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The Lehmann representations of the spin zero and spin one-half Green's functions are studied with
particular emphasis upon infrared eBects. Sy means of a Sloch-Nordsieck type model the infrared parts of
these functions are calculated and the analytic properties of the solution examined. A double integral repre-
sentation of the two-point function is proposed and 'a possible application suggested.

I. INTRODUCTION

l
'HE great difFiculty of handling the equations for

the Green's functions of a quantum field theory
has given rise to an appreciable interest in mathe-
matically soluble models which might provide insight
into the structure of their more realistic counterparts.
Such models all too frequently fall into one of two
extreme classes according to their relativistic or non-
relativistic character. The former of these is charac-
terized by its adherence to a fully covariant Lagrangian
formalism but is generally lacking in any scattering
or production phenomena. On the other hand, while a
nonrelativistic model such as that proposed by Lee'
has the distinct advantage of giving rise to a nontrivial
S matrix, the pathological features (ghosts) which it
contains have been a source of considerable anxiety to
6eld theorists. It remains unclear as to whether these
structural defects are to be considered as generally
characteristic of real field theories rather than mere
reminders of the inadequacies of such models.

In this paper we propose to investigate this question
by means of a Bloch-Nordsieck' type model of electro-
dynamics. There are at least two good reasons for
choosing electrodynamics as the framework for such a
discussion. First there exists an extensive perturbative
analysis of the infrared structure of electrodynamics
in the literature, the results of which will be seen to be
duplicated by our model. While the correct functional
form of the two-point function will be found for a
certain domain of momentum space, the expected
analyticity properties are not obtained. Secondly and
more important is the fact that in electrodynamics we
have available a powerful tool in the existence of the
radiation gauge formalism. ' While this formulation is
generally to be shunned for calculational purposes, it
here provides an essential criterion that must be
imposed upon the transform of the two-point function.
Since the singularities of this matrix element corre-
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spond to permissible eigenstates of the operator —P„',4
the position of the relevant poles and cuts must be
independent of the chosen coordinate system. As the
Green's function itself is not manifestly covariant, the
appearance of singularities whose location depends upon
the three-dimensional momentum must be indicative
of the breakdown of the model itself rather than a
characteristic of electrodynamics.

In the following section we brieQy develop, by way
of introduction to the radiation gauge, the perturbation
theoretical treatment of the spin zero and spin one-half
Green's functions. Section III presents the model which
we use for the calculation of the exact infrared structure
and includes an examination of the singularities of the
Green's function of the charge field. Finally, in Sec. IV
a double dispersion relation is proposed for the radiation
gauge Green's functions and is subsequently used to
establish the connection between spin and statistics.
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4 We use the metric (1, 1, 1, —1).
e H. Lehmann, Nuovo Cimento 11, 342, (1954).
e K. Johnson, Ann. Phys. (¹Y.) 10, 536 (1960).

II. PERTURBATION THEORY AND RENORMALIZATION

The Lehmann representations' of the spin zero and
spin one-half Green's functions in the radiation gauge
have been used by Johnsone to extract information con-
cerning the high-energy domain of electrodynamics. He
has shown in the spin zero case that the transform of the
function
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where we have defined the radiation gauge spinors
I),'(p):

ui'(p) —=exp(wy y)ui(p).

To second order, the mass operator can now be
written as

M(p) = mp+fep' D "(k)y„ pv
(2~)' y (p —k)+m

=mp+8nz —(y p+m y p)w(p')+f p(y p+m)
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where Z& is once again defined by (2.7). Upon perform-
ing the integration and taking the imaginary part, one
finds

A sufficiently general expression in this domain is

Z (y')
G(p) exp(wy y) exp(wy p)

p'p+5$

with w(y')=w*(p'). Since the matrix residue at the
"pole" gives the single-particle wave functions, one
makes the identification:

One notes that as for spin zero the infrared divergence
vanishes for the case of p2=0.

