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Theoretical Nucleon-Nucleon Potential*
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The two-pion exchange nucleon-nucleon potential is calculated on the basis of the Mandelstam represen-
tation of the field-theoretic scattering amplitude. The results contain parameters referring to low-energy
pion-nucleon scattering and the renormalized coupling constant g only. A comparison of these results with
phenomenological potentials is made.

I. INTRODUCTION We here look at the low-energy nucleon-nucleon
interaction problem by means of the Mandelstam
representation for the elastic scattering amplitude. 4

These relations again demonstrate the notion that the
one-pion-exchange term does give the form of the
interaction at very large distances, and also, for the
many-pion exchange terms in general, the more pions
that are exchanged the shorter is the equivalent inter-
action range. More than that, the Mandelstam repre-
sentation along with the unitarity condition gives a
method of calculating the many-pion contributions to
the elastic nucleon-nucleon scattering amplitude once
the amplitudes for nucleon-antinucleon annihilation
processes into these many-pion states are known. '
Amati, Leader, and Vitale' have performed the calcu-
lation of the two-pion-exchange contribution to the
elastic scattering amplitude using an approximate
knowledge of the nucleon-antinucleon annihilation
amplitude into two pions or, more precisely, an analytic
continuation of the low-energy pion-nucleon scattering
amplitude. We here show, by an extension of the method
of Charap and Fubini, "that this two-pion contribution
is equivalent, in a certain approximation, to an energy-
independent potential contribution. We claim that this
potential should give a reasonable description of the
way in which two nucleons interact for separation
distances somewhat smaller than those at which the
OPEP alone is dominant.

We attempt to justify this claim by comparing at
distances greater than 0.5 inverse pion masses the
central, spin-spin, spin-orbit, and tensor parts of this
potential in both isotopic spin states with potentials

HERE is no field-theoretic reason why the
interaction of two nucleons should be exactly

describable in terms of a potential that, apart from the
energy dependence implied by the inclusion of such
terms as spin orbit and tensor forces, is independent of
the scattering energy. Indeed, it is impossible for such
a potential to describe nucleon-nucleon scattering at
high energies, above the threshold for meson production.
However, the idea of regarding the interaction of two
nucleons as being approximately equivalent to the
interaction through such an energy-independent po-
tential has played an important role both in the theory
of nuclear structure and in the theory of nucleon-
nucleon scattering.

Some field-theoretic justification for these ideas came
from the form of the one-pion-exchange contribution to
the field theory scattering amplitude. It was shown
)see, for example, Iwadare, Otsuki, and Tamagakirj
that this one-pion-exchange contribution was equiva-
lent, nonrelativistically, to the first-order Born approxi-
mation to the scattering amplitude in a. certain poten-
tial, the one-pion-exchange potential (OPEP), and
that this potential should be the dominant interaction
at large distances. These theoretical arguments were
substantiated experimentally by the work of CziRra,
MacGregor, Moravcsik, and Stapp~ who showed the
significance of the one-pion-exchange term for giving
an understanding of the nucleon-nucleon partial-wave
phase shifts with large angular momenta. From this
analysis it can be concluded that OPEP does, in fact,
give a good description of the nucleon-nucleon inter-
action at large distances, distances greater than 1.2
inverse pion masses. '

*An outline of this work was given at the Aix-en-Provence
International Conference on Elementary Particles, September
1961.

t On leave of absence from Laboratoire de Physique Nucleaire,
ORSAY (Seine et Oise), France.' J. Iwadare, S. Otsuki, and R. Tamagaki, Suppl. Progr.
Theoret. Phys. (Kyoto) No. 3 (1956).

2P. Czi6ra, M. H. MacGregor, M. J. Moravcsik, and H. P.
Stapp, Phys. Rev. 114, 880 (1959); M. H. MacGregor, M. J.
Moravcsik, and H. P. Stapp, University of California Radiation
Laboratory Report UCRL—5566 (unpublished).' G. Breit and M. H. Hull, Nucl. Phys. 15, 216 (1960).

' S. Mandelstam, Phys. Rev. 112, 1344 (1958).
~ D. Amati, E. Leader, and B. Vitale, Nuovo Cimento 17, 68

(1960); 18, 409 (1960), hereafter referred to as I and II, respec-
tively.

'This method was given by Charap and Fubini (reference 7)
for a spinless nucleon, the realistic case involving the nucleon
spin and isospin was treated by Charap and Tausner (reference
16), however this last paper leans very heavily on perturbation
theory (in fact, their results were limited to the consideration of
the fourth-order Feynman diagram). Their results are not very
useful from a practical point of view. Nevertheless, they were
able, from their analysis, to provide an unambiguous definition
of a nucleon-nucleon local potential.

~ J. M. Charap and S. P, Fubini, novo Cjmt;Dto 14, 540
(1959);15, '73 (1960).
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constructed phenomenologically to fit low-energy
nucleon-nucleon scattering data.

To make this paper self-contained, we will include
in Sec. II the definitions and results of reference 5
which were extensively used during our work. In Sec.
III, we will give a constructive definition of the potential
in terms of the pion-nucleon scattering parameters.
The "potential approximation" itself will also be
discussed. Section IV is devoted to the explicit expres-
sions for the potential. Finally, in Sec. V the calculated
potentials will be compared to the phenomenological
potential obtained recently by Breit et at. s (the Yale
potential); the eventual role of the three-pion-exchange
contributions, especially the 3-pion T=O J=1 reso-
nance (co meson) will also be discussed.

N = -', (zzi+zss),

P=-,'(pi+ ps),
~= s (ui —us) = s (ps —pi).

(2 1)

Only two independent scalars can be constructed from
these vectors. We here define the three scalars

w= —(n,+pi)',
t= —(zz,—zs,)'
t= —(pi —zss)'.

These are related by the equation

w+ t+ t =4zr. ',

(2.2)

(2.3)

where te is the nucleon mass (taken to be the same
for both neutron and proton).

In the center-of-mass system of the two nucleons
$(2.1) and (2.2)j reduce to

N=( —K, Z), P=(K,Z), Z=(x,O),
with

K=s(vi+1s), &=s(1s—1i),
and

II. THE FIELD THEORY SCATTERING AMPLITUDE

The notation used in this paper will be the same as in
the papers of Amati, Leader, and Vitale, ' hereafter
referred to as I and II. For completeness, we include
in this section those definitions and results relevant
to the work of the later sections.

We are to discuss the elastic scattering of two
nucleons from a state with 4-momenta, Ni, pi, to a
state with 4-momenta zss, ps.

