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Spin-Orbit Coupling in the Band Structure of Magnesium and other
Hexagonal-Close-Packed Metals*
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A calculation of the spin-orbit splitting of the energy levels at the corner of the Brillouin zone in Mg is
performed using a six orthogonalized-plane-wave approximation. The parameters of the wave functions
were taken from an existing calculation by one of the authors. The corresponding splittings for Be, Zn,
Cd, and Tl are estimated from spectroscopic values of the atomic splittings. The changes in the topological
properties of the Fermi surface caused by the spin-orbit splitting are discussed as well as the implications of
these changes for various physical properties.

L INTRODUCTION

A S has been previously pointed out by the authors, '
spin-orbit eGects modify in an essential way the

energy-band picture and the electronic structure of the
hexagonal-close-packed (hcp) metals. In particular, the
double zone usually employed for these metals must be
replaced by the conventional single-zone scheme. The
eGects are of essential importance in the ABI. plane of
the Brillouin zone (Fig. I) where the degeneracy of the
energy levels is lifted everywhere except along the AI-
lines. Here we give a complete account of a calculation
for Mg of the splittings at H, ' where they reach their
maximum values. We have used a representation of the
wave functions in terms of six orthogonalized plane
waves (OPW), twelve considering spin. The values of
the orthogonalization coeflicients and the potential have
been taken from an existing band structure calculation. '
In Sec. II we discuss the symmetry of the wave func-
tions and their group-theoretical properties. In Sec. III
the actual calculation of the splittings in Mg is described.
In Sec. IV we discuss the nature of the results and esti-
mate the corresponding values for Be, Zn, Cd, and Tl.

II. SYMMETRY CONSIDERATIONS

We de6ne the direct lattice of a hexagonal structure
by the vectors tq, t2, t3, (t4), where t~, t2, and ts form a

right-handed system, the angles between t& and t2 or
t3 being 90', the angle between t2 and t3, 120' and

t4= —t2—t3,

It~I = c, I tzl =
I t, l

=
I t41 =o.

(i)

(2)

The reciprocal lattice is then de6ned by the vectors
G)GRGg (G4), where

2~6,XGa
6;=

G;y G,'Gg,

&4= —&2+t 3.

i, j, k= 1, 2, 3 in cyclical order, (3)

(4)

The position of the two atoms in the unit cell of the
hcp structure are at the origin and at ~, respectively,
where

V=
Z tq+ 3t2+3 t3. (3)

For convenience we also de6ne an orthogonal system
of coordinates such that the x axis is parallel to t2, the
y axis parallel to 63, and the s axis parallel to tl and 61.

To determine the energy levels at the various points
of the Brillouin zone, we expand the wave functions of
an electron in a series of OPW's, ~' de6ned as

I+")=A&Et' '"Iexp(ik r)) PB&~ —le'.„(r))jq., (6)
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Fro. 1. The Brillouin
zone in the hcp struc-
tures, showing points
and lines of symmetry
in the hexagonal face.

where 0 is the volume of the crystal; t=ls, 2s, 2px,
2py, 2pz, , etc. , indicates the core-electron orbitals;
s=1, 2, denotes the atoms at the origin and at the
position ~ within the unit cell, respectively; C~„(r)are
the core-electron tight-binding wave functions;

Bj,„=Q—'~' C g„*(r)exp(ik r)d'r

are the orthogonalization coeKcients;

A~=(& —D&~~.I') '"
* Supported in part by the OfFlce of Naval Research.' M. H. Cohen and L. M. Falicov, Phys. Rev. Letters 5, 544

(1960}.' We must point out that the numerical values given in the last
column of Table I in reference 1 as well as the discussion in the
paragraph preceding it are in error. The correct values are given
in the present paper.'L. M. Falicov, Phil. Trans. Roy. Soc. (London) A255, 55
(1962), and thesis submitted to the University of Cambridge,
England, 1960 (unpublished).

is the normalization coefficient; and g, is a spin function.

