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Second Anisotropy Constant in Cubic Ferromagnetic Crystals* )
R. J. JoENxf

Department of Physics, University of Pittsburgh, Pittsburgh, Pennsylvania

(Received 7 September 1962; revised manuscript received 29 January 1963)

The second anisotropy constant, X&, is evaluated at O'K for cubic, ferromagnetic crystals using two-
particle dipole- and quadrupole-like interactions as perturbations on a molecular field Hamiltonian. In
second- and third-order perturbation, the energy denominators are modified to take into account the eGect on
the molecular field of the exchange interaction of consecutively reversed spins. The expression for Jts(0) is
used in conjunction with that for ICi(0) to calculate the values of the pseudodipolar and pseudoquadrupolar
coupling constants for iron, cobalt, and nickel. For bcc Fe, D/J=0. 0793 and Q/5=0. 00157, where JS
=2.87&(10 i4 erg; for fcc Co, D/J=0. 113 and Q/J=0. 000865, where JS=2.0X10 i4 erg; and for fcc Ni,
D/J = —0.0768 and Q =0, where JS=2.5)& 10 "erg, although the application of the model to nickel is not
entirely satisfactory. These values are used to predict the size of the third anisotropy constant and the
paramagnetic resonance linewidth.

where M (T) is the spontaneous magnetization and e is
the order of the surface harmonic. In particular, J~:4

(and thus Ei if Ei))Es) is predicted to follow a "10th
power law, " and xs (or Es) a "21st power law. " Micro-
scopic calculations of Ei, using molecular field theory'
and the method of spin waves, 4 have been shown to
agree with the 10th power law; no similar calculations
have provided an explicit temperature dependence
for E2.

The statistical fluctuations underlying Eq. (6)
always lead to a 10th power law for E&, at least at low
temperatures, if the local anisotropy or atomic coupling
constants are assumed independent of temperature.
Since the magnetocrystalline anisotropy of iron and
nickel as determined experimentally shows wide vari-
ation from the statistical 10th power law, there have
been many attempts either to redetermine Ei(T) from
erst principles or to derive a modifying temperature-
dependent factor, hi.„i(T).

Among the former type are the calculations of
Brooks' and Fletcher' using the collective electron
model. Both authors conclude, however, that their
functional temperature dependence is far too weak to
explain the rapid decrease with increasing temperature
of Ei in Ni, which falls off approximately as the 50th
power of 3E(T). Merkler has calculated a local ani-
sotropy factor for nickel which is proportional to T',
but the over-all agreement of his Ei(T) with experi-
ment is still poor. Recently, Slonczewski' pointed out
that a term representing the changes in occupation of
states caused by spin-orbit perturbation was neglected
in these band theory calculations. ' ' The neglected
term has a cancelling effect such that the magnitude of
the calculated anisotropy is greatly reduced. %hat

I. INTRODUCTION
'
gART of the free energy of ferromagnetic crystals is

dependent on the direction of the magnetization
vector relative to the crystal axes, i.e., is anisotropic.
In crystals with cubic symmetry, the deviation from
complete isotropy is at least quartic in the direction
cosines of the magnetization vector taken with respect
to the cubic axes. This anisotropy energy is usually
written as

+A(T) Ei(T) (ni ns +ni ns +ns ns )
+Es(T)nPnssnss+. , (1)

or

F '(T)=.,(T)r, ( „.. .)+.,(T)r, ( .. ., ,)+, (2)

where Iiz and F&' diGer only by the inclusion of some
isotropic terms in the latter. The E's are known as
anisotropy constants and the I~'s as anisotropy coefh-
cients."In Eq. (2) the angular functions are unnormal-
ized surface harmonics having cubic symmetry:

(3)r4—=nPns +nPns +ns ns —1/5,

rs —=nPnssn '—(1/11) (nPnss+nPnss+ns'n ')+2/231. (4)

Neglecting surface harmonics beyond the sixth the
E's and J(."s are related by

x4 ——Ei+ (1/11)E, ; xs E,. ——(5)

Classical, macroscopic considerations give the tem-
perature dependence of the anisotropy coefficients as

x„(T)/x„(0)= L~(T)/~(P)]~c~+il~s (6)
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effect this cancellation has on the temperature de-
pendence of the anisotropy was not determined.