Because of the infrared divergences which tend to
appear in electrodynamics, it is necessary to make here
some remarks concerning the validity of the above
techniques. In a theory for which no null-mass particle
exists the expected singularities of the Green's functions
(2.1) and (2.8) consist of poles corresponding to the
stable single-particle states, together with a branch cut
starting at the two- (or three-) particle continuum
threshold. The vanishing of the photon mass means
that this cut moves down to the single-particle pole
and one is, in fact, faced with the question of whether
the pole persists in the zero-mass limit. Thus, it becomes
possible that the charge field operator acting on the
vacuum cannot create an electron without the simul-
taneous emission of an infinite number of soft quanta.
Such a phenomenon manifests itself in perturbation
theory in the appearance of infrared divergences in
the wave function renormalization. These divergences
serve to indicate the disappearance of the single-particle
state from the spectrum of g(p) and should be clearly
distinguished from the ultraviolet divergences whose
origin is more obscure. Thus, the usual renormalization
procedure of performing two subtractions in the mass
operator at the position of the single-particle state is at
best a questionable one in electrodynamics. Nonethe-
less, because any finite order of perturbation theory can
describe only a limited number of production processes,
it has been necessary to employ this technique for
perturbative calculations. The inadequacies of such an
approach are remedied by the treatment of the following
section.
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Finally by expansion around p'= —m', the following
are extracted:

III. A MODEL FOR ELECTRODYNAMICS

The equation for the Green's function (3.1) can be
written as

~ ~

1 1
—8»—88»(x) —8— +tSp
p i 8J»(x)

Xg(x,x') =~(x—*), (3.1)
where we have defined

(o, iA„(*)io,)
Q,„(x)=

(Ooiioop)

and introduced a source function J„.The equations of
motion for the Maxwell field imply

8»(x) = D„„(x—x')dx'

(Oo., i
j"(x')

i Oo,)-
X J"(*')+,(3 2)

(Ooiioop)

where j» (x) is the current vector formed from the field p.
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immediately into momentum space. This is facilitated
by noting that the operator I defined by

I(x)=exp d'k J„(k)(e".'—1);
8J„(k)

satisfies the equation:

The approximation in which vacuum polarization is
neglected consists in omitting the second of the two
terms in the square brackets of (3.2). Since this deletion
should not affect the singularities of the Green's
function in the neighborhood of p'= —m, ', the infrared
structure will continue to be correctly described in this
approximation. It is convenient to transcribe the result-
ing equation:

where we have de6ned

IB=—B.
Ultimately we shall only be interested in the case for
which J=0 and I= 1 and so shall omit the bar notation.
A formal solution of (3.3) is:

g(p, J=O)=s dxe—'*& 4

0

5 1 8
Xexp sx —p — kJ——e

5J i8J

Xexp~ — JDJ (3 4)
k2 J=O

One further approximation is necessary before the
solution of (3.4) becomes possible. The replacement of
the square bracket in (3.4) by

1
p' —2p" k„J—2ep&

8J ibJ~

together with the identity proved in the Appendix:

or

I (x)= e'" *I(x).
5J„(k) 8J„(k)

I(x) = I (x)
8J„($) 8J„(x+$)

where

1—e—~

eA+B eB exp
X

[a,Il]= —u,
Here the semicolon signifies that in the expansion of I
all variational derivatives appear to the right of all J's.
An alternative form for I is found by taking a
derivative:

readily leads to the result:

g(p)=s dxe "&"~ " "&

0

d4k e'" *J"(k)I(x) ik"
Sp u (k)

+exp ie2
d4$ 1 e2iy ~ kx

p„D "(k)p„ . (3.5)
(2')4 (p k)'

whence

=i k~J"(k) I(x)d4k,
u (k)

The approximation made above is gauge covariant
at the single particle "pole" and is equivalent to the
following modifications of the perturbation theory of
spin-zero electrodynamics:

I=exp sx" k I"(k) d'k
8J"(k)

One now readily deduces the equation:

exp —— JDJ p~ — d4k k~J
2 8J

d'k 1—e —
i
+ms'

(2w)4 s 5J„(k))

Xexp — JDJ b(p, J)=1, (3.3)
2

(i) The term (2p k)l'D„„(k) (2p —k—)" is replaced by
4p"D„.(k)p".

