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Calculation of Elastic and Inelastic Proton Scattering with a
Generalized Optical Model

B. BUCK
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An extension of the optical model is considered in which a state of quadrupole collective motion is strongly
coupled to the nuclear ground state. The calculations include a spin-orbit potential and the simultaneous
coupled differential equations of the problem are solved numerically on a high-speed computer. Experi-
mental data on the scattering of medium energy protons from Ti, Cr, Fe, Ni, and Zn are analyzed. A good
average optical potential is determined and conclusions are drawn about the energy dependence of the
parameters. Evidence is presented for the validity of the collective model. Nuclear deformabilities derived
by 6tting the inelastic differential cross sections are in good agreement with those determined by electro-
magnetic methods. Various limitations and ambiguities of the model are discussed and possible improvements
are indicated.

1. INTRODUCTION

HE optical model for the elastic scattering of
nucleons by complex nuclei has been very

successful in the last few years. As more and better
data became available, it has proved possible to find
good average parameters which enable one to calculate
accurately the expected elastic scattering for a wide
range of nuclei. More important, it has become feasible
to study the deviations of the results for individual
nuclei away from the average parameters and to
correlate these with nuclear structure effects. ' This
treatment of the elastic scattering appears to be
applicable to any nucleus, although usually it does not
work too well for light nuclei (2 (30). It is the purpose
of this paper to consider a generalization of the optical
model which will make possible the simultaneous
calculation of the elastic scattering of nucleons and the
inelastic scattering to low-lying excited states of the
target nucleus.

All even-even nuclei have ground state spin 0+, and
a large proportion of these have low excited states of

spins 0+, 2+, 3, 4+, etc. , which can be interpreted as
nuclear collective motions. The majority of even-even
nuclei have a quadrupole state as the first excited level

and this level is often strongly populated by medium

energy neutron or proton bombardment. Hence, the
most obvious generalization of the optical model is a
calculation in which a nuclear ground state of spin 0+

and a collective state of spin 2+ are included explicitly.
Since the excitation of first 2+ states by nucleons varies
strongly and erratically from nucleus to nucleus, one

may hope by this means to remove one source of
Ructuation in the optical-model parameters. One should

also be able to correlate the nucleon inelastic scattering
with the results of Coulomb excitation measurements
and 8 (E2) determinations.

2. DESCRIPTION OF CALCULATION

The methods described here are, in principle, very
similar to those of Chase et al. ,

' but the formalism is
extended to include the consideration of charged
incident particles, spin-orbit eGects, and easy specializa-
tion to rotational, vibrational, or single-particle excita-
tion models.

In order to set up the generalized optical-model
calculation, we start with the Schrodinger equation
for the system consisting of an incident nucleon and a
target nucleus. We work in the center-of-mass coor-
dinate frame so that only reduced masses and relative
energies and momenta appear in the equations. The
wave equation is

Here, r denotes the coordinates of the incident particle,
$ stands for the internal coordinates of the target
nucleus, II~($) is the target nuclear Hamiltonian, T is
the kinetic energy operator for the relative motion,
V(r, t) is the interaction energy between particle and
nucleus, %(r,() is the complete wave function of the
system, and E is the total energy. +(r,$) is expanded in
eigenstates of the total angular momentum,

+(r ()= Z ~ A' (r, $).

We assume that Pq~(r, $), for each entrance channel

(Ijl), can be adequately described by the superposition
of the elastic and inelastic scattering states, as follows:

where

yr;i'~(r', P) = P (=s ~ "'C z ~'

H,p,

* Operated by Union Carbide Nuclear Company for the U. S.
Atomic Energy Commission.

' F. Percy (private communication) and (to be published).
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2 D. M. Chase, L. Q"ilets, and A. R. Edmonds, Phys. Rev. 110,
1080 (1958).
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The functions, fz;&I (r), are the radial wave functions of
particles scattered from nuclear states with spin I,
partial wave l, relative angular momentum j= l~~, and
total angular momentum J. The functions Pi;iI~(r, ()
represent the nuclear wave functions, +z~($), vector
coupled to the spin-angular parts of the incident particle
wave functions, (i'Vii(r)) X,&(s= io). Other reaction
channels, and hence the rest of the total wave func-
tion, are taken into account only in a general way via
the later introduction of complex optical potentials.