Again for Ni and also for Fe, where Ei(T) ~HI(T)4
at low temperatures, ' Brenner, " and Carr" have pro-
posed a strain-dependent ki„,i proportional to T. How-
ever, Kouvel and Wilson" have demonstrated that
this term cannot modify the 10th power law suKciently
to provide agreement with experimental data. The
anisotropy constants of face-centered cubic cobalt
appear to follow the statistical laws with only a slight
modification for thermal expansion. " In general, how-
ever, the temperature dependence of ferromagnetic
anisotropy is not well understood. The present paper
is concerned only with E(0) which is a measure of the
intrinsic anisotropic coupling between magnetic atoms.

Van Vleck's molecular held theory of ferromagnetic
anisotropy' is the basis of this investigation. In his
theory Van Vleck reasoned that, since single-ion ani-
sotropy in cubic crystals only exists for S&2 (24 pole),
the origin of anisotropy in cubic crystals of lower atomic
spin would probably be in two-particle interactions.
Further, the magnetic dipole interaction being too
small to account for the observed magnitude of Fg,
he introduced the pseudodipolar and pseudoquadru-
polar interactions. These interactions have exactly the
same form as the usual multipole interactions, but
have a much larger constant of proportionality:

Kii=p,» D,,[S,"S;—3r,, (S;.r;;)(S; r, ;)j, (7)

Despite their simple form, 3'.~ and Kq actually arise
from coupling between spin-orbit and orbit-crystalline
field interactions. Since KD is only quadratic in the
direction cosines, it cannot contribute to Ei(0) in first
order, i.e., in a classical sense. Similarly K@ cannot
contribute to Es(0) in a classical sense. By carrying
the calculation through the third order of perturbation,
an expression for Es(0) is derived which, in conjunction
with the expression for Ei(0), determines the values of
the phenomenological atomic coupling constants, D
and Q.

The Hamiltonians (7) and (8) are discussed further
in Sec. II and are evaluated as perturbations on the
energy levels of the unperturbed Hamiltonian,

an isotropic exchange Hamiltonian by a molecular 6eld
Hamiltonian. However, the methods of molecular field
theory and spin wave theory (neglecting exchange
interaction of spin waves) have been shown4 to give
equivalent results when the spin wave energy denomi-
nators of second and higher order perturbation terms
are assumed independent of lr, and the calculations of
Charap and Weiss have shown this constant denomi-
nator approximation to be quite good Lsee Eq. (26)).

The expression for the first anisotropy constant,
Ei(0), is given in Sec. III, and that for the second
anisotropy constant, Es(0), in Sec. IV. Using measured
values of E&, E2, and J, this pair of equations can be
solved for the values of the pseudodipolar and pseudo-
quadrupolar coupling constants, D and Q. This is done
for cubic iron, cobalt, and nickel in Sec. V.

II. FREE ENERGY AND PERTURBING
HAMILTONIAN

The free energy, F, is given by

exp (—PF) =TrLexp (—PBC)], (10)

where exp( —PK) is sometimes called the density
operator, and

(11)

For low temperatures a perturbative expansion in
integral form" of the right-hand side of Eq. (10) yields
an explicit expression for the nth-order contribution of
3C' to the free energy. For example, the second-order
contribution is

1
F(sl — PPF(1)js

2

where
F"'=Zo 'Q~&„„'e ~ ' Zp ——Q„e

Here one sees explicitly that if the system is degenerate,
i.e., if E =E„for m/e, the vanishing energy denomi-
nators are cancelled exactly by the vanishing Boltzmann
factors in the numerators. In the limit of P~ po, it
can be shown that

Xp gee(Ha+H p)Q; S,——*, (9)

where II~ is the Weiss molecular field and Ho is the
applied field. In Eq. (9), pn is positive and the s axis
is in the direction of Ho. One of the principal approxi-
mations of the Van Vleck theory is the replacement of

9 C. D. Graham, Jr. , Phys. Rev. 112, 1117 (1958); Suppl. J.
Appl. Phys. 30, 317 (1959); ibid. 31, 150 (1960).

' R. Brenner, Phys. Rev. 107, 1539 (1957).
"W. J. Carr, Jr., Phys. Rev. 109, 1971 (1958); J. Appl. Phys.