(ii) Diagrams containing vertices at which two
photons are emitted are neglected.

(iii) Propagators [4''+(p —k)'$ ' are replaced by
[m'+p' —2p k]—'

These approximations happen to be the ones generally
made in the usual treatment of infrared effects and we
shall therefore not dwell on them. Their justification is
suggested in the extensive literature dealing with the
infrared problem. '

An extensive treatment of the infrared problem by perturba-
tive techniques has been given by D. Yennie, S. Frautschi, and
H. Suura, Ann. Phys. (N. Y.) 13, 379 (1961).This work contains
references to most of the previous work on the subject.
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The integrals in (3.5) are readily evaluated and yield appearance of the gamma function in (3.6). It is well
known that this function has poles when its argument
is zero or a negative integer. Thus there are "bound
states" which occur when
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n
exp
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y2~1/2d~
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where ~=1, 2, 3 . .. More explicitly these singularities
occur for
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A. V. Svidzinskii, Zh. Eksperim. i Teor. Fiz. 31, 324 (1956).

It is to be noted that while the infrared divergent part
of the wave function renormalization is correctly
duplicated to second order by (3.6), the ultraviolet
effects (mass renormalization and ultraviolet part of
Z&) do not agree with perturbation theory. It is possible
to consider slight variations of the model under con-
sideration which tend to indicate that A2 should be
replaced by —p'+p'(1 —t/). It will be convenient to
make this replacement although none of our subsequent
results will depend critically upon it.

It should be pointed out that a result quite similar to
(3.5) has been derived by Svidzinskii. His treatment
begins with the Dirac equation in which the gamma
matrices are replaced by numbers u& (following the
original Bloch-Nordsieck calculation). This approach
has the effect of immediately reducing the Dirac
equation to a first order differential equation and
renders inadequate his treatment of the boundary
conditions. A further disadvantage is the lack of a
direct means of identification of the numbers u&.

One notes on inspection of the form (3.6) the fact
that it does not satisfy the I.ehmann representation in
its usual sense. While there are clearly no complex
singularities, one finds i.n addition to the expected
cut from p'= n to p'= —pp, an un—physical cut from
p'=0 to p'= pp which arises from the combination
—p'+p'(1 —t/). Since spacelike eigenvalues of the
momentum operator (ghosts) are inadmissible in a
physical theory, an immediate shortcoming of the
model has appeared which persists for arbitrarily small
though nonvanishing values of n and y'. In view of the
fact that this spurious cut begins so close to the physical
spectrum, the model must in fact be restricted in its
application to the domain:

~

p'y~'~«m'.

Another serious cause of concern arises from the

Thus, for arbitrarily small coupling there will be an
infinite number of such bound states with an accumu-
lation point at p'=0. The dependence of these poles
on y' violates the basic condition of covariance that
the spectrum of the Green's function shall be in-
dependent of the chosen frame of reference.

These remarks can be further strengthened by a
comparison with the results of the same calculation
performed within the framework of the indefinite metric
formalism. In a gauge in which

D„„= g„,—y

(3.5) yields
ps' la/pw) (2—y)

o(p) = r 1+—(2
p'+m' p'+ns' 2~

8 (~,p') = exp
I/'.

2 —tÃ2

ps+ps (1—p)
gin

1 p2pl/2d p

p z'+p'(1 —n)

(
1 y2~1/2d'~ —1

r — , (3.7)
p s'+p'(1 —t/)

showing clearly that B(~,p') has the required positive-
definite character.

The analogous treatment of the spin one-half field
with the neglect of the magnetic moment interaction
is entirely straightforward and will not, therefore, be
explicitly considered here.

IV. A CONJECTURE

A few years ago Mandelstam" put forth the very
appealing conjecture that two-body scattering ampli-
tudes can simultaneously be continued into the union
of the complex planes of the two scalar invariants which
describe the kinematics of elastic scattering. In view of
"S. Mandelstam, Phys. Rev. 112, 1344 (1958).