4 V. Heine, Proc. Roy. Soc. (London) A240, 340, 361 (1957).' T. O. WoodrufF, Sold State Physics, edited by F. Seitz and D.
Turnbull (Academic Press Inc. , New York, 1957), Vol. 4, p. 367.
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The degeneracies of the levels are given by the dimen-
sions of the irreducible representations of the small
group' of k plus the additional degeneracies introduced
by time reversal symmetry or accidental degeneracies. '

In what follows, when we refer to the degeneracy of a
state we include the spin degeneracy, even in the
"without-spin" case.

When spin-orbit coupling is neglected, the Hamil-
tonian for one electron is

si —Is, +e,
Co)

Hl, HP, Hg

Fro. 2. The compati-
bility relations between
points in the hexagonal
face of the Brillouin
zone (a) without spin,
(b) with spin. Single
lines represent double
levels and double lines
indicate fourfold levels.

HB, H5,+H7

Ko———(k'/2m) V'+ V (r),
I »+S4I IS's+S41I''L

IRs+ RsI

Is4+84I

s,+ssl I@sos,

/
IHs, H4+HsI

and the representations to be considered are those of
the so-called "single" group. ' In particular, we note
that for any point of the hexagonal face of the Brillouin
zone all the levels are fourfold degenerate' and the bands
always stick together. This, of course, includes the
general point 8 of the face, whose irreducible representa-
tions are given in Table I."The compatibility relations
between the relevant representations are given in Fig.
2 (a).

When spin-dependent terms are included in the
Hamiltonian,

+L4I

GC] Xio+3Csp jn1

oc,p,
——(A/4m'c') (vV Xp.a),

splittings may be expected to reach their maximum

(lo) value. We consider the twelve OPW's deined by the
six k vectors

TABLE I. Character table of the representations of B.'

Single group
B1 B'2

Double group
B3 84

new irreducible representations must be considered.
These are the "double" group representations given by
Elliott. "In this case we note that only at A, E, and I.
are the energy levels fourfold degenerate. At the other
symmetry points II and 5 as well as at a general point
B, the fourfold degeneracy of the "without spin" case
has been lifted and all the levels are now only twofold
degenerate. The new compatibility relations are given
in Fig. 2(b). It is, therefore, evident that the spin-orbit
e6ects are of fundamental importance in determining
the topological properties of the energy surfaces.

Ke now focus our attention on the point B, where,
because of the previous symmetry arguments, the

k~ ——-', Gi+-', 62—-', 63,
k2 ——ki —62,

k3 ——ki+64,
k4 ——ki —Gi,

kg ——k2 —6),
k6 ——k,—GI,

and both directions of spin. We shall denote these
OPW's by ~1t), (1)), ~2g), ~2g), etc. In the "without
spin" case, they transform according to 2H~+2H2+2H~.
The coefFicients of the linear combinations transforming
according to one given representation can be obtained
by the standard projection techniques using the charac-
ter tables of the representation. These coefIicients are
given in Table II, where for the sake of clarity we have
omitted the spin indices and the normalization factor

(4 Io)
(&Io)
(c Io)
(Plo)

1 1
1 1
1

HI
Ib)

H2

I&)

H3

TmLE II. CoeKcients of the symmetrized linear combinations
of OPW's for the single group at H.

a Because of time reversal: Bi and Bs are degenerate; Ba and B4 always
occur twice and hence are doubly degenerate.

Characters of elements of the kind (e[t} are obtained by multiplying
the character of (a)0} by exp(-Rat}.

