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An explicit representation of these operators is given by

A=e )

8=)d/drr

~A+B ~f (a)~Ad jdrx~—f (n)
)

~f(n)~—f(a+A)~) d/dn
)

Then

where

f dq d
exp~ e +1 ~=exp e&' '1 e&~ '—),dpi ln

1
f(~) =

exp A e~.

The adjoint of the above yields the alternative
representation:

1—e"
e"+~=e~ exp~ A
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A general expression is given for the pion-nucleon non-charge-exchange scattering amplitude for arbitrary
energy and small momentum transfer on the assumption that only the vacuum pole P and the second
vacuum pole P exist in the upper half J plane. We derive sum rules for non-spin-Rip and spin-Qip amplitudes
and use them, combined with the analysis of the high-energy ~-S cross sections in terms of Regge poles,
to investigate the behavior of P and P' trajectories near /=0. For this purpose the importance of a precise
measurement of the low-energy partial-wave phase shifts is emphasized, A sum rule for the S-wave pion-nu-
cleon non-charge-exchange scattering length can be satisfied with u~'=0. 5.

I. INTRODUCTION

HERE have been many attempts to investigate
the low-energy 5-, I'-, and D-wave pion-nucleon

scattering based on the dispersion relations. ' ' The
charge-exchange scattering amplitude was successfully
explained by Bowcock, Cottingham, and Lurie' by
incorporating the I= 1 pion-pion interaction into the
analysis of CGLN. ' However, the above method cannot
be applied directly for the non-charge-exchange ampli-
tude because the dispersion integrals diverge.

The aforementioned divergence problem which is
related to the subtractions in the Mandelstam repre-
sentation was greatly clarified by the Regge pole
assumption4 that all poles of the strong-interaction

*Research supported in part by the Air Force 0%ce of Scientific
Research.

$0n leave of absence from Tokyo University of Education,
Tokyo, Japan.' G. F. Chew, M. L. Goldberger, F. E. Low, and Y. Nambu,
Phys. Rev. 1Q6, 1337 (1957), hereafter referred to as CGLN.

2 J.Bowcock, W. N. Cottingham, and D. Lurie, Nuovo Cimento
16, 918 (1960); 19, 142 (1961).

3 For detailed references, see A. Takahashi, Progr. Theoret.
Phys. (Kyoto) 27, 665 (1962).

G. F. Chew, S. C. Frautschi, and S. Mandelstam, Phys. Rev.
126, 1202 (1962); S. C. Frautschi, M. Gell-Mann, and F. Zacha-
riasen, ibid. 126, 2204 (1962). This assumption predicts a
logarithmic shrinking of the p-p diffraction pattern with increasing
energy. Such an effect has been observed experimentally I A. N.
Diddens, E. Lillethun, G. Manning, A. E. Taylor, T. G. Walker,
and A. M. Wetherell, Phys. Rev. Letters 9, 108, 111 (1962)j.
Moreover, the occurrence of Regge poles in the relativistic 5 matrix
has been shown by Gribov, Domokos, Mandelstam, and Eden
using the Mandelstam representation and elastic unitarity. See
reference 7.

5 matrix move in the complex J plane as a function of
energy and that these poles control the asymptotic be-
havior. In a previous paper, ' hereafter referred to as I,
a sum rule was derived for the 5-wave pion-nucleon non-
charge-exchange scattering length, starting from the
assumption that the amplitude can be written as the
sum of two terms, the vacuum-Regge pole term which
diverges at infinite energy and the remaining term
which converges at infinity and satisfies an unsubtracted
dispersion relation. This assumption led to a discrepancy
between the observed and the calculated scattering
lengths. Therefore, it was concluded that there should
be another vacuum-Regge trajectory P with nz (0)

0.5.' Existence of such a pole is also favored in the
analysis of high-energy p-p and p-p scattering, r' high-

energy m-P and E Pscattering. r-
The purpose of the present paper is twofold: (a) to

generalize the previous sum rule for pion-nucleon non-
charge-exchange scattering, to hold for arbitrary s and
small) (we assume, as in I, that only P and P' trajectories
exist in the upper half J plane for 1 near zero); (b) to

5 K. Igi, Phys. Rev. Letters 9, 76 (1962).' In the previous paper I, it was concluded that there should be
another vacuum trajectory in the region 1&o.(0))0. However, the
notation of calling it as ABC pole has caused some confusion. It
should have been noted by P' as introduced in the references 7 and
8. Detailed analysis for nz. (0) is given in Appendix A.

