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A theory of ferromagnetism for general spin, approximately valid through the entire temperature range,
is given. At low temperatures the magnetization agrees with the Dyson results, having no term in T and
having a term in T4 equal to that found by Dyson in first Born approximation; terms arising from the ap-
proximations of the theory first appear in order T'&' +s'&' sso that a spurious T' term does appear for S= 1/2,
but for no other spin. Curie temperatures are within a few percent of the Brown and Luttinger estimates
for spins greater than unity, and agree within 1% of the Domb and Sykes estimate of the large-spin limit.
The susceptibility at high temperatures agrees with the Opechowski expansion to terms in 1/T . The quasi-
particle energies are renormalized by the energy at low temperature and by the magnetization at higher
temperature. The Green function is decoupled by a physical criterion involving self-consistency of the de-
coupling at all temperatures. The Green function method is extended to higher spin by a technique of
parametrizing the Green function and explicitly finding the functional dependence on this parameter by
solution of an auxiliary differential equation.

1. INTRODUCTION

'HE Heisenberg model of a ferromagnet has been
theoretically analyzed by Dyson' by series

expansion in powers of T, valid at low temperatures,
and by Opechowski' by series expansion in 1/T, valid
at very high temperatures. We here develop an approxi-
mate theory which covers the entire temperature
range, including the particularly interesting inter-
mediate region in the neighborhood of the Curie
temperature, and which agrees satisfactorily with the
rigorous results at both very low and very high temper-
atures.

At low temperatures the magnetization has terms of
order T ~ T5~ Tv~ which agree with the Qyson
results, it properly has no term in T', and the term in
T4 is equal to that found by Dyson in first Born ap-
proximation. Terms arising from the approximation in
the theory 6rst arise in order T'" +'&~', so that the case
of S=1/2 is an exception to the above statements,
having a spurious T' term. Curie temperatures are
quite close ( 3% for spin 2) to the values estimated
by Brown and Luttinger' by extrapolation of the high-
temperature series expansion, except for very small
values of spin (again the case of spin 1/2 is particularly
unsatisfactory). The Curie temperatures agree within

1% with the estimate of Domb and Sykes' for the
high-spin limit. The susceptibility at high temperatures
for all spin values agrees with the Opechowski' expan-
sion to terms in 1/T'.

The quasiparticle energies are equivalent to simple
spin-wave energies "renormalized" by a factor which is
proportional to the thermodynamic energy at low
temperatures, but which becomes proportional to the
magnetization at higher temperatures.

An heuristic interpretation of the renormalization of
quasiparticle energies has been given by Keffer and

~ Supported by the U. S. Office of Naval Research.
' F. J. Dyson, Phys. Rev. 102, 1217, 1230 (1956).
2%'. Opechowski, Physica 4, 181 (1937); 6, 1112 (1938).».A. Brown and J.M. Luttinger, Phys. Rev. 100, 685 (1955).
~ C. Domb and M. F. Sykes, Phys. Rev. 128, 168 (1962).
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Loudon. ' They point out that, at low temperatures
where only long-wavelength spin waves are excited,
the local magnetization direction varies slowly through
the crystal. Excitation of an additional spin wave is
analogous to excitation of a ripple relative to this
slowly varying local magnetization. The eRective
exchange integral determining the energy of this ripple
is influenced by the angle between neighboring spins in
the slowly varying background medium. This angle
also determines the thermodynamic energy; hence, the
renormalization of the spin-wave energy by the thermo-
dynamic energy. However, at higher temperatures, the
thermally excited excitations have wavelengths com-
parable to the interspin distance, and the correlation
distance in the background medium is as short, or
shorter, than the wavelength of the particular excitation
being considered. In this region our results indicate
that the eRective exchange integral is inQuenced by the
angle relative to the average magnetization; that is,
the spin-wave energies are renormalized by the average
magnetization.

The Heisenberg ferromagnet with spin 1/2 was
analyzed by Tyablikov' using the technique of double-
time temperature-dependent Green functions. " Ex-
tension of the theory to higher spin has been achieved
recently by Tahir-Kheli and ter Haar. ' The present
theory diRers from those applications of the Green
function method in two respects. First, the decoupling
of the higher order Green functions is guided by a
plausible physical criterion. Second, the method of
employing Green functions for general spin is simplified;
the Green function is parametrized and the functional
dependence on this parameter is found explicitly by

5 F. Eever and R. Loudon, J. Appl. Phys. 32, 25 (1961).' S. V. Tyabiikov, Ukr. Mat. Zh. 11, 287 (1959).
N. N. Bogolyubov and S. V. Tyablikov, Dokl. Akad. Nauk

SSSR 126, 63 (1959) Ltranslation: Soviet Phys. —Dokiady 4, 604
(1959)j.

