parameter 0,. Let us now con-
sider the forms of the coefficients ~Ay«„~' and

~
Bqq„~'

under the approximation (qqi, R/, ')((1. We get /with
I«„= (lq/2/d«„M)'/' as explained in SU(I)g:

(A/2M, „M)l J(R„')]'
S

XLl ((v ——v )'+ (1—v )') o h2(0 ——0 )

+ f (vi, «
—vq)(1 —v«)) sinh2(0, ,—0„)

+kf (1—v.)'—(v~-q —v~)'}j (3 g)

d'Ty= Ky dKy sing&dg&dq ~, d7 ~= q'dq singqdgqdpq.

Integrating over angle variables with the help of the
5 function, which gives a factor proportional to E$ q,
the above reduces to

Sm'AT 1 Na' '

XEi, «F (liqp) e~& / "rK/ c[tk/, tq. (3.13)

This expression with the help of the dimensionless
variables

g=Ei/kT and $:Eq/kT—
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can be written as limit we use

where

" PA " ~'+(n, k)e"n«=G, (3.14)
s (e&—1) t, (s~&—1)(e"—1)

12'-4 T q' ( T
Nu —

I
=234NuI —,

eni &eD
Cg=

5

and for a bcc antiferromagnet4

(3.20a)

N( A qhT T"
G=—

I I
S'L J(Rss)g',

~km) Ts ense, 4

1
C (&~)= —(8& P—16~ g+1y P—6~g'+ P)

0 4

1
+ (2n'k4 2n5—'+ F)

0 4

(3.20b)

1 104( A ~
T' 8,' 8D'~

x' (Mk'J er, '8 4 4 234)
+

4.7 5.3 9.6 i+ — IS'L ~(Rs') j' (3.21)
8,4 8D4 egpe,' i'

Cs=4Nk (T/8.)'.
(3.15)

Substituting (3.20) and (3.18) into (3.19), we get

+, ,(4ek' —4A' —5')
0 202

1 P 1
+ (4riP —4A' —V),—(3 16)

2 0~4 0,4

Q (low-temperature limit)

-1.7 1.7 3.3
+

0,' 0g)' 0g)'0.'
= 104G (3.17)

Following the same procedure, we get, after making the
appropriate use of the 8 function while integrating,
the values of Q s and Qs. Summing all the three
expressions, we can write Q as

Q (low-temperature limit)

10'N( A ~AT T"
s I.J(R.o)gs

~s AM&) T 8Dse4

and r= (8,+8D/28n. For 8,)en, r)1; however, for
0,&0D we have to use r = 1 to satisfy the 8 function
condition. For very low temperature limits the integral
in (3.14) is easily evaluated for all the terms of (3.16).
We have

It is interesting to note that the above expression
gives, in the low temperature limit, a simple law of the
temperature dependence of the spin-lattice relaxation
time in antiferromagnets, namely,

v, p~ 1/T' (3.22)

4. ESTIMATES AND DISCUSSION

en B(Tjr/M V'l')"——', (4.1)

We shall now apply the foregoing theoretical analysis
to some specific systems. Unfortunately, we cannot
compare the theoretical estimates with any experi-
mental value, in that none is available for any system.

The system which may closely approximate the
model chosen, i.e., a body-centered cubic distribution
of magnetic ions with each interpenetrating simple
cubic lattice representing one of the two sublattices,
is perhaps MnF& (body-centered-tetragonal structure)
on which some AFMR experiments have been carried
out. The estimated exchange held H~ for this system
is of the order of 10' and B~ 10' Oe. ' Thus, our
approximation of neglecting H~ in comparison with
H~ is reasonable. If we estimate 0„ following the
Weiss approximation, its value for T~-70'K (the Neel
temperature for MnFs) turns out to be 30'K. A rough
measure of 0~ can be obtained from the melting point
of MnF&, i.e., TED=1129'K by making use of the
Lindemann relation"