6 L. P. Bouckaert, R. Smoluchowski and E. signer, Phys. Rev.
50, 58 {1936).

7 C. Herring, Phys. Rev. 52, 361, 365 (1937).
8 C. Herring, J. Franklin Inst. 2M, 525 (1942).
9 The only exception is the representation A 3, which is eightfold

degenerate.
'0 These representations can be trivially derived from reference

8. They are included here for the sake of completeness."R.J. Elliott, Phys. Rev. 96, 280 (1954).
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Tmzz III. CoeScients of the symmetrized linear combinations of OPW's for the double group at K"

Single group
Double group

ltt)
21')

l4tl

6g)

0
gP 0

0
—1 0
—w' 0
—w 0

0 1

0 m'

0 m

0
0 m'

0 cv

lie

1 0
1 0
1 0
1 0
1 0
1 0

0 1

0 n
0 w'

0 —1

0 —m

0 —m

—2

H3
F77

1 0
0

1 0
—1 0
—1 0
—1 0

0 1

0 m

0
0 1

0 m

0 m'

6 '". Ke have designated these linear combinations

If we expand these functions in a power series in r
about r=0 and r=c, we can determine the angular-
momentum character of each of them with respect to
the two ion sites of the unit cell in the lattice. We have
listed the s- and p-like contribution at the end of
Table II.

The inclusion of the spin-orbit term in the Hamil-
tonian makes the set of our twelve OPW's transform
according to H4+H5+Ha+H7+2Hs+2H9, where in
fact the initial representations Hj, H~, and H3 split in
the following fashion:

H1 —+ Hs+Hg,

H2 ~H4+H6+Hs,

H3 ~Hs+Hv+Hg.

(12)

The coefficients of the corresponding linear combina-
tions transforming according to each irreducible repre-
sentation are given in Table III.

Since the pairs H4 —H6 and Hs —H7 are degenerate
because of time reversal, it is possible to take an arbi-
trary linear combination of their functions. By doing
this we arrive at the simple result for the new linear
combinations

H4+H6.

Hs+H7.

H8-1 ~

Hg 2..

Hg —1 ~

Hg 3.

Id&&,

Iet&, Ift&

Iat&,

ldt&,

lbt),

Ift),
where the functions in the 6rst column are degenerate
with the corresponding functions in the second. We see
now that we have been able to separate the two spin
systems and consequently deal only with one of them,
say the spin-up system. This means that the most

This argument is valid only for light elements, namely,
Be, Mg, and probably Zn where the energy gaps are
much bigger than the atomic spin splittings. For the
heavier elements, Cd and Tl, where both energies are
of the same order of magnitude, the mixing of H1 and
H2 and H1 and Ha through their common spin represen-
tations H8 and Hg must be taken into account and two
two-by-two secular equations must be solved. However,
estimates of the splittings from their atomic values can
be made although they must be considered only an
order of magnitude approximation.

III. CALCULATION OP THE SPLITTINGS POR Mg

To compute (13), (14), and (15) we rewrite K,~;„(10)
using atomic units (m=A=1) and rydbergs (Ry) for
the energies

where
K,p,.——(1/4c')R e,

R= —f(vvx v)

(16)

and V is expressed in Ry.

~ Charlotte E. Moore, Atomic Energy Levels, National Bureau
of Standards Circular No. 467 (U. S. Government Printing OfBce,
Washington, D. C., 1949).

important contributions to the spin-orbit splitting will
come from those orbital parts with p,Nip„ch raa teer,

i.e., we expect splittings of the order of the full atomic
value for H1 and H3 and much smaller values for H2.

Since the spin splitting of the 3s3P'E'J levels in
atomic magnesium" is 5X10 ' eV and the computed'
energy gaps H2 —H1, H1—H3 for a twelve-OP% basis
set (without spin) are 3X10-' and 2.6 eV, respectively,
we can compute the crystal spin-splitting by means of
first-order perturbation theory, i.e.,

(13)

(14)

(15)
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TABLE IV. Coefficients of the OP%'s, 8 1,.