A convenient review of Green functions and of Tyablikov's
application of them to ferromagnetism is given by D. N.-Zubarev,
Usp. Fix. Nauk?1, 71 (1960) Ltranslation: Soviet Phys. —Usp.
3, 320 (1960)g.' R. Tahir-Kheli and D. ter Haar, Phys. Rev. 127, 88 (1962).
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solution of an auxiliary differential equation. This
single differential equation replaces the 2S simultaneous
Green function equations in the method of Tahir-Kheli
and ter Haar. '

2. THE GREEN FUNCTION

The problem to be considered is the statistical
mechanics of the system described by the Hamiltonian

ac= I e —ps,* pz—(g f)s,—sf,

where pS is the magnetic moment per ion; B is the
applied magnetic field (in the negative s direction); S,
is the spin operator (in units of h) for the ion at site g;
and J(g f) is —the exchange integral between ions at
sites g and f The e.xchange integral is assumed to be a
function only of the distance between ions; it is not
restricted to nearest neighbors or to only positive
values, but it is assumed that the ground state of the
system is a ferromagnetically aligned state.

The temperature-dependent retarded Green function
involving the two operators A and 8, &(A(t);8)), is
defined by'

((A(~); 8))—= —()(~)&LA(~),87) (2)

where A (/) is the Heisenberg operator at time t; e(t) is
unity for positive t and zero for negative t; square
brackets denote a commutator; and single angular
brackets denote an average with respect to the canonical
density matrix of the system at temperature T. The
Fourier transform of the Green function is a function
of cv (or of E=Au&), and is denoted by ((A; B)&z. It
satisfies the equation of motion'

&&(A; 8»s= (1/2~)(t.A,87)+((PA (&) ~7 8&)~.

If this equation can be solved for ((A; 8))z one then
extracts knowledge of the correlation function (BA (/))
from the relation'

2-p x(g f-)((s,*s,+ s—, s; s;)). (s)
f

The remaining problem is to express the higher order
Green function on the right in terms of lower order
Green functions, so that Eq. (8) can be explicitly
solved for Gsg(g, t).

3. A DECOUPLING APPROXIMATION

The essential approximation in the methods of
Tyablikov and of Tahir-Kheli and ter Haar consists of
ignoring the fluctuations of S,', replacing this operator
by its average value:

((S,*Sf+,8))—+ (S')((Sf+; 8)). (Tyablikov) (9)
f~u

This approximation results in the magnetization
renormalization of quasiparticle energies, in disagree-
ment with the low-temperature theory.

The decoupling approximation to be used here is
most clearly described for the special case of spin 1/2.
In that case we can write 5,' in either of the following
forms

Sg*——S—Sg
—Sg+, (S= 1/2),

Sg' ———',(Sg+Sg —Sg Sg+),

(10)

(11)

or, multiplying the first of these equations by an
arbitrary parameter n and the second by (1—n) and
adding,

Sg*=ns+ ,'(1 n)sg+Sg-—
——', (1+rr)sg—Sg+. (S=1/2) (12)

The commutator of S,+ with the Hamiltonian,
required in the last term of Eq. (6), is easily computed,
giving

0 (a)
EGg (g,l) = og, (+pIIGs (g,l)

2~
'

(BA (t)&= limi
"&(A 8)) -+'.—((A; 8)) --'. .

8 dc'.
exp (Agg/k T)—1

The Green function ((S, S,+Sf+;8)) is reasonably
decoupled in the symmetric form'

(,~) =—o( )~., +&&LS'(~)pn
2'

where
o-(~)—=&9'+,"*S-7). (7)

Equations (3) and (4) are the only equations required
for the application of the Green function method.

For reasons which will become evident subsequently,
we consider the Green function

& (g,f)—=((s.+(~) e"*sl )), (5)

where a is a parameter. The Fourier transform of this
Green function, Gsg(g, l), satisfies the equation of
motion LEq. (3)7

((s;s,+s,+; 8)) &s;s,+)((s,+; 8))

+(S. Sr')(&S'; 8)), (»)
and similarly for the Green function ((S,+Sg Sf+; 8)).
Thus, the identity (12) leads to

&(s, s;;8» &s &&(s,+; 8))
g~f

—(S;S,+)(&Sg+; 8&). (14)

If o. is chosen as unity, the result corresponds to de-
coupling on the basis of identity (10);n= 0 corresponds
to decoupling on the basis of identity (11); n= —1
corresponds to decoupling on the basis of the identity
"The remaining "contraction, " (Sg+S~+)((Sg; B)) vanishes

because the operator SO+Sf+ is not diagonal in the total s compo-
nent of spin.
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-5—(5 )
Sg' ——(S')+ Sp+Sp—

28

5+ S'
S,—S,+ . (16)

2S

The operator in brackets, which is to be decoupled,
represents the deviation of 5' from (5') and should be
self-consistently small in all temperature regions.

