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The question is posed of how the ground state of the Heisenberg Hamiltonian H= —ZF;;S; S; depends
on the magnitude s of E interacting spins, particularly in the case of long-ranged oscillatory interactions
F,;.It is discussed whether 6xing the geometry and the bond strengths F;; sures to determine the nature
of the spin correlations in the ground state, and a review is given of known instances when this is the case;
those are special situations in ferromagnetism and antiferromagnetism when qualitative ground-state
properties such as "lack of nodes" can be proved to be independent of s. These are valuable examples for the
application of semiclassical methods, which are strictly valid only for s ~ cc and depend on the convergence
of a series in powers of s . But these examples are, after all, only special cases, and it is argued that, in
general, the nature of the ground state can depend sensitively on s. The following situation is considered
in some detail: An oscillatory interaction which leads to a ferromagnetic ground state in the correspondence
limit s&)1, but for which the ferromagnetic state of saturation magnetization may be unstable for small
quantum mechanical spins, e.g. , s=$ or 1. Two distinct types of interaction are considered which lead to
this result, and it is seen that the ferromagnetic instability is a consequence, not so much of the long range
of the interaction as of the presence of some relatively strong antiferromagnetic (negative) bonds. However,
the variational approach which is used casts no light on the nature of the true ground state or of the thermal
properties, problems which are increasingly interesting in these instances when semiclassical procedures
are seen to fail.

INTRODUCTION

HE d.irect overlap of wave functions belonging to
neighboring spins leads to a magnetic interaction

which can be of either sign —ferromagnetic or anti-
ferromagnetic. ' Lately, interest has been focused on
theories of "indirect exchange interactions" via conduc-
tion electrons, which result in oscillatory magnetic
coupling as a consequence of the sharp Fermi surface. '
The "indirect exchange" coupling may or may not be
more important than the "direct coupling" in a given
material, and the two mechanisms doubtless can coexist
in the same substance. In the indirect exchange theory
originally ascribable to Ruderman and Kittel, ' the
interaction was long ranged and decreased only as the
inverse cube of the distance at large separation. A sub-
sequent modihcation by Yosida' even further increased
the range. Bloembergen and Rowland' adapted the con-
cept to nonmetals, and found qualitatively the same os-
cillatory behavior but a range reduced by "tunneling. "
On the experimental side, recent investigations on rare
earth solutes in palladium by Peter et al. ' have uncovered
an interaction between magnetic atoms which is even
longer ranged than predicted by any of these theories.

On the other hand, in the case of the Heisenberg spin
Hamiltonian,

H= —P P,"S; S.

by far the greatest theoretical eQ'ort has been expended

'R. E. Peierls, Quantum Theory of Solids (Oxford University
Press, New York, 1955).

~ W. Kohn, Phys. Rev. Letters 2, 393 (1959).' M. A. Ruderman and C. Kittel, Phys. Rev. 96, 99 (1954).
4 K. Yosida, Phys. Rev. 106, 893 (1957).
~N. Bloembergen and T. J. Rowland, Phys. Rev. 97, 1679

(19ss).
6 M. Peter, D. Shaltiel, J. H. Wernick, H. J. Williams, J. B.

Mock, and R. C. Sherwood, Phys. Rev. Letters 9, 50 {1962).

in understanding the properties of the nearest-neighbor
interaction (Ii;,=0 unless i and j are nearest neighbors).
Obviously, in order to tie in with modern theory and
experiment, as brieQy outlined above, one should also
wish to understand the properties of H when both
ferromagnetic (F,;)0) and antiferromagnetic (Ii,;(0)
bonds are present, and when the interaction is not
necessarily short ranged.

We shall 6nd, in this event, the interesting possibility
for some such interactions that even if we maintain the
positions of the spins and the magnitudes and signs of
the bonds axed, but vary only the magnitude of the E
interacting spins (s=-', , 1, —',, . in units where A=1),
that the ground state can be nonferromagnetic for
small spins even if it be proved to be ferromagnetic for
large s&)1.

This implies that classical or semiclassical methods'
valid for s~ Oo, although well known and applied in
problems of interacting spins, must be cautiously used
when spins as small as s=-', or 1 interact via an oscilla-
tory interaction Ii;;, and that quantum fluctuations may
be of essential importance in the ground state.

But before exploring this possibility, we 6rst review
some instances of magnetic interactions when the struc-
ture of the ground state is de6nitely not a sensitive func-
tion of s, and semiclassical methods can be expected to
work best.

