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Elementary Particle Theory of Composite Particles*
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Any nonrelativistic theory may be rewritten by introducing fictitious elementary particles with arbitrary
properties. No physical predictions are affected, provided that the interaction part of the Hamiltonian is
correspondingly modified. The fictitious elementary particle provides a good representation of a real com-
posite particle if the modified interaction is sufficiently weakened for perturbation theory to work. It corre-
sponds to a truly elementary particle with infinite bare mass, and hence with Z =0. We show how the latter
condition yields a sum rule for the coupling of a composite particle to its constituents as a function of energy.
The sum rule can be used to evaluate such coupling constants as that for the proton-electron-hydrogen ver-
tex. The mathematical method used is that developed by Schmidt for the study of the Fredholm equation,
and corresponds to the extraction of a single factor from the full Fredholm determinant.

I. INTRODUCTION

'HIS is the first of a series of a,rticles, in which we

hope to develop a method for the calculation of
strong interaction processes.

In this first paper we show how it is possible to intro-
duce fictitious elementary particles with arbitrary
properties ("quasi-particles" ) into any nonrelativistic
theory without changing any physical predictions. In
order to accomplish this the interaction among the
original, truly elementary, partic1es must be modified
according to well-defined rules.

In the second and third papers we will show that the
introduction of quasi-particles in nonrelativistic theories
can always be managed in such a way that the modified
interaction is weaker than the original one, and in fact
weak enough so that perturbation theory works. The
quasi-particles must be chosen to correspond to real
bound particles, or to resonances, or, more generally,
to Regge poles.

In the fourth paper we will extend these ideas to the
fully relativistic case. ' Here we shall see that the quasi-
particles can provide the force that makes their intro-
duction a necessity.

In further papers we hope to be able to o8er a proof
(or at least an argument) that the introduction of quasi-
particles in relativistic theories may render the full
series of Feynman diagrams convergent. And ultimately,
we hope to start a program of numerical calculation.

There are some special problems which are discussed
in detail in this paper. A theory modified by the intro-
duction of elementary particles is act.ually physically
equivalent to the original theory only if their bare
energy is much larger than any energy explored by
experiment. Or to put it another way, the quasi-
particles must be introduced wiih infinite unrenormal-
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author in the Proceedings of the 196Z high Energy Conference ui-
CER37 (CERN, Geneva, 1962), p. 683. A similar but perhaps in-
equivalent approach to the problem of introducing composite
particle fields into a Lagrangian has been developed by A. Salam,
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ized mass. ' If there is a stable bound state which we
wish to represent. by introducing a quasi-particle, then
(as shown in Sec. iV) its infinite bare mass implies that
the fictitious elementary particle must have renormal-
ization factor Z equal to zero. In fact, many authors'
have proposed Z=O as a way of distinguishing bound
from elementary particles. But what we prove here is
that this is the only possible way of making this
distinction. 4

This does not quite answer the question, of whether
experiment cue decide what sort of elementary particles
exist, since we do not show whether experiment can tell
whether a particle has infinite bare mass, or if Z=O.
But we are able to show (in Sec. V) that the condition
Z =0 provides a sum rule' for the coupling of the particle
to its presumed constituents at various energies. This
sum rule, for weakly bound systems, determines the
coupling constant of the particle. An elementary
particle (with 0(Z(1) would have a smaller coupling
constant. 6

2This point has also been made by M. Gell-Mann and F.
Zachariasen, Phys. Rev. 124, 953 (1961).However, they work in
the dispersion formalism, so in their case the equivalence of com-
posite and elementary particle theories is built in. In their work
the bare mass has to be defined in a manner very different from
our Eq. (3); also, the infinity of the bare mass is for them a
definition and not a theorem.' J. C. Howard and B. Jouvet, Nuovo Cimento 18, 466 (1960);
M. J. Vaughan, R. Aaron, and R. D. Amado, Phys. Rev. 124,
1258 (1961);R. Acharya (to be published); A. Salam, reference 1.
Doubtless there are many other references for Z=O of which the
author is unaware.