The fact that the "bound states" do not occur here
shows again the lack of reliability of this model in the
determination of the actual singularities of g(p) in the
entire complex plane.

Finally, we note that with the neglect of the unphysi-
cal singularities, g(p) can be cast into the Lehmann
form (2.2) with
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the considerable emphasis now being placed upon
double dispersion relations, it requires little imagination
to speculate upon the possibility of such a relation
being valid for the two-point functions of quantum
electrodynamics. Thus, ignoring the question of sub-
tractions, we ask whether the spin-zero Green's func-
tion could satisfy a relation of the form:

p(», )&.)
g (p' I&') = d» dX . (4.1)

(ps+»2 ze) (ps+$2)

This is equivalent to requiring that

p(», )&)

B(»,p') = dX
ps+)& 2

i.e., that B(»,y') be an analytic function of p'. In the
case of nonzero spin, a dispersion relation in p would,
of course, be expected to hold for each of the independent
weight functions.

It is easy to verify that such a relation does in fact
hold to lowest order in n. For the spin-zero case one
can write:

4n tP 1
B(»,p')=p' dX — 1—— —8 (X—«)

»2 z&z2 ) 2 g 1&2+$2

Since the physical content of the assumed analyticity
property of B(»,p') is more obscure than the corre-
sponding statement of Mandelstam it is worthwhile to
demonstrate how a slight extension of our assumption
leads to the correct relation between spin and statistics. "
Our treatment corresponds closely to that of Brown
and Schwinger" who considered the case of a manifestly
covariant theory.

The two-point function for the Hermitian field x
can be written:

(0I &((x)&t (x')
I
0)

e'"'&' "&0+(p)B(»p)5(p'+»')d», (4.2)
(2zr)4

where B(«,p) is a Hermitian non-negative matrix.
Equation (4.2) leads to the following representation of
the (anti) commutator:

(0I I x(~),x(*')]+
I o)

"&*-*'L~,(p)B(,p) ~~-(p)B*(, —p)]
(2zr)4

)(8(ps+»s)d». (4.3)

The relation"

p2+)& 2

n A.' 9) n " o (X)
Zs (p') =1+—ln—+—

I

——I&' d)&,

2zr zzz' 41 where

B(», —p) = (—1)'sR bB(»,p)E r* (4.4)

where
( zrz' '" 1 4(V zzz')—

~()~)=I 1—— ln
)&,
' X zz'

and 0+(x) is the usual unit step function. While a proof
of the conjectured analyticity properties is at present
unknown to the author, the utility of such a represen-
tation would seem to suggest the desirability of an
investigation of its validity.

The second order result is not the only basis for
supposing the analyticity of B(»,p'). The model of the
previous section with the spectral weight given by
(3.7) also displays this property. Casting it into the
form of (4.1), one finds:

4 z'A

p(», X)=— 8+() —»)
m z2 —tp$2

8 »s —z&zs )NIs&

8 ln (»' )zzzs— zzzs

1»2 )&2(1 g2)—

)&exp —Re dx ln'
-2' p

~2 —1/2 — ~2 pe
)(sin 0. 1—— ln 2

4(X'—«')

~7ri SI2~7ri S34st

implies that for S integer I half-integer] the matrix
B(»,p)+B(», —p)*I e(p)(B(»,p) —B(», —p)*)] is also a
non-negative matrix. Equation (4.3) is more con-
veniently written in the form

(o I Lx(~),x(*')]+I o)

e'" &' ' &d» h(p+'» ) [B(»,p)aB(—»)t
—p)*]

(2zr)4

e"'& t'—"&d» 8 (p'+»')-'e(p)
(2zr)4

XLB(»,p) ~B(», —p)*]. (4.5)

Since E,t is a Hermitian matrix, one can bring it to
diagonal form by a unitary transformation upon the
fields x;

Xa p b Uo. b~b~

"This application has been suggested by L; Brown though his
proof is unknown to the author.

n L.Brown and J.Schwinger, Progr. Theoret. Phys. (Kyoto) 26,
917 (1961).
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The relation which, in turn, requires that

shows that the only permissible eigenvalues of R, & are
~1.Defining

dx o (~,X)=0.