Apart from spin and isotopic spin this process is
characterized by three independent 4-vectors, chosen
here as

S=1+iI'(xi+pi —zzs —ps) (m/2zrE)'

X Q (ps) X,u(zzs) X„PIu(zzi) X,u (p,)X„
—antisymmetrized term. (2.6)

3f is the causal matrix, which can be written in the
general form

M=+;(3p;+(w, t, t) 12p; (w, t, t)r" r&)P;, (2.7)

where p;+(w, t, t) and p, (w, t, t) are scalar functions of
m, t, and t only. The antisymmetrized term is obtained
from the direct term by interchanging all of the quan-
tum numbers (momentum, spin, and isospin) of the
incoming nucleons. The Pauli principle makes this
term necessary.

The functions pP(w, t, t) have been examined in I
and II. It is shown in these papers that, apart from
the presence of the deuteron pole, the Mandelstam
representations for the functions pP(w, t, t) are of the
form

6;5
p;+(w, t, t) = ——',g'

p,2—t.

where E and k are, respectively, the energy and mo-
mentum of each nucleon and 0 is the angle of scattering
in the c.m. system.

We will take the particles labeled zs (initial and final
4-momenta zsi, zzs) and p (initial and final 4-momenta
pi and ps) to be distinguishable. The Pauli exclusion
principle will be taken account of explicitly in the
definition of the S matrix.

In order to make the spin dependence of the scatter-
ing amplitude explicit, one must define a set of five
spinor invariants, Amati et at 'ta.ke the five Lsee I
(2.»)7

Pi 1"1&,——Ps i (y" ——P1&+1"y& N),
(2 3)P3= —y" Py~ N, P4=y" y&, P5——y5"y5&.

The spinor operators 1"&», y"~"), and y5"~» are the
usual matrices operating on the 4-component spinors
u(zs;)u(p, ) (i =1, 2) representing the spin of the parti-
cles labeled zs and p. Similarly one defines two invariant
isotopic spin operators 1"1~ and 7" 7-~ operating on
the two-component isospinors X„;X„;which carry the
isotopic spin of the particles.

The field theory S matrix for the scattering of two
similar nucleons can then be written as

w=4(k'+zi") =4E',
t=—2k'(1 —cos0) =—4LV,

t= —2k'(1+ cos8),

(2.4)
1 " dt'

+— xp(x, t')
9„2t'—t 4 2

dx. (2.8)
X—K X—

$

'K. E. Lassila, M. H. Hull, H. M. Ruppel, F. A. McDonald,
and G. Breit, Phys. Rev. 126, 881 (1962).

g is the rationalized renormalized pseudoscalar coupling
constant g' 4m)&14.4; p, is the x-meson mass.
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The functions pP(wt') are analytic functions of w

except for a cut along the real axis from m =4m' to
and are real for m(4''. The functions X;+(g,t') are
real Mandelstam spectral functions.

The first term in this expression for pP(w, t, t) is the
one-pion-exchange pole. The term

PzG. 1. The two-pion-
exchange graph.

has been separated from the remaining contributions
of the spectral functions X, (x,t') by defining them to
give the contribution of the two-pion-exchange proc-
esses. This separation can be made unambiguously by
considering the unitarity relation in the nucleon-
antinucleon elastic scattering channel. In this channel,
t' is the energy, m and t are the two momentum transfers.

In terms of the causal matrix 3f the unitarity relation
is [see I (3.9)]
iyx~ut ~~xE)

=[1/(2m.)'t]P(EN[r t[ 2~&(2~ ir[cVX&+J, (2.9)

where the sum is taken over all two-pion intermediate
states that conserve four-momenta. J„gives the
contribution of the intermediate states which contain
more than two pions. We define the functions pP(w, t)
such that a substitution of (2.8) into (2.9) gives

where e and q are the magnitudes of the nucleon and
pion 3 momenta and g is the angle between them, in
the EE c.m. system. The t de6ned here coincides with
the t of (2.2). s and s depend on the angle g . '

The amplitude (irsir (
7'

~
pipm)*= (pm@i ~

r t
~

vr

harp&

and
has a similar form in terms of the spin and isotopic
spin matrices y& and ~&, and the same scalar functions
A+ and B+ of t and the new variable p„ the angle
between the pion and the outgoing nucleon in the SX
c.m. system.

Inserting these expressions for (2ir
~

r
~
pip2) and

(2m ~r~nin2) into (2.11), we obtain, taking care with
the appropriate phase-space factors

Q,[p,+ (w, t) W (—1)'p, +(t,t)]P,= [1/2 (2ir)'t]OR, (2.10)

OR= &(7ip2I "I2~&(2~lrl~in2) (2»)
OR= 3OR++2~" ~&OR. (2.15)

The spectral functions XP(xt) come from the three
and more pion contributions contained in J„and so
are zero for t(9p, ' as explicitly given in (2.8). OR

corresponds to the graph of Fig. 1 in which the inter-
mediate pions are on the mass shell. e~ and —e2 are
the 4-momenta of the incoming nucleon and anti-
nucleon, respectively; p2 and —pi those of the outgoing
nucleon and antinucleon. (2ir

~

r
~
ein2) is the annihilation

amplitude for the process 1V+X—+ 27r (Fig. 2) and is
an analytic continuation of the pion-nucleon scattering
amplitude. This amplitude can be written in the form

OR+ = —,', [t (t—4p'))ii' [

A+'+ipse'

(q, —q—,)B+*]

X[ A++i&—" (q2 —qi)B+], (2.16)

(q 6) =t (2.17)

where the integration is over the angular direction of
the three vector q2 —q&. Because of energy conservation
in the intermediate states we have that the magnitude
of this vector is fixed as

with

= V(—e2)[—A+-,'iy. (qg
—qi)B)u(mi), (2.12)

A p~ tip A++ i2[7 p, 7..——)A-
Bti-=4-B++2[~s,~-)B,

(2.13)

t= —(n i e2)'= ——(qi+ q2)',

s = —(ei—qi)' = —(n'+ q' —2nq cosg„),
s= —(Bi—qg) =—(B +q +2Ãq cosg„),

t+s+ s =2m'+2ti'

(2.14)

where n and P are the isotopic spin indices of the two
pions, q& and q2 are their momenta. A+ and 8+ are
scalar functions of the variables s, 8, and t where

Provided we know A+ and 8+ in the appropriate
regions for the integration of (2.16), OR and, therefore,
from (2.10), the functions p;+(w, t) can be calculated.
Since no complete solution of the pion-nucleon scatter-
ing problem is known, the calculation cannot be done
exactly. However, in this paper we are only interested
in nucleon-nucleon scattering near threshold (w 4n")
and also, as will be explained later, most directly
concerned with the values of t and from (2.3) t, not
too large. The calculation of p,+(wt), pP(tt) in this
region (w~4m', t, t small) involves a knowledge of A+
and 8+ near to the physical region for low-energy
pion-nucleon scattering, a region in which A+ and 8+
are known experimentally. As in I and II we here
extrapolate out of the physical region by using the
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FIG. 2. The nucleon-
antinucleon two-pion
annihilation graph.

