
PHYSICAL REVIEW VOLUME 13O, NUMBER 1 MAY 1963

Electric Fields of Defects in Solids
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Explicit consideration is given to the magnitudes of electric fields which exist in nonmetallic solids con-
taining charged defects, Several types of defects are mentioned, and detailed treatment is given to the case
of point charges in semiconductors. For this case, probability distributions of the field strengths are found
by using the results of the analogous problem in weakly ionized plasmas. The dependence on impurity con-
centration and the effect of screening by free carriers are shown. The principal conclusion is that most non-
metallic solids are pervaded by high Acids —10' V/cm being a typical average.

proximately for semiconductors' and insulators, ' while
the space-charge region near a semiconductor surface
has been considered in more detail ~

' Effects due to
surfaces will clearly be more important for thin samples
than for thick ones, and in thin films may well dominate
some properties. In any case, peak field strengths in
excess of 10' V/cm are commonly found and space-
charge layer thicknesses are often between 100 A and
1 p.

I. INTRODUCTION

' 'T is well known that applied electric fields can affect
many of the properties of nonmetallic solids. For

example, 10 V/cm is enough to cause avalanche break-
down in semiconductors at very low temperatures',
10' V/cm substantially alters the recombination sta-
tistics for photocurrent in cadmium sulfide' and causes
measurable hot electron effects in semiconductors';
10' V/cm shifts the fundamental optical absorption
edge. 4 In spite of these, and other, effects of externally
applied fields, little attention has been given to the
corresponding effects which may be caused by naturally
occurring fields that are known to arise at charged
defects in solids. Such charges may occur at points
(impurities or lattice defects), lines (dislocations), or
planes (surfaces or junctions). It will be shown else-
where that defect fields do produce significant effects,
and these can account for some previously unexplained
observations. To evaluate such effects, however, explicit
values of the field strengths are needed. It is the purpose
of this paper to present these field strengths with
emphasis on the case of point charges because it is
generally the most important one (of the fixed defects)
and has not been discussed previously. The time-
varying fields due to lattice vibrations in ionic crystals
are essentially different and will be treated in a later
paper. In this discussion it is understood that the
average field is zero when sign is considered, but all
further references to fields will be to the mageitldes,
whose average is not zero.

III. POINT CHARGES

The distribution of electric field strengths in a solid
containing charged point defects has apparently not
been considered explicitly and will be discussed here in
some detail. It is assumed that there are E singly
charged defects per cm', randomly placed in a medium
of static dielectric constant e. All are considered to have
the same sign, their charge being compensa, ted by free
carriers in semiconductors or additional defects in in-
sulators. The usual approximations' involved in the use
of the static dielectric constant to represent the crystal
lattice are also implied here. It will turn out that the
small regions close to the charges where this in invalid
do not contribute greatly to most of the effects.

For many purposes, the most useful way to express
the desired result is as the probability W(F)dF of
finding a field of magnitude F. When normalized to
unity, this is the fraction of the volume of a crystal
occupied by fields in the range dF. Stated in this form,
the present problem is identical to that found in the
quasi-static approximation for the calculation of elec-
tric field distributions in weakly ionized plasmas, and
of gravitational field distributions in stellar dynamics.
The results obtained in these other areas will now be
used in the form appropriate to the present problem.
As a first approximation, consider the probability of
finding a field F at any general point in a crystal ne-
glecting all contributions except that due to the
Coulomb field of the nearest charge. This "nearest ion
distribution" can be readily found from the position

II. SURFACES AND DISLOCATIONS

These are mentioned here chief for the sake of
completeness since the fields can be easily obtained
from published work on the potential distributions near
charged dislocations and surfaces. These are almost
always treated as noninteracting space-charge regions
and the derived potential distributions are straight-
forward. Charged dislocations have been treated ap
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2S. Kitamura, T. Kubo, and T. Yamashita, J. Phys. Soc,

Japan 16, 351 (1961).' J. B. Gunn, J. Electron. 2, 87 (1956).' Richard Williams, Phys. Rev. 126, 442 (1962).

5 W. T. Read, Phil, Mag. 45, 775 (1954).' J.D. Eshelby, C. W. A. Newey, P. L. Pratt, and A. B.Lidiard,
Phil. Mag. 3, 75 (1958).

For a recent review, see T. B. Watkins, in Progressin Semi-
conductors, edited by A. F. Gibson et al. (John Wiley 8z Sons, Inc. ,
New York, 1960), Vol. 5, p. 1.