Inserting the above value of n into the decoupling
equation (19) gives

«5,*5,+; a» &5*&«5,+; a)&

(S')
(5;5,+)((5,+; fl», (5= 1/2). (1/)

S

This is the basic decoupling approximation for spin 1/2;
we now generalize it for higher spin.

The analog of Eq. (10), for general spin, is

S,*=S(5+1)—(S,')' —S, S,+, (18)

whereas, Eq. (11) remains true. Decoupling as before,
and neglecting" the fluctuations of (S')', we find in

this case as wel. l.

5,*=—5+5,+5, . Thus, we are faced with the possi-
bility of obtaining a correction to the Tyablikov
decoupling with either a positive or negative sign, or
no correction at all, or any intermediate value, depend-
ing on the choice of ~. Clearly, a physical criterion is
required at this point.

The operator 5 5+ in Eq. (10) represents the
deviation of S' from +S. It is this operator S 5+
which is treated approximately when decoupling on the
basis of Eq. (10). It, therefore, seems reasonable to use

Eq. (10) when the deviation from 5'=5 is small;
that is, when &5*&~5.

Similarly, the operator sr(5+5 —5 5+) in Eq. (11)
represents the deviation of S' fromzero, and it, therefore,
is reasonable to use Eq. (11) as the basis of decoupling
when (5') 0.

Both of the above observations are contained in the
choice

~ =(5*&/5, (5= 1/2)

for then Eq. (12) becomes

4. SOLUTION OF THE GREEN FUNCTION
EQUATIO1V

Inserting the decoupling approximation into the
equation of motion (8) gives

Q~ (g)
EG~ (g,l) = bg, i+IJHGs (g,l)

2x

—2(5'&Z ~(g f)LG~ (f—~) G~ (g,~)3—

(5')
+ Z ~(g—f)L(5. Sr'&G~'(g, ~)S'

-&5.-5. &G.(f,~)~ (»)
These equations are a set of coupled equations for

various pairs of sites (g,l), (f,l). Translational invari-
ance dictates consideration of the spatial Fourier
transforms

Gs (k)—= Ze '"-"'G (g,~), (22)

longer true. Hence, the choice of n is no longer quite
so evident. However, we determine it by the following
requirements:

(a) For S=1/2, cr should reduce to our previous
result, or to rr=&5*)/S.

(b) For (5')=0, n should vanish. This requirement
follows from the fact that identity (11) retains its
interpretation for arbitrary S.

(c) For (5') S we expect that 5' should have the
form S' S—e, where e is a deviation which is of order
unity rather than of order S.

Requirement (c) implies that n&5, Sr+) should be of
order unity, rather than of order S, at low temperatures.
Now (1/25)(5, 5, ) is the spin devia, tion in lowest
order"; similarly (5, S~+) will be of order 25 if f and

g are closely coupled. Hence, we take

n = (1/25)(5')/5 (20)

and it is clear that this satis6es all of the physical
requirements above. Equations (19) and (20) character-
ize the basic decoupling approximation of the theory.

(&5,*5,+; a» (5*&((5,+; ~&)
pQf

—~(5. Sr+)((5' &&»

~(k)—= Ze '" ""~(g—~)

iP(ku)—= P e-*' -' "(e s"S-S,+).

(23)

(24)
where o, is the fractional contribution of the identity

(18), and (1—n) is the contribution of the identity

(11), to this result. Unfortunately, S, 5,+ is no longer
the only operator treated approximately in decoupling
equation (18), and the interpretation of the decoupled
operator as being the deviation from 5'=+S is no

n Tbe Green function (((S~*)'Sr+;8)) also can be symmetrically
decoupled, but the results are of the same form as those obtained
by the simpler procedure above.

Here g k denotes the vector product R, k, where R,
is the position vector of the g site. Equation (2l) then,
implies

"The appearance of 2S here corresponds to the identification
of S+ and. S, respectively, as (2S)"a+ and (2S)'"u in the
leading terms both of the Dyson and the Holstein-Primakoff
transformations. Here u+ and a are destruction and creation
operators of elementary boson-type excitations.
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where

0~ (a)
Gsa(k) =

2x[E—E(k))
(26)

0(a)
gG~. (k) = +p~Gi, (k) —2(S*)[J(k)—J(0))Gi~ (k)

2x

&5 &+ Q[J(k') —J(k' —k))P(k', 0)Ge (k) (25)
ES' It

by recalling that (5')~s+i is related by an identity to
lower powers of 5', they are thereby able to obtain a
solution. That method gets laborious very quickly,
but they have given explicit solutions to S=3.