7 S.D. Drell, in Proceedings of the j96Z Annual International Con-
ference on IIigh-Energy Physics at CERN (CERN, Geneva, 1962).

F. Hadjioannou, R. J. N. Phillips, and W. Rarita, Phys. Rev.
Letters 9, 183 (1962);Y. Hara, Progr. Theoret. Phys. (Kyoto) 28,
711 (1962).
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apply these generalized sum rules in order to obtain the
behavior of (rp(t), P p(t), n p. (t), and Pp. (t).

Np

II. KINEMATIC CONSIDERATION

We shall begin by defining the necessary variables.
Let the four-vector momenta of the pions be q~ and q2,
and those of the antinucleon and nucleon be pi and po,
respectively (Fig. 1).Define the Mandelstam variables'

FIG. 1.The four-line diagram.

t= —(qi+qo)'=4(q'+1) =4(p'+m')) (2.1a)

s= —(p,—q,)'= p' q—'+2—pq cos8, , (2.1b) F(+&(v,t)

qp

7r2

qt

7I t

s= —(Pi—qo)'= P' qo—2P—q co—s8o, (2.1c)

where q and p are the magnitudes of the pion and
nucleon momenta, and cos8o ——po qo/pq, all in the
barycentric system. In addition we define a new variable

v—= —(qm/p) cos8o,

g5$—=—A (+& (v, t)—
4

cos8oB(+) (v, t) (2.5a)

s—m' —1+ (t/2)=—A (+& (v,t)+ mB(+&(v, t), (2.5b)
41r 2m' —(t/2)

s—m' —1+(t/2)
(2.2a)

4tl 2%$fp 1 2

Q(J+—',)Ps(cos8o)S+s(+) . (2.5c)
4&r p' k q

which reduces to the incident pion energy vt, in the wE
laboratory system at 3=0. The relation between v and
vt, is

2mvi, + (t/2)

2m' —(t/2)
(2.2b)

Sort p~'"-I ZV+-:)
p'

tn cos03
X Ps'(cos8o)S s(+)

[J(J+1))'"

We shall next choose a new xE amplitude which is
more convenient. for the present purposes. Consider the
xE amplitude which is the analytic continuation of the
mw ~EE amplitude of Singh and Udgaonkar and has
the form"

Then this function does not contain Ps'(cos8o), so that
the residues of the Regge pole contributions can be
related to the m.E total cross section at high energies.

III. A MODIFIED DISPERSION RELATION

Let us separate F(+&(v,t) into the P and. P' Regge
terms which give divergent behaviors as v —+ ~ and the
remaining term F(+& (v, t) which vanishes at infinity since
we have assumed that only I' and I"trajectories exist in
the upper half J plane. To do this we write

F + (v, t) =Fp(v, t)+Fp (v, t)+F+ (v, t), (3.1)
where

P&p (i) (cos8o)+P p(g) (—cos8o)
F (,t)= t3 (t)— (3,2)

sine(r p (t)
and

P~pt (I) (cos8o)+Pap) (g) (—cos8o)
Fp (v, t)= —)8 (t) (3 3)

slnora p~ (t)

P (cos8,)S (+) (2 3) Then the disPersion relation for F(+&(v,t) can be written
2 for Axed t without subtraction:

ger~ p~'" (J+-',)B(+)= — —
~

g Ps'(cos8o)S s'+),
pq qJ s [J(J+1))"'

(2 4)
Here

Pmin

dv' ImF(+) (v', t) +
v' —v v'+ v

(3.4)

where S+(+) is an S-matrix element for or+or —+ X+&
and the subscripts + and —refer to a nucleon and anti-
nucleon having the same or opposite helicity. I et us
dehne the following amplitude:

9 Notation: V'fe use the metric such that p q= p q—poqo. Here-
after we also use the pion mass unit.

'o V& Singh and B.M. Udgaonkar, Phys. Rev. 123, 1487 (1961).