W. Kohn, in Solid State Physics, edited by F.Seitz and D. Turn-
bull (Academic Press Inc. , New York, 1957), Vol. 5, p. 257.

914



ELECTRI C FIELDS OF DEFECTS I N SOLI DS

3 (F 3/2 — pF i e/2-

W(F)dF =
~

— exp —
~

—'
~

aF.
2F&F &Fi

This function is shown as the dashed line in Fig. 1
where 8' is plotted as a function of the reduced field
P=F/Fe

To obtain a distribution function which considers
contributions from all the charges added vectorially
at any general point, Holtsmark' used the method of
Markoff and obtained the solution shown graphically
with his name in Fig. 1. This has been used very suc-
cessfully in astronomy and for plasmas of moderate
density. For the present purposes the only modi6cation
of the Holtsmark distribution needed is due to the
screening effect of free electrons or holes in semicon-
ductors. The reamining two curves of Fig. 1 illustrate
the effect of screening and its dependence on the ratio
of ro to X the Debye length. " It should be noted that
all the curves of Fig. 1 merge at high 6elds and fall off
as F '~'. This fairly rapid decrease is due to the fact
that the higher fields exist only in relatively small
volumes close to the charges.

The magnitudes of the 6elds in any case are deter-
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FIG. 1. Probability distributions of electric 6eld strength
for several cases. p= F/F0.

'For example, see H. Margenau and M. Lewis, Rev. Mod.
Phys. 31, 569 (1959).' J. Holtsmark, Ann. Physik 58, 577 (1919).For a discussion
of this and other stochastic problems, see S. Chandrasekar, Rev.
Mod. Phys. 15, 1 (1943).

"M. Baranger, in Atomic and Molecllar Processes, edited by
D. R. Bates {Academic Press Inc. , New York, 1962). For this case
X = (e/eT/47rNe')'/' so that re/X ct: N'/'

distribution function of random points. ' It is most
simply expressed in terms of a "normal distance" ro
defined so that (4~/3)ra' ——X '. Thus, ro is the radius of
a sphere whose volume equals the mean volume per
defect; also, ro ——0.62K '/', where E '~' is just the unit
separation of X defects arranged in a cubic array. The
"normal 6eld" is then de6ned by

Fo=e/ere2= 2.6(%Pl2/', (1)

where e is the magnitude of the electronic charge. In
terms of this Il 0, the nearest ion distribution is'

FiG. 2. Preferred energy band diagram of a semiconductor
with charged donors. Emphasis is on the fluctuating level of the
band edges (shown in exaggerated amounts). The dip appearing
between two donors illustrates the inQuence of a nearby donor
not in line with the other three donors.

mined simply by Iio which acts like a scale factor for
the distribution functions. For a semiconductor of fair
purity with Z~2X10" cm ', and taking e=12, Eq. (1)
gives Fe 10' V/cm and re/X=1. 1. Although distribu-
tion curves for such values of re/) are not available, the
trend of Fig. 1 indicates that the nearest ion distribution
will be a good approximation for this case and (because
of the weak dependence" of ro/X on N) for a considerable

range of /. It is easily shown, furthermore, that the
average field for the nearest ion function is (F)=2.7 Fe
and it can be seen by inspection of Fig. 1 that this must
be roughly the same for a moderately screened Holts-
mark distribution. In fact, the average field will not be
highly sensitive to the impurity concentration because
screening effects partially offset changes in I"0.

IV DISCUSSION

It is apparent, therefore, that most materials are
pervaded by fields of considerable strength. That the
effects of these fields can be significant will be shown
elsewhere. In the following paper, for example, these
6elds are invoked to explain the "Urbach rule" tails on
fundamental optical absorption edges. The one further
point to be noted here is that the existence of these
6elds is obscured by the customary diagrams of Rat
energy bands with adjacent localized levels of the
defects. Figure 2 shows a better illustration of the
situation —one that has been long known, but usually
not used.

Finally, mention shoul. d be made of insulators which
normally have fixed defects with charges of both sign.
Field distributions in such regions have not been de-
rived except for the case in which positive and negative
defects associate in pairs. This would produce dipolar
fields, also treated by Holtsmark. " The distribution
function in this case is similar to the ion 6eld distribu-
tion but the normal field is given by F0=4.54 pX,
where p, is the individual dipole moment. No further
discussion of these fields in insulators will be given here,
however, because there is reason to believe that the
polarization waves caused by lattice vibrations in ionic
crystals are more important. These will be treated in a
later paper.

"For a discussion of this, see R. G. Breene, Rev. Mod. Phys.
29, 94 (1957l.