( 1 — 1 1

s„—s s,—s
Gg

amplitudes A+, 8+ constructed by Sowcock, Cotting-
ham, and Lurie. '

These authors construct an approximate scattering
amplitude based on the Cini-I ubini representation" for
low-energy scattering amplitudes. This approximation
to the scattering amplitude includes the one-nucleon
pole term, and the (—,', ~3) resonance contribution to the
mX rescattering corrections, itself approximated by a
pole term. Terms are also included which have cuts in
the t variable, these are there to take account of
pion-pion interactions in S and P states. Since we are
interested in these amplitudes for small t, interactions
in higher partial waves than P have not been con-
sidered since these will probably only be significant for
larger t values. The B.C.L. amplitudes, for the process
of Fig. 2 with the definitions (2.14), are

over our expression for sin'833(s) is equal to the area
under the curve obtained from the usual effective
range formula. " We will call the contributions to A+
and 8+ due to the nucleon pole and the (—32/3~) resonance
the C.G.L.N. contributions. " The functions n+(t) and
0 (t) represent the effect of 5- and P-wave ~n inter-
actions on the mX scattering amplitude. The effects of
such interactions will be discussed separately.

The evaluation of 5K+ using the B.C.L. amplitudes
in the integral expression (2.16) has been carried out
in I and II.

The crossing symmetric form of 5R+ is obtained
explicitly since the mE scattering amplitude is itself
crossing symmetric. Also, since the five invariant
amplitudes P; are linearly independent, the functions
pP(w, t) and pP(t, t) can be individually calculated as
has been done in I and II.

III. DEFINITION OF THE POTENTIAL

We wish to define a potential V(x) which, when
inserted into a Schrodinger equation, gives a T matrix,
or the related scattering matrix

S=1 2~iI(Et—E;)T— (3.1)

such that it will reproduce, in an energy range sufFici-

ently below the meson production threshold, the same
scattering amplitude as field theory. We, therefore,
require:

&»I ~l »)= — ~(P2)x"'"(»)
(2n)'

&&x.,tMN(ei)x. ,l(p&)x„, (3.2)

s„= (-', —', total resonance energy)',

1z"'—m s„"'+m t )-4s,'"q'g'
Gg= — + 1+

3 E„mE„+m 2q, ' — 3m'

1 4$ 1/2q 2g2

Gg —— 1+
3R,—m Z,+m 2g,') 3m'

Gg

where M is the G.eld-theoretic causal matrix defined by
(26) 13

The spin and isotopic spin dependence of M implies
that the potential must itself be spin and isotopic spin
dependent. In fact, corresponding to the set of 6ve
independent spinor invariants needed to construct M
we have to employ five types of spin-dependent.
potential. It is convenient to use the standard set as
first given by Okubo and Marshak, " and consider a
potential

V(x)=P L3V+(r)+2V (r)r" r"jQ-, (3.3)

with

E„ is the nucleon energy at the (—,',—',) resonance,

q„= I-EP—m']'12.

We have normalized G~ and G~ so that the integral

' J, Bowcock, W. N. Cottingham, and D. Lurie, Nuovo Cimento
16, 918 (1960); 19, 142 (1961);hereafter referred to as B.C.L.

"M, Cini and S. Fubini, Ann. Phys. (N. Y.) 3, 352 (1960).

"J.Ashkin, J. P. Blaser, F. Feiner, and M. 0. Stern, Phys.
Rev. 105, 724 (1955).

"G. F. Chew, M. L. Goldberger, F. E. Low, and V. Nambu,
Phys. Rev. 106, 1337 (1957);hereafter referred to as C.G.L.N."The potential thus defined is only the direct potential between
two distinguishable nucleons. The exchange character of nuclear
forces can be taken account of by antisymmetrizing the scattering
amplitude resulting from this potential. See, for example, G.
Breit, Ann. Phys. (N. Y.) 16, 346 (1961).

'4 S. Okubo and R. E. Marshak, Ann. Phys. (N. V.} 4, 166
(1958).
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with

n = (C,SO,T,SO2,SS),
Qg ——1,

&so=i~(e"+a ) L,

Qz ——(1/r')(3e" xone' x) —o" e"
flso2=~[&" L~e" L+(r" Lo'" ~ L],
QSS=&

x=x„—x„, L=xX ck,

~=-;(y,—p,), r=

(3.4)
FIG. 3. The second-

order Born approxima-
tion graph for the E—iV
scattering amplitude.

V '=3V +(r)—6V —(r),

V. =3V.+(r)+2V.-(r)
(3.5)

are the central, spin-orbit, tensor, quadratic spin-orbit,
and spin-spin potentials in the isotopic spin states 0
and 1, respectively.

In momentum space the potential can be written as

U(ck)=Q»)3V»+(/)+2 V» (t)r" r"]0, (3.6)
with

Qc=

fatso= ——,'~(~"+~ ) (y, Xp,),
n, =4)a o- o~ 3~- —~~'~]

&sou=o" (yiXy2)~" (piXps),
~SS=&"'&"

(3.7)

The T matrix associated with V can also be written
in terms of these five new invariants:

T=P L3T +(k 3)+2T (k,t)r" r"]D . (3.8)

It is also convenient to express the field-theory ampli-
tude M' in terms of these invariants 0 ."The transfor-
mation coefficients from the Dirac spin operators I'; to
the Pauli spin operators can be obtained by direct
calculation and

(3.9)

Throughout this paper, except for the analysis
referred to in reference 16, we will make the adiabatic
approximation. That is, we will neglect all terms of
order of magnitude k'/m2 compared to unity. In this
approximation the transformation matrix X is inde-
pendent of energy and is

C

2fps p

m2

j
0,

SO
—1/2m',
—1/m,

3/2,
3/2m'

0,

T
0,
0,
0,—1/12m'

1/12mm,

S02
—1/16m 4,
—3/8m',
—9/16m',
—1/16m4,

0,

SS
0
0
0

t/6m'
t/12m'

(3.10)
'5 Care has to be taken in obtaining this result since the adia-

batic approximation cannot be used directly. See reference 16.

e" and o& are the Pauli spin operators for the nucleons
labeled e and p.