From (4.9) one deduces that

(4.9)

and using (4.4), one finds

p2+g2
d~ 0. (~,X) =0,

or, upon interchange of orders of integration, that

dz b(~p')=0

e'" &* *'~d~b(p'+~')B '(~,p)-,'[1a(—1)'s]
(2n.)4

e'" i *'id~ b(P'+K')
(2n.)4

XB..'(~,P) «(P)-', [1W (—1)"].

If we now assume the "wrong" statistics, i.e., that when
x'=x" and xNx', (x'(x),x't(x')}=0 for integral spin
and [x'(x),y.'t(x')]=0 for half-integral spin, then

e'i'&* *'&B,'(x P) (p'+z') ' '=0 xWx'. (4.6)
(2m)'

e*& &* *'b(~,p') =0 for xWx', (4.7)
(2s.)'

where b(~,p') is a positive definite function for p'&~0 and

(r (~,X)
b(~,p') = dX

p2+ g2
(4.8)

In writing (4.8) we have assumed that no subtractions
are necessary in the dispersion relation for B'(~,P)
although this is not essential to the final result. Equa-
tions (4.7) and (4.8) imply:

Our assumption of the analyticity of the spectral weight
is now generalized by requiring that (p'+~') '"B' be
analytic in y' with the same singularities as 8' alone.
This requirement eliminates the trivial case in which 8'
is proportional to (p'+z')'" but is otherwise analytic
in the entire y' plane.

The condition (4.6) is easily seen to be equivalent to
the requirement

thus contradicting the positivity of b(K,p ).
In order to put this result into proper perspective it

should be remarked that the analyticity condition on
the spectral weight which was used in the proof can be
replaced by weaker conditions which also serve to
establish the correct relation between spin and statistics.
Since, however, the usual proof for the manifestly covari-
ant case rests primarily upon the analyticity properties
in P', the present argument has the virtue of forming a
most natural extension to electrodynamics.

V. CONCLUSION
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APPENDIX

~A+B
7

The model considered in this paper has been seen to
possess pathologies quite similar to those which have
been found in other 6eld theoretical models. The
advantage of our approach lies in the fact that it has
clearly indicated that these unphysical singularities by
virtue of their noncovariant character must be attri-
buted solely to the inadequacies of the model as an
approximation to quantum electrodynamics. While the
infrared structure has been suitably described in this
treatment, the extrapolation of our results in the
complex P' pla, ne was required to be limited to a small
neighborhood of the threshold of the physical cut. The
questionable character of calculations which attempt
to determine the singularities of operator expectation
values by means of models cannot be too highly
stressed. Recent results which have involved the
extraction of bound states in this way must be viewed
with some suspicion.

dKdX e ""a(~,X)=0 for r)0, where

[A,B]= —XA.
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An explicit representation of these operators is given by

A=e )

8=)d/drr

~A+B ~f (a)~Ad jdrx~—f (n)
)

~f(n)~—f(a+A)~) d/dn
)

Then

where

f dq d
exp~ e +1 ~=exp e&' '1 e&~ '—),dpi ln

1
f(~) =

exp A e~.

The adjoint of the above yields the alternative
representation:

1—e"
e"+~=e~ exp~ A
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Two Vacuum Poles and Pion-Nucleon Scattering*

KKgx IGit
Department of Physics, University of California, Berkeley, California

(Received 6 December 1962)

A general expression is given for the pion-nucleon non-charge-exchange scattering amplitude for arbitrary
energy and small momentum transfer on the assumption that only the vacuum pole P and the second
vacuum pole P exist in the upper half J plane. We derive sum rules for non-spin-Rip and spin-Qip amplitudes
and use them, combined with the analysis of the high-energy ~-S cross sections in terms of Regge poles,
to investigate the behavior of P and P' trajectories near /=0. For this purpose the importance of a precise
measurement of the low-energy partial-wave phase shifts is emphasized, A sum rule for the S-wave pion-nu-
cleon non-charge-exchange scattering length can be satisfied with u~'=0. 5.