By exploiting the functional dependence of 0'(a)
and f on the parameter a, which was inserted in
Eq. (5) for just this purpose, both 0~ and P can be
explicitly related to (S*) for arbitrary spin, in close
analogy with the case of spin 1/2.

5. RELATIONSHIP OF Oz TO &Sz)

(32)

E(k) =tiH+2($')[J(0) —J(k))
Calculation of the commutator defining 0'(a) [Eq.

( ') (7)) is facilitated by the identity

ES' ~ [5+ (Sz)a) —((Sz 1)a (Sz)a}$+

The correlation function which can be obtained from
Gea(k) by Eq. (4) is the quantity f(k,a), defined in
Eq. (24). Inserting Eq. (26) in (4), and taking t=0,
we thereby obtain

0 (k,a) = o(a)/(e""""'—1) (28)

Fquation (28), together with Eq. (27) defining E(k),
Eq. (24) defining f(k,a), and Eq. (7) defining 0'(a),
is the basic equation of the theory. It must, however,
be augmented by an explicit relationship between P
and 0, and it is this step which complicates the problem
for spin )1/2.

The problem which distinguishes the simple case of
spin 1/2 from the more complicated case of higher spin
becomes evident if we particularize our solution
temporarily to $=1/2. We also take a=0, and we note
from Eqs. (24) and (10) that

which is easily corroborated for e= 1, 2 and extended
to higher e by mathematical induction. It follows that

[5+ easz) —(e
—a 1)easzS+ (33)

Q(a) —=(e e*)

and the notation
D= d/da. —

Then the two quantities of interest can be written

(36)

(37)

Q'(a) = 2(ea *S')+(e
—a 1)(e '5+S ). (34)

Expressing S+5 in terms of S*by the identity (18),

0(a)=$(S+1)(e—a—1)(e ')+(e a+1)&eas*Sz)
—(e a —1)(eaez(Sz)2) (36)

Finally, it is convenient to introduce the quantity

1
~(0)=-—Z~( 0)=&5-5 )=-'-&5) (5=-:) (29) '(')='('+')(' '-')"

+ (e a+1)DQ (e ' 1)D'II ——(38)

o. (0)=2($ & (3o)

Hence, Eqs. (28) and (30) determine f(k,0) as a
function of (5'), and Eq. (29) provides a requirement
of self-consistency which determines (S*).

For higher spin values Eq. (29) is replaced by

Thus, p(0) is simply related to the magnetization.

1'(0) is the total number of spin reversals in the
crystal, and P(k,0) is the occupation number of the
basic excitation of wave vector k. Similarly, from Eq.
(7)

and

tt (a) =&eae*S 5+&=$($+1)Q—DQ —D'Q. (39)

whence,
y(k) = ]/(e~&»»r 1), —

P(k, a) =4(k) 0. (a). (41)

The self-consistency requirement on the Green
function is now contained in the condition

The relationship (28) between f(k,a) and 0'(a) can
be recast in a more convenient form as well, by de6ning

1
P(0)—=—g P(k,0)=(Sz Sz+&

=5(5+1)—&(5')')—(5') (31)

where
1

c'=-—2 ~(k)g

(42)

(43)

This introduces the new quantity ((S')'), which is not
determined by Eq. (29). Tahir-Kheli and ter Haar, ~

therefore, introduce the Green function &(Sz+; (Si )'Si+))
to evaluate this quantity, but its solution introduces
&(5')'). By introducing 2$ such Green functions, and

This condition should determine O~(a), and thence &5*),
which is just 20'(0), as we see from Eq. (23). It is
more convenient to determine Q(a), and thence to
find O~(a) by Eq. (38). In fact, inserting Eqs. (38) and
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(39) into (42) gives a differential equation for Q(g): by

(1+C)e'1C
D'Q+ DQ —S(S+1)Q= 0.

(1yC)e —C
(44)

(S—C') (1+4) s+'+ (S+1+.C,)@2s+1
(S')=DQ(0) =

(1+@)2S+1 @&2S+1
(52)

(46)

Taking the average of this equation it can be written
in the form

g (D—P)Q(a=0)=—nsQ(0)=0.
y=—S

In the Appendix it is shown that the solution of the
differential Eq. (44) satisfying the boundary conditions
(45) and (47) is

CPs+le—sn (1+g))2s+le(s+1)e
Q((2) = (48)

@2 +1 (1+pl)2s+ijL(1+@)e~—Cj
from which (S*)or O~ (a) can be found by differentiation.