The functions V +(r) are independent of the nucleons'
spin and isospin, and the combinations

Vc,opEp ~so, opEp I so2, opEp
—~T, OPEP ~SS,OPEP

Vr, opzp = (g'p'e &"/96nm'r) (1+3/pr+3/p'r'),

Vss, opzp g'p'e &"/96vr——mr,

(3.11)

and is so defined because in the Born approximation it
gives exactly the same contribution to T as the one-pion
pole does to Jf. The ability of an energy-independent
potential VopEP to reproduce the field-theoretic one-
pion pole is because this one-pion exchange contribution
is an energy-independent one (it is a function of t only,
not of w).

The two-pion exchange contribution to 3f as given
by the p;+(w, 1) functions jEqs. (2.7), (2.8)] are not
energy independent. In fact, in the Mandelstam repre-
sentation, and from this direct calculation, they have
the form, apart from subtraction terms

1 " y;+(w', t)dw'
p"(w, &) =-

4~' 'N —K
(3.12)

As functions of m they have cuts beginning at the
elastic threshold m=4m2 and, therefore, are strongly
dependent on w. However, the only contribution to
the p,+( t)wwhich has this cut in the low-energy region
is given by the 2-nucleon intermediate state in the
X+1V—+ %+X channel (Fig. 3). If we call this
contribution p~, ,+(w, t) and let

then
p' (w, ~) =p~, *'(w, t)+p&, '+(w, t) (3.13)

1
I'

" 3p~.;+(wt')+2p~, , (w, t')r" r"—
dt' (3.14)

4V

is just the contribution of the fourth-order graph to
the scattering amplitude 3f. It can be shown, as was

In general, it is not possible to exactly satisfy Eq.
(3.2) by a potential in which the V +(r) for U+(t)]
are energy independent. However, at least for the
one-pion and two-pion exchange contributions to the
field-theoretic matrix M, we will see that an energy-
independent potential can be constructed which ap-
proximately satisfies (3.2) for energies below the
inelastic threshold.

First, the one-pion contribution to the potential is
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done by Charap and Tausner, "that (3.14) is equal to

dt'
—(2~)'TopEp, 2+ Z ala

2t' —t

XL3p '+(w, t')+2p '
(w, t')r" r"j, (3.15)

where Toppp, 2 is the second-order iterated OPEP
contribution to the potential scattering amplitude
(y, I TI p,), i.e. ,

1 2P

2'opzp 2(k'. ,~)

(P2 I
l'opEp

I 41&(41 I
vopEp

I P4)~
clq (3.16)

q2 P2

P
//'

//

pg(i, t') =pP( —t—4k', t').

From (3.12) apart from subtraction terms

1 " y,"(w',t')
p;+ (t,,t') = — dw'.

7r 4 ~ w'+t'+4k'

(3.17)

(3.18)

The cut in the energy variable is here very distant from
the low-energy physical region and the energy de-
pendence of such terms is very small.

and the functions p '+(wt) have now a weak energy
dependence in the sense that the cut in the w variable
begins above the meson production threshold.

The functions pg, P(w/) which contain contributions
from the (2,—,') resonance (see Fig. 4) also have only
cuts in the m plane beginning above the meson pro-
duction threshold. In fact, in the approximation of
taking the resonance to be narrow, these cuts start
above the resonance production threshold and again
the functions pz, +(zv, t) are weakly energy dependent.

The contributions from the crossed terms which
contain the crossed graphs (see Fig. 5) are given, by
(2.3), as

FIG. 5. The crossed graphs.

The xm interactions, treated by the B.C.L. method
only influence the subtraction terms in (3.12) and
(3.18). When only S- and I' wave or~ int-eractions are
included, these subtraction terms are at the most first
order polynomials in zest and so they too have only
slight energy dependence over the physical energy
region below the inelastic threshold.

An energy-independent two-pion-exchange potential
can be defined in the approximation that we neglect
the energy dependence of p '+(wf'), pz, ~(wt'), and

p,+(t,t'). That is we make the approximation'7

p.'+( ')=p '+(4 ',t'),
pI4„+(wt') =p g, P(4m', t'),

p'+ (tt )=p'+ (0 3 )

(3.19)

M(k &/) = —(2') ( Vopmp+ Topgp 2)

The field-theory scattering amplitude can then be
written in the form:

1y-p Q. I 3n.+(1 )+2~=(~')r" r"3
„2t'—t

dt' dk"

3x.+(k"t')+2x.-(k"t')r" r p

X
(t' —1) (k"—k')

+n,
FIG. 4. The uncrossed graphs containing contributions

from the —,', —,
' resonance.

' J. M. Charap and M. J. Tausner, Nuovo Cimento 18, 316
(1960).

dt' dk"
9~ 2

3X '+(k"1')+2X ' (k"F) ". &rr
X . (3.20)

(t' —t) (k"+m'+ t/4+ k')

'7This is essentially the Cini-Fubini approximation (reference
10).
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The functions tv +(t') are the contributions of the three
terms (3.19) and are independent of w, namely,

2t +(t) =P '+(422'', t)

+P, X,.Lpz ~(4tr' t)W( —1)'p +(O,t)). (3.20')

Explicit expressions for these functions will be given in
the next section. The last terms of Eq. (3.20) come
from the exchange of more than two pions.

Consider now a potential de6ned by

rt1 '1
V(&)= VopEp

~ Q ()a
(2~

321 +(t')+2g (t')r" r"
dt' —,(3.21)

2 t' —t

that is, the OPEP and a continuous superposition of
Vukawa potentials. Although the Mandelstam repre-
sentation has not been proved for such a general
potential, we will assume it to be true. Then one has'

(p2 ~
2

~ pl) VopEp+ 2 opEp, 2

32t.+(t')+2rt (t')r" r&—
dt'

between M and T should be small for the partial waves
with large angular momentum. We might expect,
therefore, that the potential defined by (3.21) and
given in configuration space by the OPEP, (4.2), and
(4.3) will give an understanding of the way in which
two nucleons interact at distances away from the core
region.