1 2
2py

2

h1

h1

h1

h1

hl

ib1
im'b1

z'wb1

—ib1
—im'bI
—in&b1

b2

h2

b2

h2

b

h

ib2

im'b2

Aob2
—ih2
—im'h2
—swh2

b3
—gb3
—gb3

h3
1

lb

ib3
—~2''b3
—,nvb3
—ib3

~2''h3
—',SRb3

0
—-', VSb3

~2b3
0

——,'Abg
—,'~8b2

0
—-',iVSe'bg

~2iv$24/b3

0
—,'imam'b3

—~2'48QPb3

b4 ib4

b4 2w h4

b4 Aeb4
—b4 ib4
—b4 ia~h4
—h4 $K'b4

a bt =0.02349, b» = —0.1746, ba =0.09512, b4 =0.04394, Aa ~1.045, m = -$+)AS.

Since only spin-up states are involved in the calcula-
tion, the only term to be considered is

3C,= (1/4c')R~„

E,.=Q '"(exp(ik„r)lR, lC&, (r)), (23)

(24)

Bt/' 8 8V 8

l9$ Bp l9$ Bx

(18) and the main contribution must come from (24).
Integrating by parts, we obtain for (22)

because the other two terms give zero diagonal matri~
elements.

AVe give now a detailed account of the calculation of
one of the matrix elements, i.e.,

s„„=—i(/ „,k„„—/ „„/„.)v(k.—k„),

g(G) =Q-' V(r) exp(iG r)d'r

(25)

(26)

I„=(1/4c')(a
l
R.

l a)

From the considerations of the previous section

la)= P C.„ln)

(»)
is a Fourier coeKcient of the potential for the reciprocal
lattice vector 6, available from reference 3.

In computing (23) and (24) we assume that the lat-
tice potential V(r) is expressed as a sum of spherically
symmetric potentials U(p) centered about each atom

=A.LQ-'" g C.. elx

peak„r)

—P D(. el„(r)) j, (20) V(r) = r. Lf/(lr —R'l)+U(lr —R'—~l)1, (27)
R& lattice

vectors

where C „arethe coeKcients given in Table II,
6

Dg, =+8 gC, ,

and A is the new normalization factor.
It is worth noticing that the Bloch tight-binding

orbitals are the same for the six k vectors under con-
sideration. The coefficients A„and B„~„andA; and
D;&, are given in Tables IV and V, respectively. It is
evident now that the only matrix elements to be com-
puted are of three di6erent kinds:

V(r) &(~),

dUy
~p' —+

d'p p

i dU 1dU'
E ~ ———I ———

g

pdp p Ip Bp(22)J„„=Q'(e px(i „-kr)lR,lexp(ik. r)),

and that the overlapping of neighboring potentials and
core orbitals can be neglected. The last assumption is

(21) justified by the results of reference 3. If we now call
g the vector going to any point in the crystal from the
nearest ion site, we can replace

fABLE V. CoeKcients of the symmetrized combinations of OPW's, D;&,.

2s 2$ 2px
1 2

2pz
1 2

0
0
0

61/2h

0
0

0
0

i61/2h,

0
0
0

0
0
0

61/2b

0
0

0
0

i6'"b
0
0
0

(3)1/2b

0
0
0

(l)'"b
0

0
i(3)1/2b

0
0
0

i($)'/2b3

i($)1/2b

0
0
0

i ($)1/2b

0

0
(4)'"bg

0
0
0

{3}1/2h

0 0
0 0
0 0
0 0
0 i6'"b4

61/2b 0

1.014
1.014
1.109
1.109
1.020
1.020
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U(i) = 2~—'Z(~),
we obtain

By expressing the potential U(p) in the usual way in and p 'U' as computed numerically are given in Table
atomic theory, VI. Near the origin (30) diverges as p '.