0. THE FORMAL SOLUTION

For convenience and clarity we recapitulate the final
form of the equations, preparatory to analyzing their
low-temperature and high-temperature behavior, Curie
temperature, etc.

Given a spin magnitude S, a temperature T, a
magnetic 6eld H, and an exchange interaction with
Fourier components J(k), the quasiboson occupation
number p(k) is

y (k) 1/ (e (k) s/ T2])
where

E(k) =12H+2(S') [J(0)—J(k)j

(49)

(S*)
+ Z LJ(k')-J(k'-k)1~(k') . (50)

ES' j'

This is an implicit equation for P(k), involving the
unknown quantity (S'). However, (S') is given in
terms of

1c=—Z e(k)
3l

This differential equation is the analog of the set of 2S
coupled equations of Tahir-Kheli and ter Haar.

To completely determine the solution we require two
boundary conditions. From the definition (36) we
observe

Q(0) =1. (45)

The second condition is provided by the operator
identity

Thus, Eqs. (49) and (50) constitute a set of coupled
equations which must be solved self-consistently for
(S*).

J(k) =JPs exp(ik 5), (53)

where 0 goes over the nearest neighbors of a represen-
tative ion; we assume all magnetic ions are crystalo-
graphically equivalent. Consider the sum

x—=Q2 $J(k') —J(k' —k)gy(k'),

which appears in Eq. (50) for E(k). Then

x=J +2 L1—exp( —ik s)jp& exp(ik' s)p(k'). (55)

The sum over k' is clearly independent of Q, by sym-
metry, so that it can be replaced by
Xexp(ik' 5)g(k'), where ) is the number of nes, rest
neighbors. We thus obtain

x= J-'(0)p(0) —J(k)jp ~ J(k')y(k'), (56)

where J(0)= )J is the k=0 Fourier component of the
exchange interaction. This equation was first pointed
out by Michelene Bloch.12 The sum P J(k')P(k') is a
function only of the temperature, (S*), and H (and,
of course, of J and the lattice structure).

Z J(k)e(k) =—f(2', (S*&,H)
EJ(0) 1

&(k) =pH+2(S')/J(0) —J(k)jL1+ ((S*)jS2)fj. (58)

Thus, for simple lattices (including simple cubic,
body-centered cubic, and face-centered cubic lattices
in particular) and for nearest-neighbor interaction the
simple spin-wave energies are renormalized by a factor
depending only on the temperature (for zero field),
independent of the wave vector k. Equations (57) and
(58), together with the definition of p(k) in terms of
L~"(k), constitute a pair of coupled equations for the
renormalization function f. For these lattices and
nearest neighbor interaction the complete solution
would be obtained explicitly by solving Eqs. (57) and
(58) for f, thereby obtaining p(k) or C in terms of T,
(S*) and H. Then eliminating C between this equation
and Eq. (52) would give (S*)as a function of T and H.

"M. Bloch, Phys. Rev. Letters 9, 286 (1962).

'7. NEAREST-NEIGHBOR INTERACTION

For simple lattices with nearest-neighbor interaction,
the formalism simpli6es markedly. In this case the
exchange J(k) is
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8. THE LOW-TEMPERATURE REGION

The summation (or integral) over k' involved in the
calculation of C for B=O occurs in simple spin wave
theory and has been carried out by Dyson' and others
by standard series expansion procedures appropriate
to low temperatures. Thus, if

Finally, inserting this equation into Eq. (67), we find

&S'&=S t —( )r—/ r—rv—f'(~)r rr—"~v g( )r—r +
—(3/2S) C(r')K(l) '+ + (2S+1)f"+'(-') "+"

+(2S+1)-:-t- (-:)i(W"-/+ . (70)

E(k) =2SRLJ(0)—J (k)j
and if a reduced temperature is defined by

r =3I3T/—4n. f/JS v,

then'

(59)

(60)

Neglecting, for the moment, the terms in 7' +'",
7' +'" we see that the coeScients of mal', w'f2, v-'" are
in exact agreement with the Dyson result. The term
in w' is absent, as required by Dyson. The term in-
volving 7-' is given by Dyson' as

4=i (23)(r/R)-/+ 7I vg(2)(r/R)'/2

—(3/2S) 2rvf (2)f(2)Qr'

where Q, the ratio of this term to our r' term, is

(71)

Similarly
+rr'o) v'i (') (r/R-)'"+ (61)

with

Q= 1+331Gs —1j '+n/3S (72)

f= P J(k)g(k) = f'(2)(r/R) / rrvi (—2)—(r/R) /

X~J ~ 6=10, 16, 24 for sc, bcc, fcc, (73)

+( —-') '"f (-')( /R)'"+ (62) o.=0.52, 0.39, 0.34 for sc, bcc, fcc. (74)

Thus, our r' term corresponds to the leading term
(Q= 1) of the Dyson result; that is, to the result which
Dyson 6nds in the first Born approximation.