1 g 1 1
B(t)=— +

4rr 2m vo —vt, vo+vt, +(t/2m)

vo= 1/2m'

1+(t/4m)
vmin

1—(t/4m')-vo+ , (3.5)4'
(3 6)

(3 7)
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we find. that(3 1) through (3 3)

t P,lp, , (t)P.p «)I
(y) vt t) —pP (t)Pav (t)

qm
(3.8)v&+&(„ i) —Im& ( (ta )

in from t eh low-energy integral, weout the singular term corn' g3.4, and (3.8), separating out t e sinMaking use of (3.1), (3.4), an
get

F(+) (v, t) —FP(v, t) —FP (v, t)

'ImF(+) v't)=B(t)+— dv ImF
Vmin

1 1

v' —v v'+ v

m v'] P. , (t) [(P/qnz) v']P-.(t) L(P/q~
dv' Pp(t) p

P

Pay (t) (x )
dx p, .(t)x

g'

P. (,)(x') — 1 1 — 1
, (3.9)

x' —x x'+xx' —x x'+x

1
dx' Pp(t)x

ured. Fp(v, t an p v,hi ure . p, dF (v, t)on

7r 1

1id h 1o ith1o h ihhthe left-hand side and likewise t e t ir

1 2
/=0. However, using

S
+

and4
S' S'—S x'+x x' —x x'+x x'

P-(*)+P-(—)—2P. (o) =—
I

slnwn 1 1 2)t. z.(.)(x' +

the third and fourth integrals aswe can rewrite the t ir a

PP(P )(t)
vt ——Fp nr p') (v)(

s)n~o. p(p ) ( )

e ral and the formulain E . (2.2b) in the first integra, anb th sides cancel. Using Eq. . iar terms on o s'therefore, singu a

(3.10)

we obtain
00

F(+) (vt„t) =B(t)+-
7l ]

sine o.

1
dvt, ' ImF'+'(vr, ', t)

(3.11)

qm/y

p()

1 ~P(t) PP (t) P~ (t)+
2 ."'

2~3/2 2

m v'] P., (,)[(P/pe) v']-- «[(/ )
dp

V

IV. GENERALIZED SUM RULES

t and spin-Rip amph-am htude f)(vr„ao — p' — 'p p
(3.12). Th ill

' tN using the modified dispers'
'

. . a
we shall derive genera

tu ee, d P (t) near t=0.
'+) vz, t) to the amplitudes f) anFirst we shall relate F'+) vz„t o

namely,
E+m A+ (W

(41)

8—a) (—A+ (W+a)B)
&2W&I

(4.2)
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we obtain

and

1
fz(+) (pz 0) —F(+) (pz 0) B(+)(vz Q)

8+m 4n 2m
(4.3)

2' 1—
f2&+& (vz„0)= F&+—) (vz, 0)+—2W+

kr 2m

where k' is the c.m. pion momentum.
In addition, we get

B(+)(p 0) (4.4)

and

1 ]7,
' 1 W'+m' —1

f (+) („0)—F(+) (» 0) B(+) (» 0)
F.+m

1 VL) )
7I tS

B(+)(Pz 0) (4 5)

1 k' 1 W'+m' —1
= —F&+)'(vz, O)+—

~
2W+ B&+'(vz,O)+ — B&+&(vz,0).2' (4 6)

d f d'ff t' t' with respect to t, and the expression for F ( z„)'+ v 0 was alread given in I.The rime here stands for i eren ia ion w'
p