We shall follow this by a necessary condition for
ferromagnetism, which will also turn out to be a sufFi-

cient condition in the correspondence limit s)&1. How-
ever, we shall then emphasize that this does not ensure
ferromagnetism for the ground state of quantum
mechanical, 6nite spins, by displaying a trial state of
variationally lower energy than the state of saturation
magnetization for a suKciently fluctuating interaction.
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but 8 spins and A spins are coupled antiferromag-
netically if they are coupled at all. There is no restriction
made as to the range of the interaction.

Ke may define a "natural representation" as follows.
Let the ferromagnetic state of all spins "down" be de-
noted the "vacuum state, "

y(o, " o," )—= lo&

and all other states are of the form

'~" ")=g(s')"'l 0&

for given positive integers n;. The jth spin raising
operator is, as usual,

Sit =S,*+iSp— (5)

The Hamiltonian is not yet in a convenient form, so
we make the transformation on the A spins,

S -+—S, Sp ~—S,", S,s -++Sf, (6)

(which corresponds to a classical rotation of A spins
about the Z axis) but leave the 8 spins invariant. In
this representation, we have

H= —(—PlF;;lS;S; +H.c.&
—P F,;S, S, , (7)

' For example, the formal expansion of operators in powers of
s ', of T. Holstein and H. Primako8, Phys. Rev. 58, f098 {1940).
For present purposes any approximation vrhich is accurate in the
limit s ~ ~ vrill be considered semiclassical, @without prejudice,
although some methods may be far more accurate than others for
finite s.

~ E. Lieb and D. Mattis, J. Math. Phys. 3, 749 (1962).

CASE OF NODELESS GROUND STATE

In some special cases it can be proved that some
important ground-state property persists for all values
of s, and it is then plausible that the ground-state
energy and other properties may be developed as a
series in powers of s '. It is, of course, difFicult to justify
such an expansion, but the motivation is clearly that
one wishes to tie into the known properties of the solu-
tion in the correspondence limit. '

Let us distinguish the possibility (a) of proving anti-
ferromagnetism for all s, and (b) proving ferromag-
netism for all s, under the foBowing circumstances:

(a) Auiiferromagnelism W.e shall follow, with only
slight changes of notation, a recent paper by Elliott Lieb
and the author, to which the reader is referred for a
complete proof. For present purposes, a simplified
theorem may be proved as follows.

Consider those arrays for which an A and a 8 sub-
lattice can be defined, such that if A spins interact with
other A spins, they do so ferromagnetically and
similarly for interactions among 8 spins,

making use of (2). The off-diagonal matrix elements are
all negative, and it can be proved that the ground state
of IJ is nodeless in this representation, i.e., if the ground
state P is expanded in our complete set (4),

)=P f(u(,n), ,e i, )y(e„ri„,n;, ), (g)

all the amplitudes f are of the same sign. Even though
the states change with s, this property does not, and is
as valid for s=~ as in the correspondence limit. For X
even (but for all s), P is always a singlet, and moreover,
it can be proved that the energy of the lowest state of
spin 5—1 is lower than the energy of the lowest state
of spin 8 up until the maximum 5=Ps.

It seems plausible that semiclassical methods for
the ground state and thermal properties will be success-
ful in this instance, given the independence of these
important properties on s. However, we have no explicit
proof of this.

In the following example, the ground-state correla-
tions are exactly, and trivially the same both classically
and quantum mechanically.

(b) Ferromagnetism. The case we consider is,

all F;;&0,

in which case it is easy enough to verify that the ground
state is nodeless in the "natural" representation, and is,
therefore, either the ferromagnetic state of all spins

downq

lo),

or any of its rotations,

(P;s )"lo&. (10)

The ground-state energy is equal to the classical
ferromagnetic energy

Fiis 2 ti i I Fij&

and all spins are parallel in the ground state, quantum
mechanically or classically.

In the special but very important case of this, i.e.,
nearestneighbor ferro-magnetic coup/ing, an investigation
by Dyson' of the thermal properties of this ferromagnet
revealed that the quantum-mechanical eftects of spins
as small as s= &~ were unimportant at very low tempera-
tures just as in the ground state, and that the semi-
classical picture of noninteracting spin waves was
accurate in this range. It can also be assumed that so
long as all F;;&0, the greater the range of the interaction
the better is the accuracy of some semiclassical
procedures.