The terms r' +"' r'S+"' in Eq. (70) seem to be
spurious results of the Green function approximation.
For S= 1/2 they give incorrect contributions to the r'
and v4 terms. For spin unity the 6rst spurious contri-
bution appears in the r"' term, and for spin 3/2 it
appears 6rst in the 7' term; thereafter it moves rapidly
to higher order in v. Consequently the spurious terms
are of consequence in the low-temperature region only
for spin 1/2.

Finally, it is of interest to substitute Eq. (70) into
Eqs. (69), (68), and (66), to obtain C, f, and the
renormalization factor R explicitly as series in ~. We
thus find

The constants v and co depend upon the lattice structure
and are defined by

(63)v=1, ~=33/32, for simple cubic;

v=33&&2'", ~=281/288, for body-centered cubic; (64)

v =2"', a& = 15/16, for face-centered cubic. (65)

To apply these results to our case we take )compare
Eqs. (59) and (58)j

&s)-. (s&—
R= 1+ f .

S S'
(66)

The remaining equation is Eq. (52) for (S*) in terms
of C; expanding it in powers of C (which is small at
low temperature), we find

f (3)r3/2 32tvf (3)r3 2 2l2. /dv2f (3)rV/2+—. . .

-(3/2S) i(l)i-(-:)"+", (75)(S')=$—C+ (2S+1)C's+'
(2S+1)2@2S+2+0 (@2S+3)

To disentangle the coupled equations we
substitute Eq. (66) for R into Eq. (62), solving
as a series in v.

(67)
f=g(3)r'/' ,'rrvi (', )r"'+—(—(a 5/-4)2r'v'—t (,')r'/'+-

61st —(1/8s) .|.(-;)i.(-',)"t", (76)
d

f=f (-') (s /&s'))'"-' i (l) (s /&s'))'"

+(---)- "f'(-)(Sr/&S &) +
—;p(-;)S/&S&2.3—,'.f (-;)i.(3,)(S'/&S*&3)r4+ ". (68)

Inserting this series into Eq. (61) for C, w«nd

c =i(-;)(s /&s &)'/'+-: i-(-,')(s /(s*))'"

+~'~"i (2) (Sr/(S'))'"+

R= 1 2rv/St'(-', )r'"—5/4S —2r2v2i (,'—)r'"+ . . -
—2/S'i (-,')r' —21/8S'2r vi (-,')i (-', )r'+

2S+1
+ i.2s+l(3/2)r3(2s+ii/2

S

3(2S+1)'
~vt" (3/2)i (5/2) r"+'" (77)

—-'i'( —')S/(S')'r' —22rvi(32)i'(32)(S2/&S'&3)r'+ . (69) It will be recalled that R is the "renormalization
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factor"; the ratio of the actual quasiparticle energies
to the simple spin-wave energies. At low temperatures
the leading temperature dependence of E. arises in the
v-'" term, Hence, the spin-wave energies are renormal-
ized by a factor proportional to the thermodynamic
energy rather than the magnetization in this tempera-
ture region.

9. THE CURIE TEMPERATURES) AND THE
HIGH- TEMPERATURE REGION

Just below the Curie temperature (assuming H=O)
the average magnetization (5') is small, and the mean
number of excited quasiparticles is large. In fact,
expanding Eq. (52) in powers of 4 ' we find

(5')=-',5(S+1)4 '+0(4 ').

Furthermore, since E(k) is proportional to (5') the
exponential in the Bose distribution can be expanded,
glvlng

1 2(s') — (S*)
4=—g LJ(0)—J(k)j 1j f . (79)

Ã~ kT g2

Multiplying Eq. (79) by (5'), and replacing (S')4 by
5(S+1)/3 Lfrom Eq. (78)j we then have, in the limit
(sz) ~ 0

5(s+1)
F(—1),

2J (o)L1+ ((5*)/5')f3

where F ( 1) denotes t—he summation

J(0)
F(—1)—=—Q-

E a J(0)—J(k)

This summation has been evaluated by Watson 4 it
has the values

F( 1)=1.51638(sc—); 1.39320(bcc); 1.34466(fcc). (82)

Equation (80) determines the Curie temperature.
However we must evaluate the limiting value of the
quantity ((5')/5')f which appears in that equation.
From Eq. (57) defining f, again expanding the Bose
factor,

(s & &s & 2(S')
f= 2 J(k) P(o)—J(k)l

S' 1VS'J(0) a kT

(s) -—
X 1+ f, (83)

g2

'4 G. N. Watson, Quart. J. Math. 10, 266 (1939). See also,
M. Tikson, J. Res. Natl. Bur. Std. 50, 1'/7 (1933).