31, 69 (1960).
n J. S. Kouvel and R. H. Wilson, Suppl. J. Appl. Phys. 32,

2/6 (1961).' D. S. Rodbell, Suppl. J. Appl. Phys. BB, 1126 (1962); Suppl.
J. Phys. Soc. Japan 8—l, 17, 313 (1962).

where F., is the ground-state eigenvalue of Eq. (9) and
the prime on the summation sign indicates omission of
the term for which the summation index equals g.
Equation (14) is formally equivalent to the standard

'4 M. L. Goldberger and E. N. Adams, II, J. Chem. Phys. 20,
240 (1952); S. Nakajuna, Suppl. Phil. Mag. 4, 363 (1955); M.
Dresden, Rev. Mod. Phys. 33, 265 (1961).
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result through third order of nondegenerate pertur-
bation theory in quantum mechanics.

The perturbing Hamiltonian is rewritten in terms of
the spin raising and lowering operators, 5+, using the
very convenient notation introduced by Cooper and
Keffer."These authors defined the following symbols:

i+—=—'5 + i '=—5'. i"—=i'i'2 & 0 & )

i"—=i"—i+i —i i+=-,'(S')' ——,'(S )' (15)

(ij)' —= sS,'S)*—
s S,"S, ;

spin-wave theory. Higher order perturbation terms are
quantum effects and correspond to the contributions
of (virtual) spin waves of large k. The coupling con-
stants J;;,D,;, and Q,; are considered to be independent
of temperature and of very short range; they are taken
as J, D, and Q for nearest neighbors and zero otherwise.
The pseudodipolar coupling will be understood to
include the effect of the magnetic dipole interaction.
Although this latter interaction is proportional to r,;
it is relatively small and falls o6 sufficiently fast when
squared to be included with the very short range D.

4

zrz, ,= zzz—;,:n,—, zp—,, ; p,;—: p;,=c—r,,+z—p;;.

In the last pair of equations n,;, P;;, and y,; are the
direction cosines of r;; with respect to the axes of
quantization. An example of the use of these symbols is

IIL THE ANISOTROPY CONSTANT K, (O)

A. Van Vleck's Result

The principal contributions to Ej at O'K are

Et(0) =EtD(0)+Etq(0), (20)
r,; 'S,"r;,=z+zrz, ,+z p, ,+z'7, , —

The expansion of the dipolar Hamiltonian is

XD Xg) +X/) +XD )

where
XD'—=——,'Q, ~, D,,i+j+m, )z+ c.c.,
XD'—=—3+;~, D,,i+j'zrz, ,y, ,+c.c
X~'—= sZ'~) D')(zj)" (1—3V")

(16)

(17)

where
Err) (0)= —(9/8)1VS'(D /2gzzz)Hs)&t4)

Etq (0)= —,'N (S——,')'S'QQr 4.

(21)

(22)

Here 0~4 is the lattice sum,

I)14—= (10/3)z A(~A'PA'+ ~a'YL'+Pl'VA' —5), (23)

with cxq, P)„yq being the direction cosines of the nearest
neighbor vector, r~, relative to the cubic axes. The
values of 0~4 are

and c.c. means complex conjugate. Similarly the expan-
sion of the quadrupolar Hamiltonian is

Xq =Xq'+Xq'+Xq'+Xq'+Xq',
where

Xq' =——',P;„)Q,,i++j++zzz,)'+ c.c.,
Xq'—=2P;„,Q, ,z++g+'zm, ,'y, ,+c.c.,
Xq'=—2'~) Q'i(z+'[j"—j"(1—v')')]

+2i+'j+'y, )')m~)'+ c.c.) (19)
Xq'—=Z'~) Q' fz'[j"—j"(1—~*')]

+z++j-'(1—v~)') )~')v')+ c c,
X, =—Z,„Q.,&z++~—(1—v, ,')'+4z+ j- v, ,'(1—v'", )

+-,[z-—zoo(1 —y, ,')][j-—jo (1—y, , )]).
Before proceeding to the evaluation of the anisotropy

constants, it is worth mentioning that K~ is zero in
the ground state of a cubic crystal. In other words,
the energy of a classical array of aligned dipoles is
independent of the direction of alignment. The energy
of a classical array of parallel quadrupoles, however,
does depend on the direction of alignment. Note that
X@ has meaning only if S&1.The major contributions
to E~ are from 3C@ in first order and KD in second order.
The largest contributions to E~ are from K@ and 3CDSCq

in second order and from 3C~ in third order. These
last three terms, of course, also make small contributions
to E&. First-order terms are essentially classical in
nature and correspond to the long-wavelength limit of

"B.R. Cooper anrl F. Ketfer, Phys, Rev. 125, 896 (1962).

z) = 1.111, 1.0/1, 0.9793, (26)
and

6=0, 0, 1, (27)

for sc, bcc, and fcc, respectively. "The energy denomi-
nator in Eq. (25) may be interpreted in the following

"T.Nagamiya (private communication to F. Ketfer).
The coefficient of 6 in Eq. (25) and the values of q in Eq.