IV. EXPLICIT FORMULAS FOR THE POTENTIALS

From (3.22) the two-pion-exchange potential (TPEP)
to be added to the OPKP is'

tt1 '1
VTPEP(A) = —

~

—Q Qo,
&2~

3~.+(t')+2~. (t')r"-rP
(4.1)

In configuration space

VTpEP(x) =P 0 f 3U +(r)+2 U (r) r" r"), (4.2)

where U +(r) can be obtained by expressing V'rpEP(K)
as the inverse Fourier transform of VTPEP(4). Taking
care of the operator character of the 0 's one finds

p1 '1-p Q.
dt'

dk"
gtt2 t —t

OO e & ~i(2

U&+(r) = —— ~&+(t) dt,
2' 4 r

3$ +(k"t')+2).-(ktst')r" r&

X
k~2 k2

(3.22)

)2 —r tll2 1
Uso+(r) =+ —

~
2tso+(t) —tt ' 1+ dt,

2~i r' rt'

we now have that, apart from the contributions of-the
double spectral functions, Eq. (3.2) is indeed satisfied
with definition (3.21) of the energy-independent
potential.

The last double spectral function of (3.20) has very
little energy dependence, the t dependence is such that
it has the form of a 3+ exchange potential. The double
spectral functions of both 3I and T which have the
cuts in the energy variable beginning in the low-energy
elastic region are responsible for making both the
scattering amplitudes M' and T unitary. Since the
unitarity condition for the field-theory amplitude is
different from the potential amplitude for energies
above the inelastic threshold, these two contributions
will not be the same. However, the dependence of both
of these terms on the t variable should again not be as
strong as the dependence of the one- and two-pion-
exchange contributions, since the cut in the t variable
is more distant from the physical region. The difference

( 1 )2 ao s—hatt/2 ( 3 3
Ur'(r) = —

~

—
I

nr'(t) tI 1+ +—dt,
(22r) r k rt't2 r't

(4 3)
r t1/2 2

Usos+(r) =
I

2)sos+(t) t 1+ dt,
22' ra rtl/2

i 2

Uss+(r) =——
27/ 4

e
—t.pl l2

21ss+(t) dt

We will separate the different contributions to the
functions 2) +(t) into three parts

n.+(t)=a~,-+(t)+vs, -+(t)+up, -"(t) (44)

The functions 2)~, +(t) contain terms coming from the
iteration of the "C.G.L.N. contributions" to p;+(22tt)
and p,+(tt) minus the iterated OPEP contributions.
The function tts +(t) contains the contributions due
to 2rir interactions in 5 states Lthe function t2+(t) of

'2 J. Bowcock and A. Martin, Nuovo Cimento 14, 516 (1959);
R. Blankenbecler, M. L. Goldberger, N. Khuri, and S.B.Treiman, "The results of this section are given in the system of units.
Ann. Phys. (N. Y.) 10, 62 (1960). h=tt=c=1.
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(2.18)j and also the constant CA+. The function gtg, (t)
contains the contributions from mx P-wave interactions
[the functions gg (t) and o. (t) of (2.18)] and also the
constant C~ .

Our method, given in the Appendix, of getting rela-
tively simple analytic formulas for 2tA 0+(t), gtA, so+(t),
gtA, z +(t), and gtA ss+(t) cannot be applied to the function

QA, s02 (t) ~ F«gtA, s02+(t) the formulas are formally
much longer. Although there is no difhculty in principle
to calculate them, they are an order of magnitude
tg4/m4 smaller than the central potential and tg2/gg"

smaller than the other potentials: For the time being
we will not consider them further.

With the definitions

q= (-'t —1)'",
E= (1/322r2)q/t"

X,=-,'t —t,
x2= Sx—m 1+2t,

GA' ——2mGA/x2,

y =ta,n '(2mq/x, ),
gt)2 ——tan '(2mq/x2),

0= tan '(1/2mq),

q = 2+—Smq( ,'gr y-,)/—t+

We have

4mq'
tan '

4m'q'+ xp I

(4.5)

rtA 0+(t) = 2(Gs —g')'+ [x2'(GA' —g') —xP(Gs —g')] + (Gs —GA') —-', Gs ——,'GA'
X2 X] mq

+ 4
0~ 32rx1

2mq 4mq

X1' X2'

+ + (Gs—GA')', (4.6a)
4mq xP+4m2q2 x '+4m'q'

xX X1 X2gt)1

g'(Gs —GA')
m' (x2' —x,')mq

gtA, 0 (t)=

xS
gtA, S0 (t)

2m4

'QA, S0 (t)
2m4

X1X2g X2gtg2—(Gs —GA') + (-', ) (Gs—GA')
(xp —xp) mq

X] 0~ 32rx1 2r

+g' + — + + (Gs—GA')', (4 6b)
xP+4m'q' 2mq 4mq 4mq 4 (x22+4m2q2)

4m'q' 4g GA x2 g xggt)1 g Sm q (x2 +x1 ) x2GA

xp+4m'q' xP —xP mq 2 (x,'—xP)' 2mq

gg'x, 'x,g, gxx'g'(Gx Gx') — x Gx)gtngg
+(Gs—GA') Gs+

mq (xp —xp)' 2mq X2

Sg'mqx2gt) 2 X2G~
— x2' G~' —Gg"

(x2'+xP) (Gs—GA') —2xP Gs
(x '—x ')'

G g Xggtgg

+g'(x+ ~

— (G —G ') —4g'Gx +
xP+4m2q2) 4 x2 —x1 2mq

4mqx2gt)1
—

t' x2GA
g' 2xPI Gs+ —(x22+xP) (Gs—GA')

(x22 —xP)' k 2mq'

4mqxggt 2 x2GA xp (GS' —GA ')
g' 2x2'(Gs —GA') —(x2'+xP)I Gs+ +, (4.6d)

(x22 x12)2 2mq' 4(x22+4m2q2)

X2'

( )+ +, (4.6c)
2mq' x2'+4m'q'

x2GA mqgt2—(Gs —GA')
I
Gs+

2mq' 2x,

x]m

2tA, r+(t) =
mE GgP 1—
m4 8

xS Gg2

2tA, r (t) = 1——
m4 96

gtA, SS+ (t) = —2tgtA, r+ (t)

qt

g4——1—
12

x2gt)2 2mq g'Gs —
2mqx2gt)2 x2

1+
2mq 3X2 6 x22 x12 4m2q2)

g'Gs 2mqxggt 1 xp g'-1 x,gtg, mx, gr mO-
1+ +——— + ——&1 —,(4.6e)

6 X22—x12 4m2q2 6 2 4mq qt 2

x2gt)2 2mq g Gs mq ( x1 X2'

+ 42 + x241I 1+ —x)&2 1+
2mq x2 6 x22 —xP k 4m'q' 4m2q'

xggt)1 2mx 2m
I

——yg + 0 , (4.6f)
2mq qt k2 qt

(4.6g)
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the parameters involved in these contributions are the
well determined g', Gg, and G~."