(29) Finally, if the core orbitals are expressed in the form

p 'd U/dp=2p 'Z —
2p —'dZ/—dp (3o) @'~(e)=p '&~(c)I'~(~, v), (31)

Values of 2Z as obtained from reference 3 and of 2Z' where the I"s are spherical harmonics, we obtain

3~ i kyE„.g ,
ex——p(~k„~)A„,2,

4~2 (2r 3)1/2 $ 2

3i 1 k„E„g,
ex——p(ik„r)E„„,=—

4c2 (2r 3)1l2 P 2

xl, y 1 s2, y2 yl, sl y2, x2
4c2 0

idU sink„r
P, ( )-— —cook„r)d,

r dr k„r
1dU sink„r

P, (r)- ——cook„)dr,
r dr k„r

1dU
P'~(r) j'- —«,

r dr

(32)

(33)

TABLE VI. Values of the potential and its derivative.

p

0.00
0.005
0.01
0.02
0.04
0.10
0.20
0.30
0.40
0.60
0.80
1.00
1.20
1.60
2.00
2.60
3.40
4.20
5.00

24.000
23.681
23.364
22.746
21.570
18.723
14.017
12.096
10.139
7.654
7.389
0.876
2.086
1.686
1.226
0.713
0.218
0.005
0.000

2Z'

—63.78
—63.58
—62.82
—61.12
—57.06
—39.26
—29.71—21.86
—17.30
—7.62—1.44

+16.85
+0.14—1.26—0.95—0.76
—0.40
—0.12

0.00

p '&'(p)

1.92X 10s
2.40X10
3.00X106
3.73X10&
2.27X10'
2.50X 103
6 91X10'
2.67X20
5.72X10
1.67X10—1.60X 10
1 ~ 11
9.04X10 '
3.91X10 '
1.53X10-'
4.01X10 g

6.87X10 '
0.00

where p, x, and y denote 2p, 2px, and 2py, respectively,
and ro is the radius of the atomic sphere. All other
matrix elements are zero in this approximation. The
integrals appearing in (32), (33), and (34) have been
computed numerically using the values of P~(r) from
reference 3. When all these values are collected and
inserted into (19), the values shown in Table VII result
for the shifting of the energies and the total spin-orbit
splittings.

It is worth noticing that according to the discussion
of the previous section, the splittings at H~ and H3 are
of the order 5)& j.0 ' eV and the corresponding value is
three orders of magnitude smaller for H2. It must be
pointed out, however, that the smallness of the H2
splitting is due to the exact cancellation of the p-like
contributions to the wave functions ~c) and ~d). This
cancellation only occurs precisely at the symmetry
point H; in the neighborhood of H2 on the AHI. plane,
the wave functions must have some p character which
will produce again a spin-orbit splitting of the order of

IV. DISCUSSION

The main effect of the spin-orbit coupling is the re-
moval of the degeneracy of the band for most points
of the hexagonal face of the Brillouin zone. This aGects
in various ways the physical properties of the hcp
metals.

No fundamental change is required for the existing
theories of alloys. The overlap of the electron distribu-
tion into the second and fourth zone generally starts
at the points A and L, respectively, where the splittings
vanish.

On the other hand, all those properties which depend
on the local or topological features of the Fermi surface,
e.g., the transport phenomena in the presence of a mag-
netic 6eld, are essentially changed. Since the bands no
longer stick together at an arbitrary point of the hex-
agonal face, the double-zone scheme ordinarily used in
the representation of the energy surfaces ceases to be
valid, and new kinds of connectivities appear when the
energy surfaces are plotted in the usual single-zone
repeated zone scheme. For instance, the piece of the

TABLE VII. Values of the energies for the various levels.

Energy
Symmetry without

without spin
spin {Ry)

0.708

Spin-up
Symmetry wave
with spin function

FXs

Hg

Energy
shift I;

(Ry)

2.08X 10
5.65X10 '

0.686

0.898

H4+H6
FI.s

Hg+H7
Hg

~c)

ld)

l~)

If&

2.76X10 '
—2.76X10-~

—2 10X10~
10 i~ Sr72X 10

the atomic value. Therefore, while the values of the
splitting are maxima at IIi and II3, H2 is a point of sharp
local minimum.



SPI N —ORBIT COUPLING I N BAN D STRUCTURE OF hcp METALS

Fn. 3. The change in the connectivity properties of a divalent
hcp metal due to spin-orbit coupling. Diagram (a) shows the
"without spin" case and (b) the surface in the second band when
spin-orbit coupling is taken into account.