(26) are corrected values of the corresponding quantities in
references 4 and 15.

0$4 ———4, 32/9, 2, (24)

for simple cube, body-centered cube, and face-centered
cube, respectively; the subscripts indicate that 0 „
represents the contribution of gz yz& to the anisotropy
constant E„.This notation differs slightly from that of
Van Vleck and later authors, but is more convenient
when the calculations are carried to higher order.

It was noted by Van Vleck that E» is intrinsically
negative for bcc and fcc crystals, while E&@ takes the
sign of Q. In iron, since Et is positive, E~q must be
positive and greater than

~
Err)

~
. No further knowledge

of the relative size or sign of D and Q is available from
this one equation, but as Nagamiya" has suggested,
evaluation of Es in terms of D and Q will provide a
second equation to be solved in conjunction with
Eq. (20).

A spin wave analysis4 corrects E&z& so that Eq. (21)
becomes

E,g) (0)= —(9/8) g (1+0.2226)ES'
X [D'/2J(2SZ —r))]Qt4, (25)

where
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B. Higher Order Terms

The following additional terms in Ei(0) are the
byproduct of the higher order calculations required for
Es(0); they are at least an order of magnitude smaller
than the terms considered in the previous section. The
energy denominators have been corrected to include
the effect of spin wave interactions in the constant
denominator approximation. The higher order terms are

E o'(0) =3X(S——',)'S'fDQ/2 J (2SZ—1)]
X (Q —2014), (28)

E"'(0)=-»(S—l)'S'Le'/2J(2SZ-1)]
X (018 2016+014)
+E(S——,')8S'$Q'/2 J (3SZ—2)]
X (018 3016+3014)
—8X(S——', )'S'PQ'/8 J(SZ—1)]

X (018 4016+6014), (29)

E1D'(0)= —(9/8) 1VS'{Ds/L2 J(2SZ—1)]'}
X (3016—7014—42SA), (30)

where 0~4 and 6 are the same as previously deined, and

016= (21/2) Q a[17a'pa'Va' —(11/21) (68a'pa'

+~"v'+Pa'va')+2/21], (31)
Qis= 12Ka/ ~—a'P—a'+ ~a'ra'+Pa'ra')

+(17/6)~a'Pa'va' —(5/6)( P~a+a~a'va'
+Pa'va')+1/9]. (32)

Note that the 6 correction does not appear in second-
order terms when the constant denominator approxi-
mation is used. The values of all 0„„for sc, bcc, and
fcc are given in Table I.

IV. THE ANISOTROPY CONSTANT K6(0)

The second anisotropy constant in cubic, ferro-
magnetic crystals is found to have the following value
at O'K:

Es(0) =Es&9(0)+Eso(0)+E811(0), (33)

manner. First, the molecular 6eld energy denominator,
2gp&H& as in Eq. (21), is replaced by the equivalent
spin wave value, 4JSZ (constant denominator approxi-
mation). This is the energy required to reverse two
noninteracting spins. Next, allowing for the exchange
interaction of spin waves, one sees that while the energy
needed to reverse the 6rst spin is 2JSZ, the energy to
reverse the second spin (on a different atom) in the
presence of the first is, on the average, only 2J(SZ—1).
The energy denominator is the sum of these two partial
energies, or 2J(2SZ—1). Finally, the g correction in
Eq. (25) is the result of performing a numerical inte-
gration in k space while allowing the energy denomi-
nator to be a function of k (in the constant denomi-
nator or molecular field approximation g=1). The A

correction indicates that there are additional terms in
the fcc case only, since two nearest neighbors of a given
atom may also be mutually nearest neighbors.

TmLE I. Values of the lattice sums Q„„in cubic crystals.