But let us recall, in view of some of the remarks in
the introduction, that ferromagnets are not likely to
satisfy the condition for case (b) in general, and, there-
fore, let us seek a less stringent condition for ferro-
magnetism in cases when the interaction can be
oscillatory.

F. J. Dyson, Phys. Rev. 102, 1230 {1956).
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NECESSARY CONDITION FOR FERROMAGNETISM whereas the ferromagnetic bond

For the sake of definiteness, we shall, henceforth,
assume that the spins form a Bravais lattice, and that

F,,=F(R, R;—), (12)

which establishes translational invariance. This also
insures that (regardless of the signs and magnitudes of
F) we know an entire set of eigenstates consisting of one
spin wave,

~
k) —=P; e*'" ~S;t

( 0), (13)

IS THIS CONDITION SUFFICIENT'

Remarkably, (16) is both the necessary and the
suQicient condition for saturation ferromagnetism of
classical spins (s))1). According to the method of
Luttinger and Tisza, "the configuration of lowest energy
Lsubject to Eq. (12) and suprcl] can be chosen classically

S,z=0, S,*=s cosk. R,, SP=s sink R;, (17)

and it is a simple matter to substitute in (1), and find
the energy proportional to f(k). Thus, an interaction
which is spin-wave stable is ferromagnetic in the
correspondence limit.

However, because spin-wave stability is not a
sufhcient condition quantum mechanically, we shall find
it possible to prove that the ground state is not ferro-
magnetic in some instances of small s even when (16)
is obeyed.

The basic reason is that the antiferromagnetic bond

+s; s,
benefits from a ground-state energy of

—s(s+1),
' An Ising theory for this situation was given by %'. Marshall,

Phys. Rev. 118, 1519 (1960).It is not known whether the proper-
ties of a Heisenberg Hamiltonian for random spins and long-range
oscillatory interaction have been investigated.

"The method devised by J. M. I.uttinger and L. Tisza, Phys.
Rev. 70, 954 (1946), has recently been discussed by A. Voshimori,
J.Phys. Soc. (Japan) 14, 807 (1959};M. J.Freiser, Phys. Rev. 123,
2003 {1961);and D. Lyons and T. Kaplan, ibid. 120, 1580 (1960).

(unnormalized). The energy of these states, relative to
the ferromagnetic energy, is readily calculated to be

«(k) =&Lf(k) —f(0)] (14)
where

f(k) = —Q;,o e'" ~F(R;). (15)

The case of dilute random magnetic alloys'0 mill not be
considered in this work.

Evidently, a necessary condition that the ground
state be the ferromagnetic state (3) or (10) is

«(k) &0, kwo, (16)

and it is easy enough to verify that the positive semi-
definite interaction of case (b) always satisfies (16).We
shall call any system which obeys (16), "spin-wave
stable. "

—S,' SJ

has precisely the classical energy

(20)

(21)

as we have already mentioned. Crudely, the effect is of
order

s (s+1)/s'= 1+1/s

which is most significant for s=~ or i.
(22)

—(2k«R cos2krR —sin2k«R)
F(E)=— (23)

leads to ferromagnetism over the range, 2k' greater
than zero but less than half a reciprocal lattice vector. "
At the upper end of this range F is strongly oscillatory
and the ferromagnetic state, even classically, is only
slightly more stable than some antiferromagnetic con-
figurations. There is reason, therefore, to believe that
some quantum-mechanical effects may be important.
Unfortunately, (23) must be analyzed numerically, "
therefore we shall investigate a reasonable imitation of
this interaction in one dimension, for which lattice sums
can be trivially performed. Let this be

F(R)=e"(—1)" e "~ "~, where E=na and X&0. (24)

Only the nearest-neighbor ferromagnetic bonds survive
in the limit X~ ~, and in this limit, therefore, the
interaction is of class (b) with a ferromagnetic ground
state, regardless of spin magnitudes. But the situation is
different for finite X.

First, we must calculate the negative Fourier sum as
n Eq. (15),

1+e"cosk
f(k) = —Q e'""F(E)=-

ny-'0 coshX+cosk
(25)

and it follows that the spin-wave energy

(e" sinhX) (1—cosk)
«(k) = sLf(k) —f(0)]=s (26)

(1+cosQ, ) (cosh' +cosk)

is positive for all allowed (positive) values of X, and this
interaction is always spin wave stable.