4 A similar equivalence theorem has been proven by Vaughan,
Aaron, and Amado, reference 3, for the special case where V is a
separable potential, and apparently also in a more general case.
We present the proof here in our own language for reasons of
clarity and completeness, and also to facilitate the extension of
these methods to resonances and to multiparticle processes. We
want to stress that our primary interest throughout lies not in
questions of principle about the definition of "elementary, "but in
exploiting the fact that the introduction of fictitious elementary
particles into a theory will change the interaction of the theory
and make perturbation theory work.' This sum rule is equivalent to Eq. (20) of Vaughan, Aaron,
and Amado, reference 3, and also to a nonrelativistic version of a
formula of Acharya, reference 3. We have attempted to express it
here in a more useful form.' This upper limit on coupling constants is of the same sort as
that discovered by M. Ruderman and S. Gasiorowicz, Nuovo
Cimento 8, 861 (1958). See also M. Ruderman, Phys. Rev. 127,
312 (1962).
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The general mathematical method employed in
introducing quasi-particles is based on one of the classic
techniques for solving linear integral equations, the
Schmidt method. ' We provide in the Appendix a
general treatment of the Schmidt method, and we ex-
plain its relation to the Fredholm approach.

II. SYNTHETIC ELEMENTARY PARTICLES

Suppose there are no elementary particles in a
particular channel described by a given Hamiltonian II.
We shall show how to construct a new Hamiltonian H
which does involve an elementary particle, but which
yields precisely the same physical predictions as does
the original II.

The original JI is split as usua, l into an unperturbed
part Bp and an interaction V. The continuum eigen-
states of Hp are labeled by their energy E, and perhaps
some discrete quantum numbers n, so that

H
el

E, n)= El E, n), (E)0) (1)

(E',n'
I
E,n) =8„„8(E'—E). (2)

The assumption that there are no elementary particles
in H just tells us that Hp has no discrete eigenstates, so
that the IE,n) form a complete set. LThere is no need
to be too explicit as to the constitution of these states;
a two body system with definite J may be kept in mind
as a typical case.]

The reconstructed Hamiltonian H will also be split
into a new unperturbed part Hp and a new interaction
V. The unperturbed part will again have a spectrum of
orthonormal continuum eigenstates,

H,
l
E,n) =El E,n),

but it will also have a discrete elementary particle
eigenstate

I 0),
H, lo)=E, lo), (3)

(Enl o)=o,

&o
I
o&=1.

Together,
I
0) and the

I
E,n) form a complete set span-

ning a new Hilbert space. (If our notation were im-

peccable, we should have to distinguish the continuum
eigenstates of Hp by boldface type, since the Hilbert
space on which H acts is larger than the original one.
But no confusion should arise. )

In order that H should be physically equivalent to H,
the new interaction V must be specified in terms of V

according to some rules. But the specification is not
unique; it depends on the choice of "bare vertices"

I
I') and (I'I, which can be any linear combinations of

the continuum sta, tes IE,n) and (E,nl. The rules for
constructing the matrix elements of the new interaction

' See, e.g. , R. Courant and D. Hilbert, 3Iethods of 3IIathematical
I'hysics (Interscience Publishers, Inc. , ¹m York, 1953), 1st
English ed. , Vol. I, p. 155. The original reference quoted by
t onrant and Hilbert is: E, Schmidt, Math. Ann. 64, 161 (190'Il.

U„(E)=(Enl vlr),
U (E)= (I'

I
V

I
En),

(1o)

(11)

1v=1—(I I
vlr). (12)

This prescription for V may be written more concisely
if we define a "reduced" intera, ction (acting in the
original Hilbert space):

v, —= v —vli'&&I
I

V. (13)

Then (6)—(9) may be written

&E'n'I VI En) = (E'n'I V,
I
En), (14)

«'n'I VI»= (—Eo/»)'"«'n'I vilr&, (1S)

(0
I
V

I
En) = (—E,/Ã)'i'&r

I
V,

I
En), (16)

(ol vlo)= (—E,/v)&1'I v, lr
But it would be a mistake to summarize our prescription
by saying simply that

V= V„
I
0&= (—Eo/&)'"

I

l'» &0 I

= (—Eo/&)"'(I'I

for V and Vi act in different Hilbert spaces. In partic-
ular, Io) is orthogonal to all continuum states

I
En),

whereas
I

I') certainly is not.
With (6)—(9), or equivalently with (14)—(17), we can

now prove that H yields precisely the same predictions
as does H for all processes occurring at an energy such
that

The two theories become entirely equivalent' only in
the limit as

I Eel —+ ~. (In Sec. IV we show that in this
limit the renormalization factor Z of a stable elementary
particle approaches zero. ') The condition that IEel be
infinite is the sole memory retained by the new Hamil-
tonian that there really is not any elementary particle
in the channel. Physical consequences of this condition
will be discussed in Sec. V.