Q14
Q16
Q18
Q26

Q28

Q38

sc

4—6—8
6

16

bcc

32/9
32/9
64/27

128/9
256/9
128/81

fcc

2
9/2

5—39/2—31
9/2

where

V. THE COUPLING CONSTANTS D AND Q

Since there are now two equations relating the
pseudodipolar and pseudoquadrupolar coupling con-
stants to the anisotropy constants and exchange
integral, it should be possible to infer the values of D
and Q using measured values of Ei, Es, and J. While
this is true in principle, it is not always so in practice.
The anisotropy constants, particularly E&, are very
dificult to determine experimentally, not only in
magnitude, but also in sign. For nickel, for example,
there are reported values of E& which are roughly equal
in magnitude but opposite in sign. A further compli-
cation in the case of nickel, which effectively has a
magnetic moment of 0.6@~ per atom, is that the calcu-
lational model is based on an integral number of spins
per atom. This latter condition is better suited to iron
with 2.2p~ per atom or to cobalt with 1.7p~ per atom.
To minimize the error in assuming S= ~ for Ni and
5= 1 for Fe and Co, the product JS is used wherever

E o(0)=3$(S——',)'S'[DQ/2J(2SZ —1)]0, (34)

E8Q (0)= —2$ (S——',)'S'LQ'/2 J(2SZ—1))(088—2086)

+X(S—-', )'S'$Q'/2J(3SZ —2)](0 —30 )
—

—8,E(S—-')'S'LQ'/8 J(SZ—1)]
X (088 40M), (35)

Esr) (0)= —(27/8) NS8{Ds/$2 J(2SZ—1)]'}
X (086+54'). (36)

Here again 6 denotes the fcc only terms, and

0„—= (231/2)P, P-,'P,,'va' —(1/11)(-,'P,'
+=as' as+Pass a')+2/231], (37)

088—=52K aL(~a'Pa'+ ~a'V a'+ Pa'V a')

+ (139/26)~"J3"va'—(17/26)(~"~"
+ a'v~a'+Pa'pa')+2/39]; (38)

the numerical values of 0~6 and 0~8 are given in Table I.
All contributions to Es(0) arising in second order
perturbation are included in (34) and (35). Equation
(36) is third order and is expected to be at least an
order of magnitude larger than the other third-order
terms such as KDKDK@ which have been neglected.
The only useful comment on the sign of Es(0) is that,
for S=-,', Es(0)=E8D(0) which is positive (negative)
when D is negative (positive).
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TmLE II. Coupling constants (D/J, Q/J) for Fe using Er(0) =5.23X10s ergs/cms.

E (0)
(10' ergs/c

1.5
1.0
0.5

JS
(10 '4 erg) 3.60

0.0877, 0.00171
0.0743, 0.00134
0.0544, 0.000896

2.87

0.0939, 0.00200
0.0793, 0.00157
0.0577, 0.00106

0.106, 0.00269
0.0893, 0.00212
0.0640, 0.00145

possible in the E~ and E2 equations. This product,
rather than J or 5 alone, is determined by spin wave
resonance experiments and measurement of the T'f'
coeS.cient of the spontaneous magnetization. In like
manner an S is affixed to D and Q.

Values of 038 for the three lattices are given in Table I.
The third anisotropy constant is the coeKcient of
(cr14rrs +rrr rrs +rrs rrs ) in the anisotropic free energy,
Eq. (1).Using QS=4.50X10 ' erg and JS=2.87X10 's

erg, the predicted value ofEso(0) for Fe is —18 ergs/cm',
about four orders of magnitude smaller than Es(0).

In reference 15 Cooper and Keffer have related the
unusually large paramagnetic resonance linewidths in
ferromagnets to the theoretical coupling constants J,
D, and Q, and thereby to the measured anisotropy
constant, E~. Presuming these constants to be temper-
ature insensitive, the relation between linewidth and
anisotropy is

A. Iron: bcc, S=1
Sato and Chandrasekhar" have made a very careful

measurement of the second anisotropy constant of Fe.
They found Es(300)=0.714X10s ergs/cm' and Es(77)
=0.904X10' ergs/cm'. Graham' has estimated that
Es (0&0.50)X——10' ergs/cm' at these temperatures.
For the present calculations the value of Es(0) is taken
to be 1.0X 10' ergs/cm'. The value of Er (0) is 5.23X 10'
ergs/cm'. ' A best value of JS is determined from the
T'f' coefficient measured by Budnick et a3.': JS=2.87
)(10 '4 erg. Also considered are a maximum JS=3.60
)&10 " erg from the exchange constant measured by
Rodbell" and a minimum JS=1.88&&10 " erg from
the mnemonic formula of Rushbrooke and Wood"
using T,=1043'K and S=1.