Fermi surface corresponding to the holes in the second
band in Mg, ' Zn, ""and Cd,"which without spin-orbit
coupling may sustain open orbits" with general direc-
tions only perpeldicsdar to the c axis )Fig. 3(a)], with
spin-orbit coupling changes its topology LFig. 3(b)] so
as to permit open trajectories parallel to the c axis.

However, because of the smallness of some of these

gaps, magnetic breakdown effects" must be expected
to appear at relatively low magnetic fields, in which
case the electron trajectory will ignore the gap, restoring
the previous "without-spin" topology. This is certainly
the case for Mg where relatively small fields of the order
of 200 G must be enough to produce breakdown.

To estimate the values of the splittings for the other
hcp metals it must be emphasized that the values at H»
and H3 come almost exclusively from the "atomic"
part of the wave function, while the much smaller H2
splitting arises from lattice eGects. Therefore, the H»
and H3 gaps for Be, Zn, Cd, and Tl must be of the order
of 0.05, 9.5, 28, and 129 times the corresponding values

"W. A. Harrison, Phys. Rev. 118, 1190 (1960).
'4 W. A. Harrison, Phys. Rev. 126, 497 (1962)."L.M. Lifschitz, M. Ya. Azbel, M. L Kaganov, Zh. Eksperim.

i Teor. Fiz. 30, 220 (1955) t translation: Soviet Phys. —JETP 3,
143 (1956)g; I. M. Lifschitz and V. G. Peschanskii, Zh. Eksperim.
i Teor. Fiz. 35, 1251 (1958) /translation: Soviet Phys. —JETP 8,
875 (1959)j.

'6 M. H. Cohen and L. M. Falicov, Phys. Rev. Letters 7, 231
(1961).

for Mg. These figures are obtained from the term values
of the configurations 2s2P 'Ps, 4s4P sI's, Ss5P sPs, and
6s 6p Pz of the respective atoms. '

No good estimate of the H2 splittings can be made
since these depend critically on the behavior of the wave
functions and potential throughout the crystal and not
only near the ion sites. Even for magnesium the com-
puted value may be in error by orders of magnitude.
The contribution from the plane-wave part of the wave
function is very important here, and the assumption of
spherical potentials around each nucleus as well as the
truncation of the series to include only six OPW's are
indeed bad approximations for this level. Nonetheless
they must be in general orders of magnitude smaller
than H» and H3.

The existence of the spin-splittings near H has been
observed experimentally several times in" Zn and' '
Cd by means of the de Haas —van Alphen e6ect and ultra-
sonic attenuation. The first method shows the existence,
for magnetic fields parallel to the c axis, of two closed
orbits of very similar area arising from the lifting of
the spin degeneracy near H. The ultrasonic absorption
for magnetic fields perpendicular to the c axis shows the
existence of an open orbit parallel to the c axis which can
only exist in the presence of spin-orbit e6ects.

Finally, no splitting close to H has been found in
Mg. This is due to the smallness of the gaps, because the
relatively low fields necessary to produce magnetic
breakdown make unlikely any experimental determina-
tion in the nonbreakdown region. However, spin-orbit
effects may be of considerable importance in the interior
of the zone, where accidental degeneracies of the
"without-spin" bands are removed. Theoretical" and
experimentaV'" evidence for such an eAect has been
found.

We would like to acknowledge a very fruitful discus-
sion with K. A. Harrison.

"A. S. Joseph, W. L. Gordon, J. R. Reitz, and T. G. Eck,
Phys. Rev. Letters 7, 334 (1961).' J. D. Gavenda and B. C. Deaton, Phys. Rev. Letters 8, 208
(1962).

"M. G. Priestley. Thesis submitted to the University of
Cambridge, England, 1961 (unpublished).

~R. W. Stark, T. G. Eck, %. L. Gordon, and F. Moazed,
Phys. Rev. Letters 8, 360 (1962).