We now consider the effects of mz interactions, firstly
the well-established J=T= 1 s-m. resonance (the p
meson). " We here treat the resonance by the same
method as B.C.L.' and take it to be su%.ciently narrow
to be considered, for low nucleon-nucleon scattering
energies, as a single-particle exchange pole. In this
approximation to (2.18)

~-(t) =6~'C,S(t„—t),
0. (t) = —12''(c,+2mc )8(t,—t).

(4 7)

Cs/Cr ——gv/m,

C = —0.6yt„/(-', t„—1)'y'r = —1.0,
t„'"=4.7, t„—'t'2r =0.73,

(4.9)

where t„'" is the resonance energy, t„"'F is the full
width at half-maximum, and gy is the nucleon isovector
gyromagnetic ratio (experimentally gv ——1.83).

With these parameters, and transforming to configu-
ration space we have

Up o (r)=3K'e "'""'/4r

For a narrow resonance the interference term between
it and the "C.G.L.N. contributions" will be small and

q, ,,—(t) = —Dc,sb(t, —t),

rt, , so (t) =—(D/m') [scr'+4mcrcsjB(t„—t),

rf, r (t) = —(1/2t, )rlss (t),

=DC Cr+2mcsj'5(t, —t)/12m', (4.8)

D = (3~'/81') ((t,—4)'/t, $'".

We here take the resonance parameters of B.C.L.
which are"

U, , ss (r) = 3Jfst, (1+2gv)'e "'""'/24m'r

X'= CP (t,—4)"'/8t, "'F= 0.6, (4.11)

with regard to the constant C~ . This also contributes
to the N +X—'+2x I' wave -amplitude. However, the
value of this parameter from B.C.L. is so small as to
produce a negligible effect on the potential. Here, we
have set Cg =0; therefore,

U~
—(r)= U, —. (4.12)

Cz+ = —0.9 (47r) .

The contribution to the potential is

2 (Gs —g')
rts, o+(t) =2rrNcg+ Cz++

(4.13)

xs(Gs —G~')4s g'xrQ&
——+ (4.14)

tS g

Turning now to the mm S-wave interactions, we
believe that at the present time there is no firm experi-
mental evidence for them being strong in this state. "
For the moment we have not included any ~~ 5-wave
interaction terms in this potential calculation Lwe have
set n+(t) =0). The effects of such interactions will be
discussed in Sec. V. The constant C~+ does contribute
significantly to the EE—+ 2x 5-wave amplitude. It is
also related to the pion-nucleon S-wave scattering
lengths and has been determined from the experimental
values of these parameters.

The determination has been done in such a way as
to ensure that the model formula (2.18) for the mN

scattering amplitude predicts these xÃ 5-wave scatter-
ing lengths (taken here to be ur ——0.17, as ———0.089."
With the B.C.L. parameters and n+(t) =0 this value is

U, , sa (r)=—
3+ (—+4gv)t f'e """'p 1

11+
4m'r' k rt,'~'I (4.10)

rts, s o+ (t) = —(1/2m') rts, c+ (t) (4.15)

U, , r (r)=—
3X'(1+2gv)'t, e '""'( 3 3—

i
1+ +

48m'r rt us

"An interesting feature of the "C.G.L.N. contributions" is
that in a p/m expansion, qz, z+(t) is formally an order of magnitude
m'/ps larger than the other potentials, but that for rig, c+(t) large
cancellations take place in the leading terms (since g'—Gs—G~'
for t small). These canceling terms are contained implicitly in the
model formula used for the scattering amplitude. Explicitly
they are the parts of the general wE scattering amplitude that
refer to S-wave scattering. We have used here a pion-nucleon
scattering formula that takes account of the single nucleon term
and the ($,—',) resonance rescattering correction. It was 6rst shown
by Chew, Goldberger, Low, and Nambu (reference 12), that the
leading terms in a p/m expansion of this formula give only sN
S-wave scattering, and although the individual contributions are
large, they are approximately equal in magnitude and of opposite
sign."E.Pickup, D. K. Robinson, and E. O. Salant, Phys. Rev.
Letters 7, 192 (1961).D. Duane Carmony and Remy T. Van de
Walle, ibid. 8, 73 (1962); see also reference 29.

"The B.C.L. parameters now need some revision, for example,
the resonance energy is now established by direct experiment to
be 5.4p, (see reference 21). However, we think that the use of
more realistic parameters than B.C.L. will not change any of
the principal features of these contributions.

C~+ and the EX—+ 2x S-wave amplitude in general,
has no effect on the tensor and spin-spin potentials.

Our way of normalizing the S- and P-wave EX—+ 2m-

amplitudes by adding these constants C&+ and C&,
the values of which are directly related to experimental
mX scattering lengths, is in some way equivalent to the
Ball and Wong normalization procedure. " The im-

portance of such a normalization has been already
emphasized by Moravcsik and Noyes" in connection
with the "pair damping" assumption in earlier nucleon-
nucleon calculations.

"However, on the theoretical side, the analysis of J. Hamilton,
T. D. Spearman, and W. S. Woolcock, Ann. Phys. (N. Y) 17,
1 (1962); and J. Hamilton (private communication), indicate
that these interactions are probably not negligible.

'4 W. S. Woolcock, in Proceedings of the Aix-en-Provence Con-
ference, 1961 (Centre d'Etudes Nucleaires de Saclay, Seine et
Oise, 1961).' J. Ball and D. Wong, Phys. Rev. Letters 6, 29 (1961).

"M. J. Moravcsik and H. P. Noyes, Ann. Rev. Nucl. Sci. 11,
95 (1961). We are grateful to Professor H. Noyes for having
called our attention to this question.
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The potentials V~' ' and Vqo ' do depend on what
is assumed concerning ~m S-wave interactions, and
this is especially true of the central potential. The
calculation of these potentials is correspondingly of
more doubtful validity than is the calculation of V&"
and V~q' '. Also, these potentials have no contributions
from OPEP. In this calculation they are determined
only from the two-pion-exchange contributions.

Considering the spin-orbit potentials, the V~0 of
Yale and Hamada are in very good agreement. The
calculated two-pion contribution to Vqo' can be seen
to be in good agreement with Yale. Although this
agreement might be to some extent spurious we think
the two-pion contribution as calculated here to be the
largest individual contributing part. As for Vqo' it does
not seem to be as well established phenomenologically
as Vqo'. However, both Vale and Hamada agree that
it has opposite sign to Vso' (see Figs. 10 and 11). A
feature given by our calculation, however, as with Vz&'
the p resonance gives a large contribution to the
calculated V80'. Also the sign of this potential is in
fact sensitive to small changes in the p resonance
parameters, and so cannot be regarded as reliably
established by this calculation. However, although the
resonance parameters that we have used are less reliable
than the other parameters that occur in this calculation,
as far as a comparison can be made the two-pion
contribution alone can give an understanding of the
size and sign of this potential.