Before closing this section, we pause to make a
remark which will become important in future articles
of this series. There is no compulsion to choose the "in-
coming bare vertex" (I'I as the adjoint of

I
I'), nor to

choose either or both as constants. (In fact, in our next
paper we shall show that the "ideal" choice of

I

I') and
(I'

I
is such that they are not adjoints of each other, and

such that t.hey both depend on the energy. ) It: follows
then that the new interaction V may be energy depend-
ent, and may also be non-Hermitian. But physical
predictions are still the same in the two theories,

V are:

&E'n'I VIEn&= &E'n'I V
I
En& U—(E')U (E), (6)

(E'n'I V
I
0)= (—ice)'"U (E'), (&)

(0
I
V

I
En) = (—EEe)'"U„(E), (8)

(ol Vlo)= —Ee(1—1V), (9)
where
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g
So the Schmidt method extracts one factor from the
full Fredholm determinant. In our next paper we shall

(18) show that the usual Fredholm method just corresponds
to a particular choice of bare vertices. )

T(w)= V+V[W Hp] —'T(w)

For example, the 5 matrix is

III. EQUIVALENCE THEOREM' tions for T(W) [Eq. (18)] and Ti(W) [Eq. (21)],
All physical predictions of the original Hamiltonian

H can be derived from an operator T(w), defined for D(W) =Di(W)h '(W). (27)
all complex energies S" by the Lippmann-Schwin er
integral equation

A. Original Theory

Suppose that the "reduced" interaction U~ defined

by Eq. (13) were the whole interaction. Then, the
physical T operator would not be T(w), but Ti(w),
defined by

Ti(w) = Vi+ Vi[W —Hp]
—'Ti(w), (21)

or less concisely

2'i(w) = Vi+2 «Vil&, ~)(w —&)-'&&,~I 2'i(w).

(22)

It is the key point of the classic Schmidt method~ of
solving integral equations that the solution of an
equation like (18) can be obtained immediately if we
know the solution of the reduced equation (21).A little
algebra [see Appendix, (A14) and (A15)] shows that
the answer is

T(w)= T (w)+& 'T (w) lr&~(w)&r
I

2'.(w), (23)

where the "propagator" is

a(w) = [1—J(w)]-',

j(w)=1v—'(rl v,[w—Hp]-'2 (w)
I
r) (23)

=1—~-i'm-P&P
I
r, (w) I

r). (26)

[The general Schmidt method is described in detail
in the Appendix, where we also discuss its connection
with the more familiar Fredholm (or X/D) approa, ch.
We just remark in passing here that if D(W) and Di(W)
are the Fredholm determinants for the integral equa-

s ~ (&)=fi„2—~i&&I'I &(&+ip) I
&e) (19)

and the stable one-particle states have energies at the
poles of matrix elements of T(W) for negative real W.

Likewise, the physical predictions of the reconstruc-
ted Hamiltonian II can be derived in the same way from
an operator T(W), defined by

T(w) = V+ V[w —Hp]
—'T(w). (20)

It is our task now to show that if V is chosen according
to the prescriptions (14)—(17), then in the limit as
~0~+ ~

&e~'I T(w) Iz~& ~ &z'I'I r(w) lan).

To do this we shall have to rewrite the formulas for
both T(W) and T(W).

Ti(w) =V++ «VIEN)(w —E)-'&EN
I
T, (W).

It is well known' that T(W) can be expressed in terms
of Ti(W) in a simple way:

T(w) = Ti(w)+ Ti(w) I
0)ck(w) &0I Ti(w), (29)

a(w) = [W—E,—rr(w)] —',

II(W) = (Ol Ti(W) I0).

(30)

(31)

The physical significance of these equations is apparent.
In Eq. (29), (0 I

Ti is the complete vertex that converts
the incoming particles into a virtual elementary par-
ticle; 4 is the complete elementary particle propagator;
Ti

I
0) is the complete final vertex; and Ti is the sum of

graphs that do not arise from one-elementary-particle
exchange. Also, II is the proper self-energy insertion,
and (31)may be recognized as one of Dyson's equations.