The energy of the ferromagnetic state is

E~,= ~N f(0)s'= Xs2/(1+e "). —(27)

It shall be compared to the variational energy of a trial
singlet (S=O) state. When the singlet energy E« lies
lower,

~~0 ++Nay (2g)
' D. Mattis and K. Donath, Phys. Rev. 128, 1618 (1962).

TWO EXAMPLES OF THE EFFECT

I. Classically and in the simp/e cubic lattice, the
Ruderman-Kittel interaction,
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this will be sufhcient indication of the instability of the
state of saturation ferromagnetism in the absence of
external fields. (But the ferromagnetic state might be
even less stable than we 6nd variationally, particularly
in one dimension. )

The trial function is constructed as follows. %e pair
off spins at

Ff(R) = V(ni) V(no) V(no),
where

1 (n) =e—I+I&

(37)

(38)

The value of the constant A will be discussed shortly.
The ferromagnetic part decays exponentially vrith
distance, but in a separable way:

and

and letting

R=4na, R'= (4n+2)a

R= (4n+1)a, R'= (4n+3)a

eo(R,R') (30)

and the distance vector is the triad,

R= a(ni, no, no).

The negative Fourier sum of this interaction is readily
calculable,

be the singlet pair wave function, we take the un-
correlated product over all such pairs,

f (k) = 2A[coski+cosko+coskof
+[1—G(k, )G(k,)G(k,)j, (39)

&=II tto(»R'). (31) where

G(k,) =sinhX/(cosh' —cosk;), (40)

i.+e"
s&

(1+ex)
(34)

%e have not found a simple three-dimensional extension
of this example of a spin-wave stable system which can
be unstable against such a highly uncorrelated and
crude product of pair functions. This suggests that
"spin-wave stability" is a better criterion for the
occurrence of ferromagnetism in three dimensions than
in one, but it is not foolproof as we shall now see.

II. The second example is a model'I of a direct anti-
ferromagnetic interaction superposed on a long-ranged
indirect ferromagnetic interaction. [An instance of the
latter is (23) in the limit ks —+ 0, in which case bonds
between spins less than or/4ks apart are ferromagnetic,
with a negligible antiferromagnetic "tail" beyond. ) We
can simulate this effect quite well by the model,

F(E)= F( )E+gF( )E, (35)

where we de6ne the interactions in the simple cubic
structure,

The pairs have been chosen to take advantage of the
largest existing antiferromagnetic bond, to the neglect
of all others. The energy is readily calculated, noting
that

Qo~S,"S;~iso)=—s(s+1) if E;, E; are paired,
0 otherwise,

so that the variational energy is

&o= Q'o ) & ( fo)/(4'o ~
4'o) = —

o 3 e "s(s+ 1). (33)

For sufFiciently small X and s we 6nd instability of t.he
type (28), i.e. , when

1 sinhX
Q=-(n, ~,n), f(Q)= —6A+1— . (42)

Q cosQ,+1
The classical ground state is the Neel state in that case,
which consists of each "up" spin being surrounded by
"down" nearest-neighbor spins. Let us discuss this
antiferromagnetism in somewhat more detail.

Anderson" has given a method for calculating the
lowest order quantum-mechanical corrections to the
Neel state energy, and Oguchi" has shown that this
procedure is satisfactory and that further corrections
are probably negligible. If one applies the Anderson
procedure for an arbitrary interaction, he finds for the
energy

where
Eo=+-',Ãf (Q)s' ——',As,

QB.Z. oak (&o &o )

(43)

(44)
and

-.=!Lf(k)+f(k+Q)j-f(Q),
ri=-,'[f(k+Q) —f(k)j. (46)

The quantities have been so deaned that the sum (44)
is over all X states in the 6rst Brillouin zone. Now, this
can be further simpliaed by using the definition of f(k),
Eq. (15), to prove that

and from this it can be deduced that the interaction is
spin-wave stable for A in the range,

0(A (Ao=—(4+3 sinh9)/6 sinh'X. (41)

%hen A excels the value Ao de6ned just above, then
f(k) has its minimum value at k=Q, where Q is the
reciprocal lattice vector

F.(R)= —A f r oE(& , a00) or (0, &a, 0)
or (0, 0, &a), Therefore,

ZB.z. f(k)=QB.z. f(k+Q)=0. (47)

otherwise. (36)

"This magnetic model was suggested to the author by R. K.
Nesbet. Also, ef., R. K. Nesbet, Phys. Rev. 122, 1497 (1961),
where the antiferromagnetic "direct" interaction is discussed.