I. INTRODUCTION

HERE have been many attempts to investigate
the low-energy 5-, I'-, and D-wave pion-nucleon

scattering based on the dispersion relations. ' ' The
charge-exchange scattering amplitude was successfully
explained by Bowcock, Cottingham, and Lurie' by
incorporating the I= 1 pion-pion interaction into the
analysis of CGLN. ' However, the above method cannot
be applied directly for the non-charge-exchange ampli-
tude because the dispersion integrals diverge.

The aforementioned divergence problem which is
related to the subtractions in the Mandelstam repre-
sentation was greatly clarified by the Regge pole
assumption4 that all poles of the strong-interaction

*Research supported in part by the Air Force 0%ce of Scientific
Research.

$0n leave of absence from Tokyo University of Education,
Tokyo, Japan.' G. F. Chew, M. L. Goldberger, F. E. Low, and Y. Nambu,
Phys. Rev. 1Q6, 1337 (1957), hereafter referred to as CGLN.

2 J.Bowcock, W. N. Cottingham, and D. Lurie, Nuovo Cimento
16, 918 (1960); 19, 142 (1961).

3 For detailed references, see A. Takahashi, Progr. Theoret.
Phys. (Kyoto) 27, 665 (1962).

G. F. Chew, S. C. Frautschi, and S. Mandelstam, Phys. Rev.
126, 1202 (1962); S. C. Frautschi, M. Gell-Mann, and F. Zacha-
riasen, ibid. 126, 2204 (1962). This assumption predicts a
logarithmic shrinking of the p-p diffraction pattern with increasing
energy. Such an effect has been observed experimentally I A. N.
Diddens, E. Lillethun, G. Manning, A. E. Taylor, T. G. Walker,
and A. M. Wetherell, Phys. Rev. Letters 9, 108, 111 (1962)j.
Moreover, the occurrence of Regge poles in the relativistic 5 matrix
has been shown by Gribov, Domokos, Mandelstam, and Eden
using the Mandelstam representation and elastic unitarity. See
reference 7.

5 matrix move in the complex J plane as a function of
energy and that these poles control the asymptotic be-
havior. In a previous paper, ' hereafter referred to as I,
a sum rule was derived for the 5-wave pion-nucleon non-
charge-exchange scattering length, starting from the
assumption that the amplitude can be written as the
sum of two terms, the vacuum-Regge pole term which
diverges at infinite energy and the remaining term
which converges at infinity and satisfies an unsubtracted
dispersion relation. This assumption led to a discrepancy
between the observed and the calculated scattering
lengths. Therefore, it was concluded that there should
be another vacuum-Regge trajectory P with nz (0)

0.5.' Existence of such a pole is also favored in the
analysis of high-energy p-p and p-p scattering, r' high-

energy m-P and E Pscattering. r-
The purpose of the present paper is twofold: (a) to

generalize the previous sum rule for pion-nucleon non-
charge-exchange scattering, to hold for arbitrary s and
small) (we assume, as in I, that only P and P' trajectories
exist in the upper half J plane for 1 near zero); (b) to

5 K. Igi, Phys. Rev. Letters 9, 76 (1962).' In the previous paper I, it was concluded that there should be
another vacuum trajectory in the region 1&o.(0))0. However, the
notation of calling it as ABC pole has caused some confusion. It
should have been noted by P' as introduced in the references 7 and
8. Detailed analysis for nz. (0) is given in Appendix A.

7 S.D. Drell, in Proceedings of the j96Z Annual International Con-
ference on IIigh-Energy Physics at CERN (CERN, Geneva, 1962).

F. Hadjioannou, R. J. N. Phillips, and W. Rarita, Phys. Rev.
Letters 9, 183 (1962);Y. Hara, Progr. Theoret. Phys. (Kyoto) 28,
711 (1962).