C. Comparison

According to the prescriptions (14)—(17), all matrix
elements of V are equal to corresponding matrix ele-
ments of U~, if we perform the substitutions

By taking matrix elements of (22) and (28), we see that
the same equalities must hold between corresponding
matrix elements of Ti(W) and Ti(W):

«'~'1»(w)
I «)= &&'~'

I
2'i(w)

I &~» (32)

8 See, e.g, , B. Zumino, in Lectures on Field Theory, edited by
E. R. Caianiello (Academic Press Inc. , New Vork, 1961), p. 40;
G. C. Wick, Rev. Mod, Phys. 27, 339 (1955).Wick treats the case
where there actually is a stable one-particle state, and Zumino
discusses unstable particles. The algebra is the same in both cases,
and actually has nothing to do with the existence of real partides.

B. New Theory

We can expand Eq. (20) in intermediate states [as
we did to get (22)], but the sum will here include the
discrete elementary particle state IO), as well as the
continuum states IE,N&. In order to isolate the effects
of the elementary particle, let us define a "proper"
T-operator Ti(W) as what T(W) would be if the
elementary particle were omitted in sums over inter-
mediate states. That is,
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T(W) = V+U[W —Ho] 'V+. (41)

(0 I
T,(w) I

En) = (—Eo/N)'n(r
I
T, (w) I En), (33)

(Enl Ti(W) I0)= ( Eo/N) ~ (Enl Ti(W) lr), (34)

(0I T (w) I
o&= (—Eo/N)(r I

T (w) lr) (35)

It follows from (29) and (32), (33), (34) that the
continuum matrix elements of the operator T(W) are

(E'n'I T(W) IEn)=(E'n
I
T, (W) IEn)

—(Eo/N)&(W)(E'n'I T (W) lr)(rl T (W) I«), (36)

and from (31), (35), and (26) we see that the self-energy
part is

II(W) = ED&1 N—+N1—(W) 1 (37)

so that (30) gives the propagator as

(W) Eo—iN—i[1 g (W) (W/EON) ]—i (38)

Combining (36) and (38), we get

(E'n'I T(W) IEn)= (E'n'I Ti(W) IEn)
+N- [1—Z(W) —(W/EdV))-i(E'n'I T,(W)

I
r)

X(r I
T, (W) IEn). (39)

This is to be compared with the continuum matrix
elements of T(W) in the original theory, which are
given by (23) and (24) as

«'n'IT(w) I«)=«'n'IT (W) I«)
+N- [1—S(W)]- (E'n'I T,(W) Ir)

X(I'I T (w) IEn). (40)

Clearly, (39) and (40) are equal for energies W such
that

I
W

I
is sufficiently small in comparison with

I
Eo

I
.

Hence, the original theory and the theory modi6ed
by the introduction of the quasi-particle can only be
distinguished by experiments at high energy. Only in
the limit

I
Eo

I
~ ~ are the two theories entirely

equivalent.

IV. REAL PARTICLES

Now we know how to put an elementary particle into
a theory in which it originally did not appear. Indeed,
we can put in as many as we like, with arbitrary bare
vertices F, without affecting any physical predictions.
But so far, we have not connected this purely mathe-
matical trickery with the existence of real bound states
and resonances. We now consider how we should choose
these synthetic elementary particles to best represent
the real ones.

Suppose that there is a physical bound state with
energy —B(0.It must correspond to a pole of T(W)
[defined by (18)]at W= B.I.et us think of—how such
a pole could arise. If V were su%.ciently weak, the
integral equation for T(W) could be solved by perturba-
tion theory, which gives the Neumann series (i.e., the
Born series)

If Vq is a good enough approximant to U, then the
reduced interaction Vi, given by (13) as V—VB, will be
weak enough so that the corresponding T-operator
Ti(W) will not have any poles.

The method for accomplishing this will be discussed
in the next paper of this series. For the present, we will

just assume that it has been done, and that the reduced
T-operator Ti(W) does not have a pole at B. Bu—t
then the only place that the pole can arise in T (W) is in
the propagator 6(w) in Eq. (23). So the binding energy
is to be found as the root of the equation

J( B)=1. —

This appears paradoxically as if the physical binding
energy depended upon the arbitrary separable potential
V8. In fact, V& is not entirely arbitrary, since it must
approximate V well enough so that V~ is too weak to
give T~ a pole. But this still allows a range of possible
choices of Vq. We are forced to the surprising conclusion
that, however, we choose Vq within this range, the value
of B obtained from (43) will be the same!