Ãf(Q) .VC, ——
"P.%. Anderson, Phys. Rev. 86, 694 (1952)."T.Oguchi, Phys. Rev. 117, 117 (1960).

(48)
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where (converting sums to integrals in the usual way) by Eq. (42). This energy is minimized by the choice

1)tc—= —
~

2m)

f(Q)g=- 1—1—C1+ ) (54)

x(Lf(Q)-f(k)7Lf(Q)-f(k+Q)7}". (49)

These formulas (43)—(49) are valid for arbitrary
interaction in a simple cubic antiferromagnet. Returning
now to the model de6ned above, which is classically an
antiferromagnet for A &20, we recall that in this range
of the parameter A, f(Q) is the minimum value of

f(k) and; therefore, the integral C is real and b, is
positive. I.et us now set down the ferromagnetic energy,
which is

3e&"+e—&"

Ep;.= ', Nf(0)s'-= —1»' —6A+ s' (50)
4 sinh'-,')

When A=A0, it occurs that f(0)=f(Q), and the
classical ferromagnetic and antiferromagnetic (Neel)
states become degenerate. The quantum corrections,
however, always favor the antiferromagnetic state,
so that

&0—&ip.=—pcs(0 when A =Ap, for all s. (51)

As A is lowered still further, an interesting phe-
nomenon occurs in the neighborhood A &Ao. In addition
to its minimum at k=0, the function f(k) retains a
local minimum at k=Q; and one notices that the inte-
grand of Eq. (49) for 4 becomes imaginary near the
origin and near Q. Thus, the energy of the Anderson-
Neel state becomes complex and the antiferromagnetic
state is unstable. Note that the breakdown for small k
indicates a radical change in long-range order, and at
k=Q in short-range order.

Nor does the ferromagnetic state succeed as the
ground-state con6guration until A is somewhat less than
the critical value A o, so there exists a range of A depend-
ing on s, over which both ferromagnetic and antiferro-
magnetic states are unstable.

Let us analyze this for spin s= ~. We use a simple trial
function

R =such that (that' —p5'a+a(1, 0,0)) ~0) (52)
mt+en+ma ~even

where a'+p'=1. This reduces to the Neel state when
a=1, P=O or a=0, P=1.

VVe shall show that this function leads to an energy
lower than Eg~ over some of the spin-wave stable
region, A (Ap. The variational energy Lafter eliminat-
ing a= (1—p')'~'7 is

~p(P) = 0»'f(Q) (-') (1—2P')' —0»'LA —e "7(p)
x(1—(1—2p ) +4[/(1 —p') 7'"}, (53)

where it must not be forgotten that f(Q) depends on A

and is to be compared to the ferromagnetic energy

Z&~= —'» f(O) =&» f(Q) —-', » (Ap —A). (56)

The latter is not the ground state until A is less than is
required to satisfy the equality

1 (A —e ")'
-', (Ap —A) =-

8 f(Q) A—+e-"— (5'f)

(Note that f(Q) is negative in this range. ) However,
one should be cautioned against attaching any impor-
tance to this precise value, considering the crude nature
of the trial function.

MOTIVATION AND CONCLUSION

Recently, Donath and the author investigated the
nature of the ground state of classical spins disposed on
a single cubic lattice and interacting via the Ruderman-
Kittel interaction' (23), by evaluating p(k) numerically
on an IBM 7090 computer. It was found that over a
relatively important range of values of the parameter
2k' the ferromagnetic state lay lowest. But the fact that
some antiferromagnetic bonds were clearly not negligible
led the author to wonder whether, in the physically
important case of small spins, new and interesting
quantum-mechanical ground-state correlations might
not be present. However, it was possible to show in
special cases (a) and (b) that the antiferromagnetic or
ferromagnetic behavior was insensitive to the magnitude
s of the interacting spins. In such cases, the classical or
semiclassical analyses would be sufficient for many
purposes. But, in general, new quantum-mechanical
correlations could be expected to exist and to manifest
themselves in such important properties as the long-
range order.

We have not found what these correlations might be,
but in this work we have shown that the classical
criterion for ferromagnetism, which we have called
"spin-wave stability" is, in any event, not sufficient to
insure ferromagnetism of quantum-mechanical spins.
This is because of what might be termed, quantum
Ructuations associated with the antiferromagnetic
bonds. (The converse- a classical antiferromagnetic
interaction which leads to ferromagnetism for small

It may be verified that p, as defined in this manner, is

appropriately real provided Ao&A &e
—", which includes

the requirement for antiferromagnetic bonds to exist in
this model. With the value of p, the variational energy is

(A e-x)p

P,= »'f(Q) '1V—
—f(Q) —A+e "
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spins —is clearly impossible. ) It appears that just as
long-range ferromagnetic interactions are good for
classical methods, long-range oscillatory interactions
lead to these Quctuations and are bad for classical or
semiclassical methods applied for small spins.