TAnrz I. Curie temperatures (kT,/J) for cubic lattices,
nearest neighbor interaction.

Simple cubic
T-

Kheli
Brown t. Cal-

5 Lutt. Haar len

1.9 2.0 2.7
5.4 5.3 6.5

10.6 9.4 11.7
17.5 15.8 18.5
25.8 23.1 26.8
35.7 31.6 36.4

Body-centered
cubic

T-
Kheli

Brown t. Cal-
Lutt. Haar len

2.39 2.9 3.7
7.82 7.7 9.1

15.42 14.4 16.6
25.17 23.0 26.2
37.10 33.5 37.9
51.19 45.9 51.6

Face-centered
cubic'

T-
Kheli

Brown t. Cal-
Lutt. Haar len

4.2 4.5 5.6
12.7 11.9 13.9
24.7 22.3 25.5
40.0 35.7 40.1
58.7 52.1 58.3
80.9 71.4 79.5

a For the face-centered cubic, Domb and Sykes (reference 4) give

lim /k'/JS(S+1) j =6.38 (Domb and Sees),S~ QO

=5.95 (Tahir-Kheli and ter Haar),
=6.45 (Callen).

or
(5') F(—1)—1

f 1+ f = kT.
5' S' 2S'J(0)

(84)

kT, 2)(s+1)
L(45+1)F(—1)—(5+1)3 (85)J 9F'(—1)

In Table I we give the values of kT./J as estimated by
Brown and Luttinger' by extrapolation of the series
expansion for the susceptibility in powers of 1/T. We
also list the values obtained by Tahir-Kheli and ter
Haar, ' and the values calculated from Eq. (85). It
will be noted that our values are higher than those of
Brown and Luttinger, whereas those of Tahir-Kheli
and ter Haar are lower. For spin 2 the deviation of our
results from the Brown and Luttinger values is of the
order of 3%, and the agreement improves with in-
creasing spin. In fact, Bomb and Sykes have recently
published' an estimate of the limiting value kT,/
Js(5+ 1) for large 5, for the face-centered cubic lattice.
This estimate was obtained by a painstaking exami-
nation of the systematics of the extrapolation of high-
temperature series. They obtain the value of 6.384,
with which our value of 6.45 agrees within 1%.

Domb and Sykes' also give estimates of kT./J for
5=1/2 and 5=1 only, for the face-centered-cubic
lattice; their values are 4.07 and 11.95, respectively.
These are lower than the Brown and Luttinger results,
and further aggravate the disparity between our values
and the estimated values for these small spins. It is
apparent, both from the Curie temperatures and from
the low-temperature results, that our approximations
are more reliable for large spin, being particularly bad
for spin 1/2. Fortunately, most cases of practical

Eliminating ((5')/5') f between this equation and Eq.
(80), we finally find the equation determining the Curie

temperature.
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interest are associated with spina greater than 1/2, for
which the results appear to be quite reliable.

It should, perhaps, be noted that the Curie tempera-
tures are quite sensitive to the decoupling parameter 0;,

of Eq. (20). If the chosen value of n were to be multi-

p»ed by ((5')/S)', where e is any positive constant no
matter how small, the Curie temperatures would
become identical to those obtained by Tahir-Kheli and
ter Haar, whereas the low-temperature and the high-
temperature behavior of the theory would remain
unaltered.

Finally, the high-temperature expansion of the
susceptibility x is of interest. We assume (5') small, and
maintain only terms proportional to the applied mag-
netic field. Equation (78) remains valid, Eq. (79)
contains the additional Zeernan term, and the analog
of Eq. (80) becomes

r&(0) —~() ))"I (~)=——P~
cV ) k J(0)

(93)

where T~ is the Curie temperature of the molecular
field theory:

kT))r =—32)iJS(s+1). (95)

The quantity X can now be eliminated between Eqs.
(90) and (91), enabling Xi to be evaluated in a series
iri 1/T. In this way we find

p'5 (5+1)— T~
x= 1+

3kT T

+~I &
—

)( I +0(—I, (&z)

5(5+1) xkT 1 2x
1+—LJ(0)—J(k))

3 p,
' X& p,

'
(S*) — -'

X 1+ fS'

Similarly, the analog of Eq. (83) is

(5') xkT 1 1 2x
f= —P J(k) 1+—

S' p' S'J(0) X ) p2

(86)

The two leading terms in this expansion are in agree-
ment with the values found' by a rigorous expansion of
the susceptibility in powers of 1/T.

ACKNOWLEDGMENT

I am very grateful to Dr. Raza Tahir-Kheli, who
investigated a number of the limiting processes, read
the manuscript, critically discussed the theory through
its development, and repeatedly offered valuable
suggestions.