Insertion of the angular momentum eigenfunctions
in the wave equation yields, after a little manipulation,
the following set of coupled differential equations for
the radial functions fi;)I(r) and fz; t z(r), valid for
I=0, I'QO

L7'i+Vr i:r~i'(r) &jfr—'i( )r

+ P Vr i:r 'i f. r I r (r)=O, (5)

LTi+Vr I i:z 'i'(r) —E'hfi 'i'(r)
+ P Vr '/' I' i" (r. )fr ' i" (I)

By using the definition of Eq. (4), we can soon evaluate
Eq. (8) to give a calculable formula for the required
potential matrix elements. We obtain

Vr 'i' r i.o"'(r)
—Vrr, Prr, (Q) (r)ii—l'( )I+1/2( ) I+/'

XL(2j+1)(2j'+1)(2l+1) (2l'+1))'/'
XCoooo" W(ljl j:Q)W(IjIj:JQ) (10)

where

(—)il »'+ 1ji/'(I'll2'ollI)
Vrr io)Pzr io) (r) = (11)

(4n) /o

The quantity (I'IIToIII) is a reduced nuclear matrix
element defined, by means of the Wigner-Eckart
theorem, as follows:

(+I '(t) I
To'( kr) I+I"(E))=~~ "(I'IITollI&. (»)

It may be readily shown from these formulas that we

have the symmetry relation,

where
+Vr 'i"»i'(r)fi i'(r) =o, (6) Vr; i' I;i'O" (r) =. Vrf/:I'j'O'O'"(r) (13)

0' -l (l+1) d'
(7)

The round brackets indicate integration over the nuclear
coordinates & and the angular variables r , but not ov"er

r. The interaction is written as a sum of products of

multipole tensor operators,

V(r, t) = Z Vq'*(')2'o'(r, f) (9)
Qa

M being the reduced mass of the incident particle.
E'=E—e, where ~ is the energy of the excited state.

For these nuclei of ground-state spin zero, I=O,
I'=2, and J=j=l~—,

' only, where / is the orbital
angular momentum in the entrance channel. In Eq. (5),
l'=l, i&2, and j'=l'&-', . Equation (6) represents five

equations for each of J= j=l&„corresponding to
l'=l, l~2 and the allowed values of j'=l'+ —,', and the
sum in Eq. (6) also goes over I"= l, i+2 and the allowed

values of j"=1"&—',.Hence, the wave equation separates
into sets of six coupled equations, one set for each
value of 1 and of J=/&~. We shall assume that only
the scalar and quadrupole parts of the interaction are
effective, and this leads immediately to the above
restrictions on the 1 and j values. For incident partial
waves jt'=0, 1, 2, some of these equations and parts of
the sums drop out because of angular momentum

coupling considerations. Hence, 1=0, 1, 2 need to be
treated as special cases.

Before the coupled equations (5) and (6) can be

solved, it is necessary to evaluate the matrix elements

Vr I i,z;t (r) of the interaction Potential. We have

The matrix elements of the scalar component of the
interaction (Q=O) are taken to be the usual type of
complex optical potentials employed in elastic scatter-
ing work. They are assumed to be independent of I
and the same in both elastic and inelastic channels.
We employ a real Saxon potential plus volume and
surface absorptive terms, a Coulomb interaction due
to a uniform spherical charge distribution, and a
spin-orbit potential of the Thomas form. Hence,

Vo o= V.(r) —Vsfs(r) iWr fz(r) rW—DfD(r)—
/

)r ' 1dfs(r)—Vsol I o. (14)
km c r IIr

In this equation, Vz, lV~, and 8'z are potential depths
(i.e., positive numbers) and Vso is also positive in

agreement with the shell-model assignment. We have

fr Rs-'—
fs(r)= 1+expl

) as
Rs =rsA "', (15)

(r Rz-
fz(r)= 1+expl

& ar
Rr = rrA'/', (16)

where A is the nuclear mass in atomic mass units.
Since the results are not sensitive to the value of the
charge radius R„within reasonable limits, we shall

(r RD) r—RD)—
fD(r) =4 expl

I
1+exp

& aD ar J

Rr) ——ri)A"', (17)
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set R,=As. Hence,

V, (r) =ZrZre'/r,

ZIZTe r2

r&&s,

r &~s,
2~S — ~S—

where Zg, Z~ are the incident and nuclear charges.
Also, for the scattering state symbolized by I jl),

& ~I j~)=Cj(j+1)—~(~+1)—f7I jf) (19)

For the matrix elements of the quadrupole component
of the interaction (Q=2) we use the expression in

Eq. (10). Explicit formulas for the coupling strengths
Urr'"& and the form factors Fir &'&(r) can befound only
by employing definite nuclear models and using Eqs.
(11) and (12). If, for instance, a single-particle excita-
tion model is proposed, they may be calculated in
terms of shell-model wave functions and assumed
two-body forces. The collective rotation and quadrupole
vibration models will be considered in detail in the
next section.