The two polynomial equations in D and Q were
solved for the ratios D/J and Q/J (more precisely
DS/JS and QS/JS) using the numerical coeKcients
appropriate to bcc and 5=1. The best values are
D/J=0. 0793, DS= 2.28X10 "erg, and Q/J=0. 00157,
QS=4.50X10 'r erg. The ratio of D to the purely
magnetic dipole coupling constant for nearest neighbors
in Fe is about 93. Values corresponding to extremes of
JS and Es(0) are given in Table II. Both D and Q are
positive. Even substitution of Es(0) =0 in the equations
yields small, but positive, coupling constants.

When the quadrupole interaction exists, i.e., when
5& 1 as in the case of iron, the lowest order contribution
to the third anisotropy constant, E3, arises from K@ in
second-order perturbation and is probably represent-
ative of the magnitude of E3. In this case

Es9 (0)= —N (S—
s )'Ss (Qs/2 J)L2 (S—s )'/(2SZ —1)

(S s)/(3SZ 2)+1/32(SZ 1)jQss (39)

hH= f(S,s)/Kr(0)/N je, (41)

where f(S,s) is a function of atomic spin and crystal
structure, and

e=—
i Erg&(0) i/E, (0). (42)

The pseudoquadrupolar portion of the anisotropy makes
a negligible contribution to the linewidth. For iron,
taking the value of f(S,s) from Cooper and Keffer, we
find AH 1.1&(104& Oe. The value of e from the present
paper is 4.6, while Buslik22 has calculated the depend-
ence of the linewidth on temperature in the neighbor-
hood of the Curie point and deduces a value of &=2.5.
The predicted linewidth is thus of the order of 40 kOe
for iron.

B. Cobalt: fcc, S=l
Using ferromagnetic resonance techniques Rodbell"

recently measured the equivalent anisotropy fields,
E/M, of cobalt stabilized in the face-centered cubic
structure. From his data at 4.2'K the derived values
of the anisotropy constants are E&(0)= —9.0X10s
ergs/cm' and Es(0)= —2.0X10' ergs/cm'. In contrast
with iron and nickel, the temperature dependence of
E& for cobalt apparently follows the 10th power law
quite well with only a slight modification for thermal
expansion. In the case of a thin 61m sample, Es(T)
anomalously followed a 10th power law, but Es(T) of
a second sample consisting of precipitate particles
followed the theoretical 21st power law. The tempera-
ture dependence was determined by comparison with
Jaccarino's measurements" of the nuclear magnetic
resonance frequency which is proportional to the
magnetization. From the coefficient of the T@' term in

where

~ A. J. Buslik, thesis, University of Pittsburgh, 1962 (unpub-
lished).' V. Jaccarino, Bull. Am. Phys. Soc. 4, 461 (1959).

f)ss= (130/ )Esf(rrs &s +era Vs +&s 7s )
+ (6/5) ~s'Ps'vs' (18/65) (~s'Ps-'

+np, 'yp '+Ps'ys'). +1/65$ (40).
' H. Sato and B. S. Chandrasekhar, J. Phys. Chem. Solids 1,

228 (1957).' J. I. Budnick, L. J. Bruner, R. J. Blume, and E. L. Boyd,
Suppl. J. Appl. Phys. 32, 120 (1961).

'0 D. S. Rodbell, in Growth and I'ejection in Crystals (John
Wiley R Sons, Inc. , New York, 1958), p. 247."G. S. Rushbroolre and P. J. Wood, Mol. Phys. 1, 257 (1958).
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TAsLE III. Coupling constants (D/J, Q/'I) for Co using Er(0) = —9.0X10' ergs/cin'.

937

E's(0)
(10' ergs/c

JS
(10 "erg) 3.0

0.107, 0.00125
0.0969, 0.000780
0.0828, 0.000219

2.0

0.125, 0.00148
0.113, 0.000865
0.0976, 0.000143

1.6

0.136, 0.00160
0.124, 0.000897
0.107, 0.0000645

the magnetization expression 6t to Jaccarino's data
the product JS=2.0X10 "erg is deduced.

The atomic coupling constants were determined in
the same manner as for iron. Both D and Q are positive
over a wide range of values of E~, E2, and JS, with no
indication of a change of sign. Rodbell's value of
Ei(0) was adopted as standard while his Es(0) was
varied by &50%. The value of JS from Jaccarino's
experiment was taken as a best value with extremes of
3.0)&10 ' and 1.6)&10 ' erg also being considered.
The latter number was calculated from the Rushbrooke
and Wood formula using T,= 1394'K and S= 1.