B'+&( 0) B&+&'(vz, 0) and F&+&'(vz„0) are as follows:The explicit expressions or qv~»)

and

g„']/ 1 1 2P
B&+& (vz, O) = ~

— +-—
2m(vo vz Po+Pz 3 7r

(4 7)

p oO

B&+)'(vz, O) = +-
(2m)' (v()+ vz)'

&~(P))
dvz'—

O' F.'+m vz,
'—vz vz'+vz/

1 1+-
x 3' ~ ~

3 1 1

E'+m F.' m(vz'+ v—z)'

he rationalized, renormalized pseudoscalar couphng constant. Experimenta y g„, =, p~ ll g 4' 14. We ex ect
p less than the 33 resonance energy. Hence, we kept only the I'~ state sinceto use B&+&(vz„O) onlyfor small vz„ i.e., vz, ess t ant e

the convergence of the integrals in Eqs. ~ . ~

Differentiating Eq. (3.12) with respect to t, we get

f'( 1 1 1//m
F(+)'(pz Q)

—
i + +

2 (Po—Pz, Pp+vz (vp+Pz) )
1 1

dvz,
' ImF (+)'(vz', 0) +

vz +vz

pz'2 —1 )/7g (+) pz'—
G (F,I"), (4.9)

m (Pz +Pz)

s onn 0 nz'(0), p(0), Pp'(0), nv (0), nv '(0), Pv (0), and Pz '(0), and f'=0.08. Here in a
e

' '
dinte ralM tobe theenergy here the R b hractjcal roblezn we can choose the upper limit of the secon )ntegra o e

F(+)
~ t& can be expressed in terms of partial-wave cross sections. 'is already dominant. ImF(+ ~vI, , t~ can e ex r

Therefore,

IznF &+&'(vz, ',0) =——ImA &+& (pz', ]') +vz—1mB &+& (pz', ])
kr dt t=o

1 W'+m' —1+-
&=o 4x Sm'

IznB &+& (pz', 0)

1 W'+m+ pz'- 1

47&. E'+m 2k

13
(2o.a(pa) —g ~(vg))+ —ga[v(7/2)]

W' —m —vl.
'- 1

L, (z),)+ (gi(p;) —2gg[v(7/2)])$E'—m 2k'

W"+m' 1k' — — 20
2g; (va) —sg ](z),*)—g [(v~)+—g ~ [v(,/, ))

Sm' F.'+m
W"+m' —1 k'

( 3 $(P$)+ )( g)+2z)&k(vy) —4gx[P(7/2)]) ) (4.10)E —tg
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where we took into account the P~, D-,', Il —,', and F2 channels, which have resonances, for convenience. In practice,
inclusion of the lower energy resonances, P~, D~, and Ii~ will be sufficient.

In Eq. (4.9),

2 1 1
G(P,P') = —— 1——9p(0)+Pp (0)]+Pp'(0)

X 8 nz2

, Pm (o) (" )
dv +Pp '(o)

P~p (Q) (p )
dv—

+p. (o)
d p

d v' —P~~(&) v'

dt gnat &=0

M —d ( p" +Pp'(0) d" P~p (&)l
dt kqr)s

1 —
( &0)+1 ( &0)) 0 (0) p'(0) ( p&0)+1) p(0) ~&0)+1)+ p.'(o)ll l+

2 2

p. (o)..(o) .(o)+1 ( .(0)) ..(0))-r Il —
lP

—
l

+(P
2 2 ( 2 1 2

np(0), &rp. (0), Pp(0) and Pp. (0) are known quantities, having already been determined in I and Appendix A. In
addition it is known experimentally" that np'(0) =1/50p, '. This leaves only &r p. '(0), pp'(0), and pp '(0) to be deter-
mined. "