As regards the central potentials, our results are in
much worse agreement with Vale than are the spin-
orbit, tensor, and spin-spin potentials. This is especially
true of Vg . Although the signs of our central potentials
are in agreement with Vale at very large distance, the
Yale potential Vz quickly becomes repulsive, as is
the Hamada Vq', as you move closer to the core, while
the calculated potential remains strongly attractive.

The curve 8 for V~' shows that the calculated

U„et+(r) =3K"e ""'"'/4r

U, so+(r) =—

U„r+(r) =—

3~~2( 1/2~—ptr 1/2 1
1+ (i+4gs),

4m'r' rt, '"' (5.1)

3~"(1+2gs)'I, 'e ""'"' 3 3 q1+ +
48vs'r rt„'&/& r2t ' j

U~, ss+(r) =3K"(1+2gs)'t„'e ""'"'/24m'r

gs= isoscalar gyromagnetic ratio (gs ———0.06),
resonance energy t„'"=5,7, K" is a constant which is

"B.C. Maglic, L, W. Alvarez, A. H. Rosenfeld, and M. L.
Stevenson, Phys. Rev. Letters 7, 178 (1961).

"N. H. Xuong and G. R. Lynch, Phys. Rev. Letters 7, 327
(1961)."S. Bergia, A. Stanghellini, S, Fubini, and C. Villi, Phys. Rev.
Letters 6, 367 (1961).

potential without taking account of the m~ P-wave
resonance is attractive, a,nd the inclusion of the reso-
nance makes the potential more attractive. The
inclusion of this resonance with more reliable parameters
cannot therefore help matters very much. The only
other possibility within the framework of this calcu-
lation is to include xm 5-wave interaction. However,
the effect of the exchange of two pions in a relative
5 state is of unambiguous sign and gives a central
attraction.

It happens that even if the total mm 5-wave exchange
contribution to the central potential is subtracted from
the calculated potential, the remaining part is still
attractive. Therefore, we cannot obtain a repulsive
V&' within the framework of this calculation by the
inclusion of xx S-wave interactions either repulsive or
attractive. It would seem, therefore, that this feature
of the nucleon-nucleon potential (repulsive Vo' at
quite large distances), if it is to be taken seriously,
comes from three and more pion exchange e8ects.

One part of the three-pion-exchange contribution
that can be considered without too much difhculty is
the exchange of the + resonance. "There will, of course,
be other 3x exchange contributions; however, since at
the present time the co is the most well established 3m

effect, it is of interest to discuss it here.
The co resonance has T=O"" and, like the p, is a

narrow resonance. We will here discuss it, as we have
done for the p by considering it as the exchange of a
single particle. The strength of the coupling of this
particle to the nucleon has not yet been reliably
determined. If we assume however, as current evidence
suggests, that the ~ has the same quantum numbers
as the photon" and is the resonance responsible for
much of the isoscalar nucleon electromagnetic form
factors, " then we can include the ~ exchange in the
same way as we include the p exchange. En analogy
with (4.10) the contribution of the &u to the NN po-
tential will then be
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given by the strength of the coupling of the cu meson
to the nucleon Lanalogous to K' of (4.10)).

The approximate equality of the 2m and 3x resonance
energies (t„ t,') implies that the functional forms of
the p and cv contributions are approximately the same.

The other features of these two contributions are,
however, different. The first difference is that the co,

since it has zero isotopic spin, gives, in the nucleon-
nucleon channel, the same contribution to both isotopic
spin states.

Also, from a comparison of (5.1) and. (4.10) it can be
seen that the p and the co give relatively different
contributions to the different potential forms. In
particular, the smallness of the nucleon isoscalar
anomalous magnetic moment compared to the isovector
moment implies that apart from the over all constant
K ' and the different isospin factor the co contribution
to the spin spin and tensor potentials is an order of
magnitude L(1+2gs)/(1+2gr)$' 1/30 smaller than
the p contribution. Therefore, unless K" is very much
larger than X' the co contributions to the spin spin and
tensor potentials will be very small.

Similar considerations also apply to the spin-orbit
potentials. In this case, however, the co contributes a
term of order of magnitude (1.5+4gs)/(1. 5+4gr) 1/7
that of the p. The co contribution to the spin-orbit
potential need not, therefore, be so very small. The
contribution of the co to the central potential is, however,
apart from the coupling constant X', of the same size
as the p contribution. Also, it is repulsive in both
isotopic spin states.

We have no reliable knowledge of this coupling
constant X', however, the frequency of production of
the co resonance relative to the p in proton antiproton
annihilation processes suggests that X' could be at
least as large as X. Provided K' is not very much
greater than X, the influence of the a& on Vas(r), Vr (r),
and. to a lesser extent Vso(r) will not be large.

However, the inAuence on the central potential could
be large and is certainly repulsive. The two-pion
contributions to the central potential as calculated
here, appear to be too attractive. If more re6ned
calculations, including some three-pion-exchange effects
are to improve the agreement of this calculation with
experiment, the additional contributions must be
repulsive. The co-meson contribution has this desirable
feature; however, the inclusion of the ~ alone, to this
calculation, will still not give good agreement with
Vale in both isotopic spin states.

VI. CONCLUSIONS

The work of Breit et al. and Hamada shows that a
reasonable fit can be obtained to the wealth of nucleon-
nucleon scattering data below 310-MeV lab energy, in
terms of the scattering amplitude calculated in a
potential. A potential that, apart from the energy
dependence implied by the five potential forms used,

is energy independent (see Sec. II). Such work does
not prove, and. would not be expected to prove, that
such a potential gives an exact understanding of the
nucleon-nucleon interaction. It does, however, give
some experimental support to the claim that the field-
theory scattering amplitude is approximately the same
as the scattering amplitude in such a potential.

We have calculated the one- and two-pion-exchange
contributions to these equivalent potentials. It must
be emphasized that there are no arbitrary parameters
involved in this calculation, only parameters coming
from other well established branches of meson physics.
Some improvement of this calculation is certainly
possible especially if more sophisticated i' ~ xx
amplitudes are used than those of the B.C.I.. model.
However, presuming that such a more reliable analysis
does not change the qualitative features of these
results, it can be said that the one- and two-pion
contributions alone do give an understanding of many
of the features of the phenomenological potentials at
distances greater than 0.6p, '.