The best values of the Co coupling constants are
D/J= 0113, DS=2.26X10 "erg, and Q/J=0. 000865,

QS=1.73XIO " erg. The ratio of D to the purely
magnetic dipole coupling constant for nearest neighbors
in cobalt is about 98. Additional values of D and Q
are given in Table III. Substituting best values in Eq.
(39), the predicted third anisotropy constant is Eso(0)
= —7.5 ergs/cm', which is small enough relative to Ei
and E2 to be ignored in practice. The value of e for
Co is 1.4, so that the paramagnetic linewidth is pre-
dicted to be about 80 kOe.

C. Nickel: fcc, S=-,'
The quadrupolar terms in the equations for E& and

E2 are identically zero when the spin is set equal to
one-half. Although S= ~ is not a good assumption for
Ni, the calculational model insists on an integral
number of spins per atom. Furthermore, Van Vleck'4
has estimated that the nickel atom, basically a mixture
of 3d' and 3d" electronic states, spends less than 10%
of its time in the 3d' configuration which wouM provide
an intrinsic quadrupole moment. The quadrupole-
quadrupole interaction in nickel would, thus, be less
than 1% of that in an atom which is normally in an
S= 1 state. The possibility of a dipole-quadrupole
interaction, i.e., an interaction linear in one spin and
quadratic in another, is eliminated by the condition of
time reversal invariance. Consequently, there is little
choice in this model but to accept the E» and E2
equations without the quadrupole terms. These equa-
tions are

E i(0)= —(9/8)NS'(D'/2J)Lrl(1+0. 2226)Qi4/

(2SZ—rl)+ D (3Q is —7Q i4—42')/
2J(2SZ—1)'], (43)

"J.H. Van Vleck, Rev. Mod. Phys. 25, 220 (1953).

Es(0)= —(27/8)N S'D'( Qss+54SA) /
L2J(2SZ—1)j', (44)

where the values of rl and 6 are given in Eqs. (26) and
(27), respectively, and the values of Q„~ in Table I.
Obviously, D is overdetermined and, as will be shown,
the two equations are inconsistent.

The experimental values of Ei for Ni are Ei(77)
= —6.4X10' ergs/cm' and Ei(20)= —7.5X10' ergs/
cm' as given by Bozorth, " and Ei(77)= —5.4X10s
ergs/crn' and Ei(4.2)= —8.3X10' ergs/cm' as meas-
ured by Reich." The extrapolated value of Ei(0) is
taken to be Ei(0)= —8.5X10s ergs/cm'. Reich also
found Es(4.2) = (1.4+0.5)X10' ergs/cm'. However,
Sato and Chandrasekhar" have pointed out that
experimental measurements in the (110) plane, as were
Reich's, would compound a 10% error in Ei into a
100% error in Es. Sato and Chandrasekhar determined
Es from torque measurements in the (111) plane, the
corresponding torque equation being independent of E&.
Their results are Es(300)=0.234X10' ergs/cm' and
Es(7'/) =3.1'/ X10' ergs/cm', both positive in sign.
The value of Es at O'K is assumed to be Es(0) =4.0
X10' ergs/cm'.

The temperature dependence of the spontaneous
magnetization of Ni has been measured by Pugh and
Argyle. " Values of JS from their T"' coe%cient are
JS=2.82X10 '4 erg (first report) and (2.16—2.66)
X10 " erg (second report), the last two values being
essentially the average values for two methods of
analysis. Spin wave resonance experiments of NosP'
yield JS=2.5)(10 " erg which is adopted here as a
best value since it falls midway between the extremes
of Pugh and Argyle. The Rushbrooke and Wood
mnemonic formula gives a minimum JS=1.05&(10 "
erg using T,=631 K and S=z.

A quick evaluation of Eq. (43) using the discussed
physical parameters for Ni, S=~, and lattice sums
appropriate to fcc indicates that D/J is of the order
of 0.1 with sign undetermined. A similar appraisal of
Eq. (44) indicates D/J 1 with sign opposite to that
of Es(0). It is believed that the Ds//J term will always
be the leading term in an expression for E~, so the
sign of D is assumed to be opposite that of the experi-

"R. M. Bozorth, Perromagrletism (D. Van Nostrand Company,
Inc. , New York, 1951),p. 569."K. H. Reich, Phys. Rev. 101, 1647 (1956).