With the set of values, &rp(0) =1, &rp'(0) =1/50, Pp(0) =at,,~'+'(~)/4m. 1/4', Pp (0) 0.21(Pp. (0) 240), and
(rp (0) 0.5, we get

G(P,P') = —0.22 —0.05
(pP p(ol

dt E AN I t=o

v' —0.13 Pap (t)
qt)s & (-s

v'+0.45n p. '(0)

If we take M=14.3 (which corresponds to 2 BeV),
(4.11b) reduces to

2 MP(&)—
0.64+—(M—1) Pp'(0) —1.08+— dv' Pp '(0). (4.11b)

7r 1 v

for small vt„by the low partial-wave phase-shift,
expansion":

—0.39+0.45&p, '(0) —9.11pp'(0) —4.33pp, '(0), (4.11c)

since
14.8 p (pi()

dv =5.11,
v

3 15
f&(+)'(p& 0)— fp1(+)+ f (+D)y. . . (4 ]3a)

2k' 2k'

3
f (+)'(p 0) — (f,(+) f,(+))+.. . (4 14s)

2k2

anQ

14.3 -d ( p
Pap (t)l v

k q'))r g=p—

v'= 0.46, In the low-energy region
3

ft(+)'(pz 0)~ fp~(+)
2k'

(4.13b)

14.3 p
dv —P&z(g)

dt pn so
v'= 2.26.

Therefore, Eqs. (4.5) and (4.6) with Eqs. (4.7), (4.8),
(4.9), (4.10), and (4.11a,b,c) have the general form as
follows:

fr&s) &+)'(vz,o) =Born term

+integral involving partial-wave cross sections

+G(P,P'). (4.12)

The left-hand side of Eq. (4.12) can easily be calculated,

"G. F. Chew and S. C. Frautschi, Phys. Rev. Letters 7, 394
(1961);8, 41 (1962).

"Analysis would for instance enable us to check the conjecture
of Squires and Wong (private communication) that P(pg) « might
vary linearly between t=0 and t =—SORY'.

fs(+) (pz 0) (} (4.14b)

'3 Note that it is possible to make a direct comparison of Regge
poles with an experiment without using partial-wave analysis.
Because using Eqs. (3.12) and (3.13), F&+&(vr„k) can be related to
the c.m. cross section through Eq. (2.17) of CGLN according to
which

/ dd&()l(fife+(~ 4~ 4!44)fsls)l'

since fr)« fs, fp.
Therefore, we can investigate the behavior of P and

P' trajectories near t=0 by requiring that the set of
solutions obtained from the analysis of the high-energy
m-E cross sections in terms of P and P' Regge poles,
should satisfy the generalized sum rule for fr&+)'(vz„o)
or fs&+)'(pz„0). This would further increase the accuracy
of our final results.
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lim (f,(+) f, (+))8~m g

= lim
k—vo

4m (m+ 1)
(fv, (+) fp, (+))

m 1
= —F(+) (vt, = 1, 0)+ 8 + (vg= 1, 0). (4.18)

By making use of

f, (+) fv, (+)

lim
k~0 P2

=gp, (+) g~, (+)
2

we get
g(+)

+ 8(+) (vt, = 1, 0)
4m' 8m'

g, (+) g, (+)—
2

= —0.203+0.015. (4.19)
Here we have used

g'+' =0.0013~0.0036,"
g„'/4m. = 14+1,

and kept only I'~ state as a rescattering term to
8(+)(vt, ——1, 0) since the contribution from D2 and F
states turns out to be less than 1% of the Born term.
So we can predict that

g& (+)—g~, (+) = —0.203&0.015.

The corresponding experimental value is —0.16~0.03.'