The Schmidt method allows us to compute not only
the binding energy but also the wave function of any
bound state. To see this, let us consider how T(W)
behaves as W~ B. If the propag—ator 6(w) has a
pole at W= Bwith residue 5,—then from (23) we see
that as 8' —+ —8

sN-2T, (—B)
I r)(r I

T,(—B)
T(W) —&

W+B
(44)

But we can write a general formal solution of (18) for
T(W):

T(W) = [W—Ho][W —H] 'V.

If the bound state IS& is defined by

Hl)= —Bl~),

(45)

(46)

then (45) shows that as W —+ B—
LHO+B] I+&(~ I

v
T(W) —+—

[Ho+B]I+&(+
I
LHO+B]

W+B
(48)

But no term in this series has any poles. Hence the
bound state can only exist if V is too strong for (41) to
converge, at least for 8' in some neighborhood of —B.

It was just to handle such integral equations that the
Schmidt method~ was developed. The trick is to try to
approximate the interaction V by the separable inter-
action

v, = vlr)(rl v.
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It follows upon comparison of (44) with (48) that

~y&= —~~~21V-i[ep+8g-iT, (-8) [r&, (49)

($g( = —y'&'1V—'(I'( Ti(—8)[Hp+8j ' (50)

(We are making a convenient choice of phase for ~Q&.
If (I'~ is chosen as the adjoint, or minus the adjoint,
of ~I'), then 5't' must be, respectively, real or pure
imaginary, and so the propagator has, respectively,
positive or negative residue. ) A more explicit formula
for the wave function is

pl /2g —l

the condition (52) determining the energy —8 of the
particle may be written

J(—8)= 1+(8/EplV).

Also, the wave function (55) is

(58)

(ENDS) =—(—EpZ/1V)'~'
(Ee~ T ( 8) ~—1'&. (59)

E+8
Furthermore, (38) gives the residue of A(W) as

Z = —(5/EplV) [1—(5/EplV) $
—'. (60)

(E~ I+&= — (E~
I
Ti(—8)

I

I'&
E+8

(51) To get (60), we used the definition of 8 as the residue
of A(W), which gives

T (—8)I0&,
Hp+8

Zl/

Hp+8

(53)

(54)

where Z is the residue of the pole of 4 (W) at W= 8. —
[It is apparent from (53) and (54) that Z't' is real, so
that Z) 0.$ The continuum part of the wave function
is then

Zl (2

(Etp
~
Ti(—8) I o)

E+8

For completeness, we will give some corresponding
results for the case where the stable particle @ is really
elementary. Here, instead of reducing the potential V,
we assume from the beginning that it is too weak to
give a bound state pole in the "proper" operator
Ti(W). Then we see from (29) that the pole ca,n only
arise in the propagator cL(W), and so

8+Ep+II(—8) =0. (52)

This does not allow us to calculate the energy —8, but
rather provides a relation between it and the un-
renormalized energy Eo.

The physical particle wave function can be calculated
here by the same method as in the nonelementary case.
We obtain

gl /2

( d
~(W)

~dW tt

(61)

Combining (59) and (60), we see that the wave function
of the physical elementary particle is

(En~8&=—
(1:+8)[1—(5/EplV) j't'

X(E&~ T ( 8) ~i'). (62)—

As ~Ep~~~, Eq. (58) for 8 becomes the same as
Eq. (43) in the nonelementary case, and Eq. (63) for
the wave function becomes the same as Eq. (51). This
is only to be expected from the equivalence theorem
proved in Sec. III; since the energy and wave function
of a stable one-particle state are observables, they are
equal in the original theory and in the theory modified

by the introduction of a quasi-particle with infinite
bare mass.

A more significant result is obtained from (60): In
the limit as ~Ep~ —+ pp, the renormalization constant
Z —+ 0. (It should be recalled that 1V and 8 are defined
by the original Hamiltonian H, and by our choice of

~
r& and (I'~; they do not depend upon Ep.) More will

be said about the condition Z=O in the next section.
Other types of real particles, such as Regge poles and

resonances, will be treated in our next paper.