7 E. W. Pugh and B. E. Argyle, Suppl. J. Appl. Phys. 32, 334
(1961);J. Appl. Phys. BB, 1178 (1962)."H. Nose, J. Phys. Soc. Japan 16, 2475 (1961).
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TxnLE IV. Pseudodipolar coupling constant D/1 and second anisotropy constant Z~(0) (10' ergs/cm'), for Ni.

Ki(0) g JS
(10' ergs/cm3)g(10 ~4 erg)

—9.5—8.5—7.5

2.82

—0.0766, 0.304—0.0723, 0.256—0.0680, 0.213

2.50

—0.0810, 0.319—0.0768, 0.271—0.0721, 0.225

1.05

—0.124, 0.482—0.117, 0.407—0.112, 0.354

mental value of E2, and then the magnitude of D is
determined from Eq. (43). Finally, a value of Es(0) is
calculated from Kq. (44).

The best value of D/J is —0.0768 and D5= —1.92
&&10 " erg. This value of D is about 140 times larger
than the nearest neighbor magnetic dipole coupling
constant. The corresponding value of Es(0) is 0.271
&&10' ergs/cm'. Additional values of D and E& corre-
sponding to extremes of JS and EJ are given in Table
IV. Although the calculated ratios of pseudodipolar
to exchange coupling seem to be of the right size, the
associated values of Es(0) are about a factor of 10
smaller than the experimental value. This discrepancy
was also noted by Hurwitz. " (See further discussion
in Sec. VI.) If Q=—0 is presumed for Ni, the principal
contribution to Es(0) arises in fourth-order pertur-
bation and has not been calculated. The value of e for
nickel is unity and the paramagnetic linewidth as
predicted by Cooper and Keffer is about 50 kOe.

VI. SUMMARY AND DISCUSSION

Van Vleck's molecular field theory of ferromagnetic
anisotropy was extended to provide an evaluation of
the second anisotropy constant in cubic crystals at the
absolute zero of temperature. Corrections derived from
spin wave theory were applied so that the third-order
perturbation terms would be significant. Measured
values of the anisotropy constants and the exchange
integral were then used to calculate the magnitudes of
the phenomenological pseudopolar coupling constants
for cubic iron, cobalt, and nickel. The resulting D and

Q appear satisfactory for Fe and Co, but not for Ni.
In turn, these constants were used to predict the size
of the third anisotropy constant and the value of the
paramagnetic resonance linewidth.

There has been one previous calculation of E2 using
Van Vleck's theory. Hurwitz" evaluated the second
anisotropy constant using only the pseudodipolar term

s9 H. Hurwitz, Jr., thesis, Harvard University, 1941 (unpub-
lished).

for application to nickel. He found that if the dipolar
coupling, D, were chosen to match theoretical and
experimental values of E~, the theoretical E2 would be
an order of magnitude too small. Conversely, if the two
values of E2 were made to agree through choice of D,
then the theoretical Ej would be too large. This
conclusion was corroborated by the present work (see
Sec. VC) and the inconsistency is unlikely to be resolved
without a new approach to the mechanism responsible
for the anisotropy in nickel.

At the time of his work, Hurwitz did not consider
the third-order corrections to Ei, which are incidental
to the calculation of E~, as being significant because
the uncertainties in the basic, second-order, molecular
field calculation were of the same order of magnitude.
Now that the molecular field approximation has been
assessed and corrected by spin wave theory, 4 the third-
order terms become significant. As Hurwitz expected,
however, they are small [E&D'(0)=0.03E&z&(0) in Nij
and do not seriously affect any of the previous results.
Hurwitz also concluded that the Van Vleck model
could not predict the correct temperature dependence
of the anisotropy, especially in nickel.

Since the present calculations were limited to O'K,
the inability of this model to describe the effect of
temperature on the anisotropy, except perhaps in cobalt,
was not of primary concern. This shortcoming, however,
may be allied to another difficulty, namely, that the
calculational model is based on an integral number of
spins per atom. It, thus, inherently assumes, for example,
that all the atoms in nickel are in a 3d' electronic
configuration, whereas, to a first approximation, only
60%%u~ are in this configuration and the rest in 3d". An
improved ground-state Hamiltonian which mixes the
requisite amount of d' and d' configurations might
reasonably be expected to help reconcile the nickel
calculations with the physical situation.
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