V. CONCLUDING REMARKS

As is discussed in the Appendix B, the subtraction
problem in the Mandelstam representation was clarified
from the Regge asymptotic behavior. The S-wave (+)
amplitude scattering length is closely connected to the
high-energy limit behavior through I' and I"trajectories
in the crossed channel. So if the dynamical approach
becomes possible to get I' and I" trajectories near )=0
(as was proposed by Chew" and Balazs"), then the

"J. Hamilton and W. S. Woolcock, Phys. Rev. 118, 291 (1960);
$. W. Barnes, B. Rose, G. Giacomelli, J. Ring, K. Miyake, and
K. Kinsey, ibid. 117, 226 (1960).

"G. I . Chew (to be published)."L. Balazs, University of California Radiation Laboratory
Report 10157, 1962 (unpublished).

The sum rules for the partial waves can also be
obtained by relating f&(+) (vt„O), f2'+) (v&,0), f&(+ '(vz, 0),
f2'+" (vz, ,0) to them through the following relations
which are Eqs. (3.12), (3.13), and (3.14) of CGLN:

fs(vt. )= fi(vt„0) 2k—'fi'(vt. ,0)+ D waves, (4.15)

fv'. (v~)-fv—:(v~)-=f2(v~, O)

—2k'f~'( vt0)+~F waves, (4.16)
6——fg;(vt) = —4f)'(vt. ,0)
k'

+8k'f)" (vg, 0)+ F waves, (4.17)
and so on.

For v~ ——1, Eq. (4.16) gives

S(+) scattering length will also be obtained dynami-
cally. In Sec. IV it was proposed to use sum rules,
combined with the analysis of the high-energy m-X
cross sections in terms of Regge poles, to investigate the
behavior of I' and I" trajectories near t=0.

To be concrete, a sum rule for the S-wave (+)
amplitude scattering length enables us to choose a set of
values ov (0), Pp. (0), and o(,.((+)(00). Together with
the above values and nv'(0) = (1/50) (1/p'), the general-
ized sum rule for f,'(vt„O) or f '2( vt0) makes it possible
to investigate n~. '(0), Pv'(0), and Pv '(0).

The necessary experiment for that purpose is (i) to
get "total" partial-wave cross sections up to the energy
that the Regge asymptotic behavior is already achieved
(see 4.10); (ii) to get the low-energy phase shift
precisely (for example, P2 phase shifts), see (4.13a,b).

%e hope that more extensive and accurate data not
only on the total cross sections at high energies but also
on the low-energy region will soon be available in order
to make it possible to investigate the P and I" Regge
poles more precisely.
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2 1
1+ g(+)—

m 1—1/4m'

271 1

4r22 'r (nv +-', )
143.3

dk' (o,,„,, (+) (k') —0.„,(+) (m )j
1 m'~'r (av +1) "" P, (v')

d v' Pv, , (A1)
2m' 2 v'r(nJ*. + ',)-P

APPENDIX A. ESTIMATION OF PARAMETERS
FOR THE P'

In a previous paper I, we have derived a sum rule for
the 5-wave pion-nucleon non-charge-exchange scatter-
ing length, starting from the assumption that only I'
and P exist in the upper half J plane:
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where we assumed that the Regge asymptotic behavior
is already achieved at 20 BeV/c (=143.3 in units of
pion mass).

In this Appendix A, we test the above sum rule (A1)
by inserting parameters for the I" deduced from high-
energy m+p and ar p total cross section.

The high-energy harp total cross section between
4.5 BeV/c and 20 BeV/c" was fitted with the following
formula by Udgaonkar":

where

a„, &+&(v)=a, &+&(ao)+p v (A2)

n4.4'+'(v) = s(«.4"v(v)+~4.4 "(v)] (A3)

The cross section at infinite energy &r„,&+&(ao) and the
coefficient Pp. are given in Table I for different values
of n~. .

TABLE I. Good x' fits to the lrp data, 4.5—20 BeV/c. a4,4&+& (v)

=a„,&+&(oa)+pp v &' ~v'&. Errors of pp are about 15%. If
a P" is taken into account t a, &4&+(&)v=a4o4&+&(aa)+pp v &1 " '

+pp v &1 v"&j& the value pl i becollles slightly smaller. In tile
future, this should be taken into account.