V. SIGNIFICANCE OF Z=OHowever, there is now also a component along the
discrete bare elementary particle state

Zl /2

(0I »(—8) Io&
Ep+8 0&Z&1. (63)

We have seen that Z'/' is the matrix element between
a physical elementary particle state and the correspond-

(56) ing bare state. It follows then that

Using (31) and (52), we get

(0~8)=Z'~' (57)

which verifies that Z [defined here as the residue of
X(W) at W= —8j is, in fact, just the conventional
renormalization constant.

If the interaction V in the elementary particle t.heory
is chosen according to our rules, then (37) tells us that

It has been often remarked that this inequality sets an
upper limit on the coupling constant of the particle to
any set of constituents, and that this limit is attained
when Z=O, i.e., when the particle is actually not
elementary. We oGer here a very simple derivation of
this result and give a convenient expression for the
maximum coupling constant.

The physical one-particle sta, te
~
8) obeys the
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1=z+ dEP l(E,nl8&l~, (66)

where Z is a sum over bare "elementary particle"
states

I p)
Z=Zsl (Pl +&I'. (67)

Schrodinger equation (46), which may be written

I ~)= —L&o+B) 'V
I I&. (64)

Therefore, the continuum part of its wave function is

(E,el8) = —LI/(E+B))(E,NI vI 8&.

But since
I 8) is normalized, we must have

For example, if the deuteron were slightly heavier it
could decay by the mode

The effective p-e-d interaction Lagrangian may be
written

IG„„gl'(m, m )'"
(v(E) = -- (2E)'".

(m„+m„)'"
(75)

(Here P„'is the charge conjugate of the neutron field,
a.nd has opposite parity to P„.) Then, if the deuteron
mass were m~+m„+E, with E sufficiently small, the
deuteron decay rate would be

I « ~
I
I'I&& I'

1—Z= dEQ (68)

In particular, if there is one elementary particle state
IQ) then Z is given by (57), and if there are no ele-
mentary particles in H then Z= 0. Combining (65) and
(66) gives

IG„„I' (m +m„)'"(B
= (1—Z~)

4m (m,m„)'i' k 2

=0.19(1—Zg).

(76)

(77)

Imagine for a moment that the state IS) was not
stable, but instead was the physical "in" state corre-
sponding to a bare state of energy E)0. Then if there
were a resonance at E, the decay matrix element of the
resonance into

I E,e) would be

7'-(E) =(E ~l I'I&)

If IG~„ql'/4m were less than 0.19 we. would conclude
that the deuteron is an elementary particle, while if
IG»gl'/4~r were greater than 0.19, we should ha, ve to
call it a ghost.

Similarly, the effective interaction among the proton,
electron, and 1s hydrogen atom may be written for
F= 1 as in (74), or for 7=0:

and, therefore, the total decay rate of the P particle
wouM be

jeff Gmseng'yY54'e 'PH. (78)

(The density-of-states factor is included in the normal-
ization of

I E,n), which has the dimensions of E '".) We
see then that (68) just tells us that'

1
1—Z=-

27f' 0

cv (E)
dE

(E+B)'
(7o)

1—Z=4'AB '1". (72)

In other words, for particles which are only weakly
bound, the decay rate the particle would have if it had
energy E&0 (instead of —B&0) is, for small E,

~(E)=—4(1—Z) (EB)'". (73)

Clearly ~(E) is proportional to some effective coupling
parameter, and so (70) sets an upper bound on this
parameter', the maximum is attained when Z=0.

In the limit as E—+ 0, co(E) will always have the
behavior

u(E)—AQE (71)

provided that there is a: two-body 5-wave state into
which a very low energy 8 particle could decay. If the
binding energy 8 of the physical bound state is suffi-
ciently small, than (71) can be used over the whole
range of integration in (70), and we get

The "decay" ra, te is given in either hyperfine state by
replacing m~, m„,and G»q in (75) by m~, m„and G„,n.
Using (73) gives, then, (since m,((m„)

m„ (8 )'+= (1—ZH)
4m.

=6.6(1—Zn).

(79)

(80)

It can easily be shown that 0.19 is just the value of
IGI'/4ir needed to get the right scattering length in
triplet I-p scattering. Aside from this, the presence of
long-range forces in the hydrogen atom, and of anoma-
lous thresholds in both examples, makes it doubtful
whether these formulas for IG I'/4n. have any physical
utility. If they do, then the place to measure one-deu-
teron-exchange or one-hydrogen atom-exchange would
be in backward antineutron-proton or positron-proton
scattering. The residue of the pole in the I channel is
proportional to

I
G I'/4m.