However, on general theoretical grounds, the form
factors F02&2&(r) and F22&'&(r) should be zero at r=0
and peaked inside or near the nuclear surface. In
addition, for single-particle excitations, the form
factors may have nodes in the nuclear interior. In the
present calculation we chose a simple parametric form
for the coupling functions which was peaked near the
nuclear surface and left the strengths Up2( ) and U22( )

as input numbers. We set

matrix equations yields automatically the elastic and
inelastic scattering matrix elements, from which the
corresponding cross sections are easily computed. This
procedure is repeated for each partial wave l and for
each j=l+—,', up from l=0, until the scattering phase
shifts are negligible.

The whole calculation was coded for the IBM 7090
at Oak Ridge. For incident protons, the code gives the
total absorption cross section, the total inelastic 2+
cross section, the elastic and inelastic differential cross
sections, and the corresponding polarizations. For
incident neutrons, we obtain also the total nuclear and
total elastic cross sections.

A. Collective 2+ States

In this section we evaluate the coupling functions by
means of Eqs. (11) and (12), using the permanently
deformed nucleus model4 and the pure quadrupole
vibration model. ' These are, of course, extremely
simplified representations of nuclear collective motions.

1. The Rotational Mode/4

Here we consider a nucleus characterized by a
permanently deformed surface of cylindrical symmetry.

R(0$)=Rs[1+pY '(ey)7, (21)
that is,

I/27r

R(~~) =R. 1+P — Z Y."*(f,~)Y -(~) (22)
5

F &2& (r) —P &2& (r)

r Rr'& —r Rr)—= exp
I

1+exp
a, ) ar )

(2o)Z, =r~x&~3

The direction S specifies the orientation of the nuclear
symmetry axis and P is the conventional nuclear
deformation parameter. P)0 and P(0 refer, respec-
tively, to prolate and oblate deformations. Assume that
the potential seen by the incident particle depends only
on its distance from the nuclear surface. Then

Thus, various nuclear models could be simulated by
varying the strength ratios and the two parameters of
the coupling functions.

For incoming state
I jl), we have, in general, six

coupled equations. We integrate the coupled set six
times numerically, each time using different initial
values for the functions near the origin. The integrations
are carried out to the nuclear surface where the optical
and coupling potentials eventually become negligible.
The six independent solutions for each of the six radial
wave functions are then superposed to yield the true
wave functions. The superposition coefficients are
determined by setting up a 12)&12 complex matrix
equation which matches the internal nuclear functions
and their derivatives to the corresponding incoming
and outgoing free-state Coulomb wave functions. ' Of
course, we require outgoing Coulomb waves only for
the inelastic scattering channels. The solution of the

3 B.Buck, R. N. Maddison, and P, E. Hodgson, Phil, Mag. 5,
1181 (1960l.

Vfr R(8&)) = V (r —Rs)—
4n.)"' d V

p —
I 2—Y2"*(&V)Y2"(~) R. (»)5j dr

to first order in P. dV/dr is evaluated for P=O. For an
interaction of the Saxon form, as in Eq. (15),

PRsVs &)"'—V=V f ()+
5r

X g Y,-"(')Y,-(&), (24)

where x= (r Rs)/as. fs(x) is —defined in Eq. (15),
and g(x)=Fir. &'&(x) is given by Eq. (20) if we set
EI;——Rs and a~=as. Hence, by definition and use of

4 A. Bohr and B. R. Mottelson, Kgl. Danske Videnskab.
Selskab, Mat. -Fys. Medd. 27, No. 16 (1953).

~ A, Bohr, Kgl. Danske Videnskab. Selskab, Mat, -Fys, Medd.
26, Xo. r4 (&9S2j.
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Eqs. (11) and (12), we have

PRsVs 2I'+1
Vrr, (2)—

as

where

Also,
b„b„*=ri„+1, b„*b„=e„,

(33)

(~"
I
v "(s)l~.")X, . (25)c.. .r 2r

where E is the number of phonons in a state. The
quadrupole phonon states are written as follows:

e,&= lX:Ik), (X:Iklz:Ik)=1. (35)
The nuclear wave functions for the ground-state
rotational band can be written Vacuum state: lo:00)= lo),

1-Phonon state:
l
1:2k) = bp*

j 0).
(36)

2I+1 "'
DLp (S),

2I'+1
Dg, p '(S).

8+2
Also,

5 1/2

1,-(S)= — D„, (S),
4x

(37)P =(olZ„l „l'lo).(27)

Using Eqs. (32) and (34), we easily find that

Analogously to the permanent deformation parameter
(26) P used in the last section, we introduce a dynamical

or root mean square deformation parameter. The new P
is defined so that P' is the expectation value of P„ln„ l

'
in the nuclear ground state.

P'/5 =hpp/2C.