&P'

0.1
0.2
0.3
0.36
0.4
0.44
0.48
0.5

«.~'+) (~)
(mb)

23.2
22.8
22.3
21.9
21.6
21.4
20.9
20.67

PP
(p units)

7.15
5.31
4.00
3.40
3.05
2.72

2.48
2.40

~jth these sets for np, pp, and &r4, 4&+& (n&), we shall
test our sum rule (A1). For convenience, let us introduce
the following quantities:

TABLE II. Values of integrals I&, I2, and I3.

nP Il II+I2+I3

0.1
0.2
0.3
0.36
0.4
0.44
0.48
0.5

—3.25~0.48
—1.32+0.19
—0.65&0.10
—0.45&0.07
—0.37w0.06
—0.29a0.04
—0.24&0.04
—0.23&0.03

1.58~0.21
1.72~0.21
1.90+0.21
2.05+0.21
2.16&0.2-1

2.23a0.21
2.41+0.21
2.48~0.21

—2.12~0.32
—2.22 ~0.33
—2.34a0.35
—2.35~0.35
—2.45a0.37
—2.47%0.37
—2.57+0.39
—2.66&0.40

—3.78w0.83
—1.82~0.56
—1.09a0.50
—0.75+0.47
—0.66+0.47
—0.53~0.46
—0.40~0.47
—0.41~0.47

APPENDIX B. THE SUBTRACTION PROBLEM IN
THE MANDELSTAM REPRESENTATION

First, we should like to discuss the subtraction
problem in the Mandelstam representation for A &+~ and
8&+' amplitudes from the Regge asymptotic point of
view.

At large s' and for t&0, we are in the physical region
for the s' reaction. Then ImA &+& (s', t) and ImB &+& (s', t)
will be controlled by the top-level Pomeranchuk pole
in the crossed channels as follows:

&r4,4&+&(ao) given in Table I.To calculate Is the following
data were used: the lrP total cross section data tabulated
by Sokolov et al. and Barashenkov ef al. up to 1.6 BeV/c,
the data by the Moyer group between 1.6 and 4.5
BeV/c, and the data by Von Dardel ef &&I. between
4.5 and 20 BeV/c (see references 12—15, in I).

The numerical value of (1+1/err) &4
&+& is 0.0015

+0.0041; that of —(f'/4v4) (1—1/4m') ' is —0.012
&0.001. Thus, it becomes possible that our sum rule
(A1) can hold near the set of parameters np =0.5,
pp =2.4, and &r&,4&+&(c&)=20.67 mb, even though the
experimental error is not still small. It should be noted
that in a future analysis, a I'" trajectory may also be
included in the high-energy formula (A2). This will
reduce the value pp and, thus, (A2) will hold with the
value n& slightly smaller than 0.5.

InL4 &+& (S',L) —+ S'ap&4& &S' fOr )&0,

I'( +1)1'L( +1)/zjl'( — /2)
pp =Il, (A4)—

4& 2-'r (n, ,+-', )
(81)

143.3

2' 1

dk' Lo4.4&+'(0') —o4.4&+' (~ )$—=Is, (AS) ImB'+'(s', &) ~ s' &" '& const for I &0. (82)

Similarly,

Imd& —&(s',t) &s' v&'&(s' for ]&0,
zlr' 2"PT(np +-')

and

lisP (,+1) 144.s P (v )
dv' Pp =Is. (A6)— (83)

I1, I2, and I3 are evaluated in Table II, for various
values of np, using sets of parameters np, pp. and

Im8& &(s',I) ~ s' &" '(const for t&0. (84)

On the other hand, the dispersion relations without
subtraction for fixed t are

~& G. Von Dardel, R. Mermod, P. A. Piroub, M. Vivargent,
G. Weber, and K. Winter, Phys. Rev. Letters 7, 127 (1961);
G. Von Dardel, D. Dekkers, R. Mermod, M. Vivargent, G. Weber,
and K. Winter, ibid. 8, 173 (1962).