9 This type of formula for coupling constants can be derived
in a more familiar manner by noting that the binding energy
determines the behavior of the exponential tail of a bound-state
wave function. For very small binding energy, the normalization
integral is dominated by the exponential tail, so its coefficient
(which is the coupling constant) is determined by the binding
energy. A calculation of the Z-h. -~ coupling has been carried out
on these lines by Y. Nambu and J. J. Sakurai, Phys. Rev. Letters
6, 377 (1961).We have applied I'73) to Z —+ 4+m and very easily
get their coupling, with a needed factor of 2 correctly supplied.
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APPENDIX' THE SCHMIDT METHOD AND THE
FREDHOLM METHOD

Any linear integral equation with kernel E can be
solved if we know the resolvent F, de6ned by

(A1)

the form (A2) if we define

Fi(W) =—Ti(W)[W —Hp]—', (A11)

E'i(W) =—Vi[W —Hp] '
=E (W) —v

i r)(r i U[w —H,]-' (A12)

=E(w) —cv-'V, lr&&rlE, (W). (A13)

Then (AS) tells us that

T(w)=T (w)+x '[1+F,(w))v, lr&a(w)
X &I'

i Ki(W) D+F i(W)][W Hp]
= T,(w)+x- T, (w) lr&~(w&&r

l
T,(w),

F1 Ki+K1F1 and

I et us consider instead of (A1) another integral where (A7) gives the ProPagator as

equation 5 (W) = [1—J (W))—', (A15)

whose kernel Ej differs from E by a sum of a 6nite
number of separable (or "degenerate") kernels:

Ki ——K—P, l s&&8 l
. (A3)

F=E'i++, is)&si (1+F)+KiF. (A4)

The vectors is), iB) need not be orthonormal, and
certainly do not form a complete set. Also, since we have
not said any thing about the Hermiticity properties of E,
the vectors (8 l

may or may not be related to the adjoints
of the is).

We want to show first how to solve (A1) in terms of
(A2). Using (A3), Eq. (A1) may be written

J(w) =X '(I'lKi(W)[1+Fi(W)]V, lI')
=iv &rl v,[-w—H,]-T,(w) lr)
=iv-'(rl {T,(w) —v, ~ lr&
=1—x-'+Ã-'&r

l
T,(w) l

r).
To get the last line, we use the fact that

This verifies the formulas (23)—(26).
We end by describing the relation between the

Fredholm and Schmidt methods. The Fredholm deter-
minants for any kernels E or E& are given by

If we regard the 6.rst two terms on the right-hand side
as known, then this is a linear integral equation for Ii

with kernel E~, and can therefore be solved using F&.

D= exp TrF[X]dP (A16)

F=F1+/. (1+F1)
l ~)&s l

(1+F). (A5) Di = exp TrF,P.]dh, (A17)

In order to eliminate the unknown &8i (1+F) we take
the matrix element of (AS) with &8i: where we define Fp.) and Fip.] by inserting a X into

2 [~. —&sl(1+F )lt&]«l(1+F)=&sl(1+F ) (A6)

If we define a matrix d, ~ by

(~ ) i=&
& &sl (1+Fi)It), (A7)

FP7= K+XKFP,],
FiP.]=Ei+XKiFi[A].

(A18)

(A19)

then (A5) reads
The relation between FP) and FiP,) is given, according
to (AS), by

F=Fi+P„(1+Fi)
l s&A„(t

l
(1+Fi).

Equations (A7) and (AS) solve the problem of obtai g
Ii if we know Iig.

In particular, we can write the Lippmann-Schwinger
equation (18) in the form (A1) if we define

(6 "P]),(=8,g
—

X&8i (1+XFiP)) it). (A21)

Then the traces are related by

(AS) Fp) =F,p.)
+P«(1+XFiP)) is&D„P)&ti(1+&F,[P]), (A20)

F(W) —=T(W)[W—Hp]
—',

E (W) —=V[W —H,]-i.
(A9)

(A10)

Also, the reduced I. Sequation (21) may be writ—ten in

TrF[X]=TrFiP,]
+Q, g A, iP,)&tl (1+XFiP.])'l s&. (A22)

To evaluate the second term, let us differentiate (A19)
with respect to P. We get
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Fl p j ~+1Ft p j+lt 1Flpf.