4.7 5.3 9.6
X +

0,4 0g)4 0D'0,'

Relaxation Time for Equilibration

(3.18)
where M is the mean atomic weight and V is the mean
atomic volume. Using a value of the constant" 8 equal
to 115, we get 0~ 250'K. We get nearly the same
value by using the formula"

The relaxation time for phonon-magnon interaction
T & ls expressed as I,SU(I)j

1 Q(1/Cs+ 1/Cz, )
(3.19)

en = (5/k) (10u/9MX)"' (4 2)

where x is the compressibility. The value of x is deter-
mined from the data of Benedek and Kushida. "In
estimating

where Cz, and C~ are, respectively, the lattice and the
spin system specific heats. For the low-temperature

M. Blackman, in Handbuch der Physik, edited by S. Flugge
(Springer-Verlag, Berlin, 1955), Vol. VII, Part I.

'9 G. B.Benedek and T. Kushida, Phys. Rev. 118, 46 (1960).
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the procedure is the same as discussed in&SU(I).
Q ~

V"
~ Pq) is expected to be of the order of 1X10 s dyn

as shown from our previous study as well as the ligand
field calculations on inorganic complexes. "

The exchange integral of the type (p p~~ V»~@~Pq)
may be estimated from the latest calculations of
Freeman and Watson. " On the basis of their calcu-
lation a minimum value of the above integral can be
taken to be of the order of 10 ' eV. Actually, for the
present integral one may expect a larger value because
of the extended nature of the excited orbital. Further,
the superexchange effects are mainly responsible for
the spin coupling in magnetic compounds such as
MnF2, and the excited orbitals are to be chosen on the
magnetic ion centers or linear combination of atomic
orbitals involving magnetic as well as nonmagnetic
ions. Thus, using a value of ~E —=E —Eo 10 eV, we

get J(Rs') of the order of 1X10 dyn. If one identifies
"J(Rs') with (dJ/dRs'), another estimate can be made
from the data of Benedek and Kushida. "Using their
values, namely,

(1/T~)(BTsr/BP) =4.4X10 '/(kg/cm'),

(1/a) (Ba/BP) = —(0.45X 10 ')/(kg/cm')

(1/c) (Bc/BP)= —(0.31X10 s)/(kg/cms)

where I' is the hydrostatic pressure, a and c being the
lattice constants of MnFs, we get J(Rs') dJ/dRy, '

6)&10 dyn. This is in rough agreement with the
value noted above; however, to be on the safe side,
we shall use a value of ~J(Rs') to be of the order of
10 dyn. Thus, with S=5/2 and at T= 10'K, we have

1/r, v=10s sec ';

i.e., v,~ at 10'K is of the order of 10 8 sec. However,
keeping in view the uncertainties in the values taken
for the parameters involved, the above may be con-
sidered to be a tentative estimate. "

In contrast to the ferromagnetic case, an important
diGerence is the absence of an exponential temperature
factor in the expression for T p in antiferromagnets
which, in turn, is responsible for giving a shorter
relaxation time in antiferromagnetic systems. This
arises owing to the linear dispersion relation for anti-
ferromagnets, namely, ~) ~ I(,y.

From the experimental results on the linewidth of
AFMR on MnF2 we expect the magnon-magnon
relaxation time to be of the order of 10 "sec at such
low temperatures. Thus, the assumption, implicit in
our theoretical analysis, that the magnons are in
statistical equilibrium with each other would seem to
be justified. It is desirable to have more experimental
results on the AFMR of various antiferromagnets
before a more quantitative estimate is attempted.
Future experiments may help the verification of the
temperature dependence suggested in the present work.
We have already discussed the merits of choosing the
present mechanism in preference to others in the
previous paper (SU(I)j, and the reasonable agreement
between the experimental and calculated values of the
relaxation time for ferromagnets impelled us to under-
take a similar calculation for antiferromagnets.
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