» Ii. M. Udgaonkar (private communication).

1
A&+'(s, t)= — ds' ImA&+&(s', t) +

7r 5 S —8
(85)
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( 1 1
B"'(s,t) =g 'I +

m' —s m' —8

1 1
B&—l(s, t) =g,'i +

l rts' —s nt' —Sj
1 1 1

+— ds' ImB &+l (s', t) —
~, (86)

g s' —s s' Bj—

1 1 1
+— ds' ImB&-l (s', t) +- . (88)

7r s —s s —s

1 1 1
2& l(s, t)=— ds' ImA& '(s', t)

s' —s s'—s)

Comparing these equations, it becomes clear that the
subtraction is necessary only for the A(+) amplitude.
This is the reason why the charge-exchange scattering
amplitude was successfully explained. '
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Evaluation of the Van Hove Correlation Functions for Certain Physical Systems*
RQGER B. DE BAEtf.

Department of Physics, Institute of Theoretical Physics, Stanford Unioersiity, Stanford, California
{Received 21 November 1962)

"&he space and time Fourier transforms of the Van Hove correlation function are evaluated for the cases of
coherent scattering from simple crystals and, in a "quantum hydrodynamics" approximation, from liquid
IIeII. A compact approximate expression for the one-phonon part of the crystal correlation function trans-
form is given, and the contribution of the two-phonon term is considered. A new method of obtaining
quantum-mechanical corrections to the classical expression for the Van Hove self-correlation function is
discussed.

I. INTRODUCTION
' T has been shown that the energy-transfer-dependent
~ - differential cross section for the coherent scattering
of cold neutrons' or gamma rays' from an assembly of
F identical atoms is given by

d 0 dog
Z(q, e),

dOde dQ
where

00

Z(q, e)—=— dt exp( —iet)r(q, t)
2~

and

I'(q, t)

N N

P exp[—iq r;(0)]g exp[iq r,'(t)] . (2)
j=l jr=1 T

do ~/dQ is the appropriate scattering cross
section for a single atom, q is the momentum transfer
of the scattered particle, e is the initial energy of the
scattered particle minus its final energy, and r;(t) is

* Supported in part by the U. S. Air Force through the Air
Force Once of Scientific Research.

t National Science Foundation Predoctoral Fellow, 1956—1960.
f Present address: University of California Lawrence Radiation

Laboratory, Livermore, California.
'L. Van Hove, Phys. Rev. 95, 249 (1954).' K. S. Singwi and A. Sjolander, Phys. Rev. 120, 1093 (1960).

the Heisenberg position operator for the jth atom at
time t. The operator ( )r denotes an ensemble average
over the states of the target system at constant temper-
ature T; thus we have

(0)r =Tr[exp( —2PH)O]/Tr[exp( —2P+)], (3)

where 0 is any Heisenberg operator pertaining to the
system, II is the system Hamiltonian, and

P=—1/2EtsT,

where E~ is the Boltzmann constant. Unless otherwise
indicated, units with @=1 will be used throughout this
paper.

The evaluation of these functions and their counter-
parts for incoherent scattering has been undertaken by
several authors' '; the work of Van Hove' and Visscher'
on crystals and of Vineyard, 4 Schofield, ' and especially
Rahman, Singwi, and Sjolander on nearly classical
Auids is of special interest here. We derive improved
approximate expressions for Z(q, e) and its three- and
four-dimensional Fourier transforms for the cases
of liquid HeII, idealized crystal lattices, and nearly
classical B.uids.

' W. M. Visscher, Ann. Phys. &N. Y.) 9, 194 l1960).
4 G. H. Vineyard, Phys. Rev. 110, 999 (1958).
5 P. Scho6eld, Phys. Rev. Letters 4, 239 (1960).' A. Rahman, K. S. Singwi, and A. Sjolander, Phys. Rev. 126,

986 (1962).