This success gives much support to the general
method of probing into the form of the nucleon-nucleon
interactions by calculating first the one pion, then the
two pion and so on exchange contributions to the
scattering amplitude and hoping that a good approxi-
mation can be obtained by keeping only the first few
terms.

It is premature to place very great faith in the exact
forms of the potentials as calculated here, especially at
the smallest distances shown ( 0.5p '). This is partic-
ularly true of the central potentials since the phenome-
nological repulsion of Vz' is not given by the one- and
two-pion-exchange contributions alone. We believe,
however, that the inclusion, when it is possible, of the
three-pion-exchange terms, could much improve the
situation. Also, that a reliable treatment of these effects
along with a more realistic calculation of the two-pion-
exchange terms, including, for example, mw 5-wave
scattering corrections, could give a quantitatively
reliable form of low-energy nucleon-nucleon interactions
at much smaller distances than those at which OPEP
alone is dominant.
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APPENDIX

The purpose of this Appendix is to give the method
of obtaining the functions rlz c+(t), re so+(t), gQr(t), ,

and re, as+(t) given in Sec. IV. For simplicity we will

write throughout this Appendix rl +(t), p +(t), pP(t),
instead of rl~, +(t), etc.
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q= (-,'t —1)')2

R = (4i22 —-'t)'"

&(x',x")=x"(x'—x")—2wq',

P(x', x")= (x' —x")2+4wq2,

f(x',x")= x'"+4q2R2,

(A2)

From (3.20') the functions 2t +(t) are defined as

)t +(t)=Q; X,;[p,+(4m2t) W (—1)"'p,+(O,t)], (A1)

where

p, +(4m2, t) =p "(4m2, t)+pB, P(422)2, t).

The first term of (A1) is the contribution from the
"uncrossed" terms minus the second-order iterated
OPKP, and the second is the "crossed" terms contri-
bution.

Using a similar notation to I and II let us define
the functions

82+(w, x',x")= (1/4242)82+(w, x',x"),

t
x'+x"

84+ (w,x',x")=Ng' —
~

—R
2

84+(w, x',x")=0.

x' —x"
+ S+q'Io(*',x")

2

(1) The iterated (22, 22) resonance:

It is convenient to consider separately the contri-
butions of the three terms to the pP(w, t) functions:
(1) the iterated (-'„-,') resonance terms, (2) the "mixed"
terms, and (3) the fourth order terms (see Figs. 3—4).

The results of I and II on the contributions of these
different parts can be written as follows:

(i-t3 e-)"'-
I'(x', x")= tan —'

[~-~—et'" &+f

and also

(A3)

pi+ (w) t) =NGA'I'(x2) x2) + 2rnNGAGBR (x2x2)

+ (GB'/g') 82+ (w,x2,x2),

p2 (w)t) NGAGBR(X2X2)+ (GB /g )82 (w)X2)X2))

po+(w, t) = (GB2/g4)82+(w, xo,x2),

2(x)=—tan '( ),
gK x

R (x',x")= (1/2t) fI(x')+I (x")

(A4) p4+(w, t) = (GB2/g')84+(w, x2,*.),
po+(w, t) =0,

p;
—

(w, t) = ,'p;+(w—,t)—
—(x'+x")P (x',x")],

(A5)
S(x',x")= (1/2w) LI (x') —I(x")

+ (x' —x")P(x' x")]

and from these, the functions

82+(w, x',x")

m'Eg4 ~ 1
(w+ t) —— fx'I (x')+x"I(x")]

mt 8~'

x'+x" g' —S"
—(2w —t)( )R+ (w —2t)( )R

(2) The "mixed" terms:

p,+(w)t) = 2mNg'GAL —R(xi,x2)+S(xi,x2)]
—(2GB/g')82+(w, xi,x2),

p2+(w, t) = —Ng'GALR(xi x2)+S(xi X2)]
—(2GB/g')82+(w)xi, x2) )

po+ (W, t) = —2 (GB/g2) 82+ (W, X2,X2),

p4+ (w, t) = —2 (GB/g') 84+ (w, xi,x2)

po+(w, t) =0,

p;
—

(w, t) =+-',p;+(w, t).

(A8)

+q'(w t)P (x',x")— The fourth-order contributions: Apart from the sub-

traction of the second-order iterated OPEP these are
82+(w, x',x")

2i42Ng' —
2( 1

(w —t) —— LX'I (x')+x"I(x")]
zvt 8~'

p~+(w, t) =8~+(w, xi,xi),

p,
—

(w, t) =—8;+(w,x, ,xi).
(A9)

—(2a+I)( )R+(w+2t)( )R

+.q'(w+. t)Io(x' x")

The forms (A6) for the functions 82+(w, xi,x2) and

82+(w, xi,x2) are not convenient for making the adiabatic
approximation both for the crossed and uncrossed

(A6) terms because of the denominator wt in these expres-
sions. However, if the transformation to the "po-
&ential" representation is made before the adiabatic
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2'—(x'+x")R (x',x")+-
tg2

limits are taken the expressions become much more go+(O, x',x")
simple and we have from the transformation matrix X gg4-
Eq. (3.10), for the "uncrossed" terms

go+(4m', x',x")

2'—(x'—x")S(x',x")+-
Pl

[x'I (x') +x"I(x")],
4m'

gs o+ (4m', x',x")

4q'I'(x'x") —2 (x'+ x")R(x',x")4''
2'

+ (x'—x")S(x',x")+—

(x'I (x')+x"I(x")]
4m~

gp+ (4m', x',x")= —(1/12m') g&+ (4m' x' x"),

gss+(4m' x' x")= (t/6m')g4+ (4m' x' x")

and for the crossed terms

(A10)

gso+ (O,x',x")

[x'I(x')+x"I(x")]
4m'

gg4-

4m'
4q'Io (x',x")+(x'+x")R (x',x")

2'—2 (x'—x")S(x',x")+-
nz2

Lx'I(x')+x"I(x")], (A11)
4m'

g,+(O,x',x")= (1/12m )g,+(O,x',x"),

gs s+ (O,x',x")= —(//6m') g~+ (O,x',x").

From these expressions Pand (A7) and (AS)) it is
not dificult to obtain the iterated (~3/) resonance and
mixed contributions to the functions q.+(t) LEq. (A1)).
These are, respectively, the terms in Eq. (4.6) which
have no explicit g' dependence and those which depend
only linearly on g'. The "uncrossed" contributions to
the fourth order terms (terms of order g') are more
involved because of the subtraction of the iterated
OPEP. The reader is referred to the work of Charap
and Tausner for a discussion of this point.