(Sz) — —i

XLJ(o)—J(k)j 1+ f . (87)
S'

It is convenient to denote

APPENDIX

It is easily corroborated that the solution of the
differential equa, tion (44), satisfying the boundary
conditions (46) and (47), is

[1+((5')/5')f j—=X

and to define a quantity X& by

(88)
Q(a) =

1 C

) '5(5+1)
X—=lim (1+x,).

B 3kT

&o (—S, a) X)see (S+1,0)—~ (S+1,a) X)s~ (—5, 0)
(89) X

ns~(5+1, 0)—ns(o( —S, O)
(A1)

Then, multiplying Eq. (86) by $1+ (2x/p, ')J(0)Xj and

Eq. (87) by —(2X/p')5'J(0)X and adding, we find
ear

(o(x,a) —=

(1+4)e —C
(A2)

X2—
4S+1 X]

X+
3S 2S'J(0) 1+X, The evaluation of the derivatives Ss&v(x,o) is then

required to reduce this result to Eq. (48). Consider

1=(1+xi) 1—
2J (0) 4J'(0) )+1

XX+ X2X' + . (91)
Jtk p

In this summation we have employed the identities9

Furthermore, expanding the summand in Eq. (86) we

find

where

(*, )=rr(D —p)
(1+C)e.—C

S d y~
=II y p

dy (1+4)y—C

(A3)

where

F(1)= » P(2) = ()+1)/h, (92)
y=e.

Expanding in powers of y, and noting that y(d/dy)y"



~ we And

HERBERT B. CALLEN

+1—p, we find

oo (1+4') s
&s&o(&,a) = ——Z ~

~

y" II (rt —p). (A6) X)st(—5, 0)=-
C = k C j n—s

(1+g&)&s+1

Cb2$+2

We now take a=0 (or y=1), let x=5+1, and change
variables from st to rrt=rt —5, and from p to r=S—p.
Then

(rtt+ 25+1)! 1+4
~XQ

~

. (AS)
m=p mI c )

(est+25+1) t'1+@) From Eqs. (Aj) and (AS), we note that the ratio of
the relevant quantities is

28+1 2S+1Os'( S, 0)/X)sco(5+1, 0) (1+4) /C . (A9)
Similarly, taking a=o, letting x= —5 and changing
variables from rt to rtt=rt —5—1, and from p to r=S Finally, inserting this ratio into Eq. (A1) gives Eq. (4S).

PH YSI CAL REVIEW VOLUME 130, NUMBER 3 1 MA Y 1963

Electron Number of the Nitrogen Atom in Mn, N
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In order to obtain some information about the effective electron number of nitrogen in Mn4N, the x-ray
atomic scattering factors of nitrogen and manganese were measured by Fe En radiation. The experimental
values of the scattering factor of nitrogen determined within a resultant probable error of 5% were close
to the theoretical curve for N' or N' . This result contradicts the donor theory in which a nitrogen atom
is supposed to donate electrons to the neighboring manganese atoms.

INTRODUCTION

ECENTLY, Takei et al."have shown by a neutron
diffraction study that the magnetic structure of

Mn4N is ferrimagnetic and is explicable in terms both
of the donor property of nitrogen and of the energy
splittings of manganese atoms caused by their local
environments. In the donor theory which was proposed
by Guillaud, s Wiener and Berger, e and Juza and Puff, '
a nitrogen atom is supposed to donate one electron to
each of the three face-centered manganese atoms.

In order to obtain some information about the ef-
fective electron number of nitrogen, the x-ray atomic
scattering factors of nitrogen and manganese in Mn4N

*Research fellow from College of General Education, University
of Tokyo, Tokyo, Japan.

'%'. J. Takei, G. Shirane, and B. C. Frazer, Phys. Rev. 119,
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were measured by Fe Eo. radiation for two samples
supplied separately by Mekata and Takei, with the
compositions Mn4Np g8 and Mn4Ny pp, respectively, the
latter of which contained a very small amount of Mno.

In Mn4N, manganese atoms occupy the sites of a
face-centered cubic lattice with a nitrogen atom at the
body-centered position of the unit cell. There are four
types of structure factor as follows:

4fMn+ fN for all even indices,

4fM„—fN for all odd indices,

(1)

(2)

fN for mixed indices with 5+k+i=even, (3)

fN for mixed indic—es with k+k+1= odd. (4)

The last two types of structure factor may be used
for determining the values of the scattering factor of
nitrogen in the range of small scattering angles, where
the behavior of the scattering factor is more sensitively
inQuenced by the total electron number of the relevant
atom than in other angular ranges.