The solution of this integral equation for Ii &' is

Ft'P, ]=FtsP j.

and so (A22) may be written

d
TrFP]=TrFrP)+ —ln DetAPj.

dA.

(A23)

Using this in (A21) gives Using (A23) with (A16) and (A17), we have &nally

D= Dt/DetA. (A24)

Eqttation (27) is a special case of this general relation.
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Because recent data on Ese ~ x+x x' are at variance with the AT =1/2 rule while the data on Z+ ~ 3'
are not, the charge space kinematics of E -+ 3'. are re-examined. Matrix elements are assumed to be at most
linearly dependent on the usual variables s;, and it follows that only four of the seven possible 37i- states can
contribute to the decay. Of these states, two have T= 1, the third has T= 2 and the fourth T=3.The possible
values of AT are -'„$,—',, —,', and accordingly, the most general interaction Hamiltonian is written as the sum
of four parts H„~2,each corresponding to AT=n/2 (n= 1, 3, 5, 7). It is then possible to express the matrix
elements, rates and spectra of all the modes of E —+ 37T in terms of the reduced matrix elements of H I2

between the four 3'- states and the E meson. The analysis reveals that, provided the branching ratio of
E2o —+37r to E2 ~7T+7f- m. is —

„

the present data are consistent with an interaction Hamiltonian containing
only AT =-', and $, and a 3x final state of isotopic spin one.

INTRODUCTION

ECENT experiments on E2'~x+m xo indicate
that while the slope' of the x' spectrum may be

consistent with the AT=-,' rule, ' the rate of decay' is
not. 4 In the case of E+ decay, however, the rates' and
spectra' ' of the v and v' decay modes all seem to be
consistent with the predictions of AT= 2.'4 Because of
this discrepancy, it seems appropriate to give a system-

* Work supported in part by U. S. Air Force and in part by the
U. S. Atomic Energy Commission.

t Present address: School of Physical Sciences, University of
Sussex, Falmer, Brighton, England.

'D. Luers, I. S. Mittra, W. J. Willis, and S. S. Yamamoto,
Phys. Rev. Letters 7, 255 (1961);7, 361 (1961).The 6rst paper
quotes all the data on the rates for the various modes of E ~ 3x.

2 S. Weinberg, Phys. Rev. Letters 4, 87, 585 (1960). .' G. Alexander, S. P. Almeida, and F. S. Crawford, Jr., Phys.
Rev. Letters 9, 69 (1962). Footnote 20 of this reference gives the
required phase-space factors.

4 R. H. Dalitz, Rev. Mod. Phys. Bl, 823 (1959}.' For cT (+ + —) see M. Ferro-Luzzi, D. H. Miller, J.J.Murray,
A. H. Rosenfeld, and R. D. Tripp, Xuovo Cimento 22, 1087
(1962); also L. T. Smith, D. J. Provrse, and D. H. Stork, Phys.
Letters 2, 204 (1962); G. Goldhaber, S. Goldhaber, and T.
O'Halloran (private communication).

'Our value of o(0 0+) is calculated from the 119 events in
the compilation of J. K. Begild, K. H. Hansen, J. E. Hooper,
M. Scharff, and P. K. Aditya, Nuovo Cimento 19, 621 (1961).

atic restatement of the charge space kinematics of
E—+ 3x.

Dalitz4 has shown that the ~ to v' branching ratio
depends not on AT being ~, but rather on the isotopic
spin of the final state being equal to one; and that if the
interaction Hamiltonian contains both AT= ~ and
~T= ~, the admixture of AT= —', affects only the relative
rates for E+—+ 3m and E20 —+ 3x. Similarly, Weinberg's
relation' between the spectra of v and 7.' is, as we shall
show below, a consequence only of the final state having
T=1; and further, as regards the slopes, an admixture
of AT=~ will show up only in the slope of the
E~o —+m+x x spectrum. Hence, even if the 8T=~ rule
has to be abandoned, it may still be true that the 6nal
state of E~3m has isotopic spin equal to one. Our
analysis shows that such a conclusion is, in fact, con-
sistent with the present data, provided the branching
ratio of E2' —+ x'x'x' toE2' ~ m+~ x' is assumed to be —,'.

THE LINEAR APPROXIMATION

We use the linear approximation, which appears to
be in good agreement with the r and ~' experimental
data, and write the matrix element for

Er ~ sr +rrs~+ns&,