We have examined the Anderson spin-wave theory
of antiferromagnetism'4'~ which is patently correct in
case (a) (although it is not mathematically exact).
However, in spin-wave stable systems the approximate
antiferromagnetic eigenstate has in general a complex
energy and is, therefore, unstable, even in such a
favorable model as we have considered, where nearest
neighbor bonds are antiferromagnetic, and the lattice is
three-dimensional simple cubic.

This suggests that in those spin-wave stable systems
which are not actually ferromagnetic because small

spins (2 or 1) and antiferromagnetic bonds favor
quantum fluctuations, the long-range ground-state
correlations might either vanish, or exhibit a more
complicated structure than has heretofore been thought
likely on theoretical grounds without introducing
anisotropy.
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Carrier Mobility and Shallow ~~purity States in ZnSe and ZnTet
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Electrical transport measurements have been made on p-type ZnTe and n-type ZnSe. In ZnTe crystals,
doping with Cu, Ag, and Au produces acceptor levels at 0.15, 0.11, and 0.22 eV, respectively. An acceptor
with an ionization energy of 0.048 eV was found in the undoped crystals and is identified as the first charge
state of the Zn vacancy. A shallow donor state, at approximately 0.01 eV below the conduction band, was
found in n-type ZnSe. It also proved possible to prepare degenerate ZnSe. The scattering mechanisms
limiting the lattice mobilities of both materials were considered. It was found that the polar interaction with
the longitudinal optical phonons dominates the scattering of electrons in ZnSe. This mechanism probably
also predominates in the scattering of the holes in ZnTe. However, the nonpolar interaction with the optical
modes could also contribute significantly if the appropriate coupling parameter is larger than we presently
believe.

I. INTRODUCTION

~

~

~ ~

EVERAL of the II—VI compounds have been under
investigation by luminescence and photoconductive

techniques for a great many years. Much of this work
was directed toward the goal of understanding the role
of the impurities and of identifying the states associated
with them. Despite this work, however„ the identi6ca-
tion of the speci6c impurity states is still a matter of
considerable debate and uncertainty. At present there
is still little conclusive evidence about the identity of
any shallow impurity states, which, for example, play
an important role in the optical properties of these
crystals.

The primary aim of the present work was to obtain
additional information about the shallow donor and
acceptor levels in some of the II-VI compounds by
means of electrical transport studies. In the past,
extensive electrical measurements have not generally
been possible due to the unavailability of suitable
material. However, considerable advances have recently

t The research reported in this paper has been sponsored by the
Air Force Cambridge Research Laboratories Contracts No.
AF 19(604)-8512 and AF 19(628)-329.

been made in the preparation of some of these materials,
including the compounds that are the subject of the
present study, ZnSe and ZnTe. ' ' It is, of course, well
known that in addition to yielding information about
the energy levels of the defects, the electrical transport
measurements provide a valuable means for studying
the mechanism by which the carriers are scattered. This
question was considered in some detail for the two
compounds studied.

In an earlier work, the results of optical and pre-
liminary electrical measurements on ZnSe were re-
ported. 4' The electrical measurements of the n-type

' L. R. Shiozawa, J. L. Barrett, G. P. Chotkevys, S. S. Devlin,
and J. M. Jost, Aeronautical Research Laboratory Contract
Xo. AF 33(616}-6865, Final Report, Period January 1960—
December 1961 (unpublished}.' A. G. Fisher and A. S. Mason, Air Force Cambridge Research
Laboratories Contract No. AF 19(604)-8018, Scientific Reports
Nos. 1, 2, and 3, 1961 (unpublished).

'M. Aven and %. %'. Piper, Air Force Cambridge Research
Laboratories Contract No. 19(604)-8512, Scientific Report No. 1,
1961 (unpublished).

4 M. Aven, D. T. F. Marple, and B. Segall, J. Appl. Phys. 32,
2261 (1961).' M. Aven, Extended Abstracts, Meeting of the Electrochemical
Society, Los Angeles, 1962, p. 46.