~.= (P/v'5) Lb.+ (—)"b-.*3PRsVsV, (Pi ( )I+I+1)i/Pg I'pr

as(4~) iip
(»)

By means of the definitions given earlier, we have

where the D's are elements of the rotation matrix,
Inserting Eqs. (26) and (27) into Eq. (25), we soon find

Hence,
(38)

Hence, the two coupling strengths Vpp('i and V,pi" are PRsVs 2I'+1
Vrr (.2)

as(47r)"' 5PRs Vs 10)"'
Vpp"'=+ V»"'= ——

I
V "' (»)

as(4~)'~' 7 ) (N'. I'k'
l

b„*
l
E:Ik)

X . (40)I'2r

PRsVs
Vpp&"=+, Vpp"' ——0.

as(4~)"'
(41)

2. The Vibrational 3fodets

Thus, the coupling strengths can be calculated from the
assumed deformation parameter P and the parameters This is easily evaluated to yield
of the optical potential, while the form factors are
essentially the derivatives of the Saxon potential shape.

~sVs
V= Vsfs(*)+ —g(x)Z ~.'Vp" (~4) (31)

where x= (r—Rs)/as. As before, fs(x) is defined by
Eq. (15) and g(x) =Frr &'i (x) is given by Eq. (20) when
we set Ep=Es and ap=as. In the usual way, n„ is
decomposed into operators b„and b„* which, respec-
tively, destroy and create a single quadrupole phonon
of vibration.

Lbu+( )"b—
2C

(32)

In this case, the nuclear surface is characterized by
dynamical deformation parameters n„.

R(ey) =RsL1+P„n„*F,&*(ey)]. (30)

Again assuming that the potential felt by the incident
particle depends only on its distance from the nuclear
surface, we have, to first order,

The diagonal strength V22(2) of the quadrupole inter-
action vanishes because b„~ can only connect states
which differ by one in the number of phonons. It is
fairly straightforward to verify that when V»&' =0,
the results of the coupled channels calculations do not
depend on the sign of P.

7Ve see from the above derivations that, with suitable
and natural definitions of the permanent or dynamical
distortion parameters P, the two models give identical
expressions for V02(2). The models can only be distin-
guished if the presence or absence of the strength V22"'
has large effects on the results of calculation. It turns
out that the two models give very similar results for
the energies and nuclear masses considered here. In
Fig. 1 we illustrate this point by means of typical
calculations of the inelastic 2+ angular distribution of
protons from the reaction Fe"(p,p') at 14.1 MeV. The
geometrical parameters and spin-orbit potential are
the same as in the standard set given in Table I, while
Vs and 8'D for this reaction are contained in Table II,
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TABLE II. Results provided by the search code. The geometrical
parameters of the model and the spin-orbit magnitude were
6xed at the values given in Table I. See text for the sources of
the experimental measurements.

Fe (pp'j 2+
E~ )4.( MeV

-0.85 MeV-

IPI = 0.24

tj"g 8'g)
Nucleus (MeV) (MeV) (MeV)

2+ln

tl (mb) (mb)

O
~o 2

E

b

0,5
I——ROTATION MODEL, P&0

VIBRATION MODEL
—-- ROTATION MODEL, P (0

r.4
'~j

/

Tl
Cr
Xi
Zn
Tl
Cr
Fe
Ni
Zn
Ni
Ni
Fe
Ni
Zn

12.2
12.0
12.0
11.9
14.3
14.3
14.1
14.3
14.3
15.0
16.8
17.3
17.3
17.3

48.1
50.2
48.4
50.0
47.4
49.6
48.2
48.5
49.0
48.2
48.4
47.6
47.5
48.2

9.7
10.8
9.1

10.6
11.0
12.2
11.6
9.7

11.8
10.3
9.7

10.0
9.1

10.5

0.25 904.6
0.20 904.0
0.28 881.6
0.24 919.7
0.26 970.2
0.19 983.1
0.24 979.8
0.23 954.4
0.23 1001.0
0.22 974.6
0.20 989.2
0.21 1007.0
0.20' 981.6
0.23' 1047.0

& P fixed: only elastic distributions available.

40.8
23.8
54.9
42.3
34.7
19.2
33.6
40.7
35.5
35.9
34.5
33.2
35.7
43.3

0.2
0 25 50 75 100 )25 )50 175

FIG. 1. Comparison of collective models. The three curves are
theoretical results for the 2+ inelastic scattering of protons from
Fe" at 14.1 MeV, using a prolate permanent deformation, an
oblate deformation, and the vibrational or dynamical distortion
model. The parameters employed are given in Tables I and II.

We chose jpI =0.24 and we give the results for the
two cases p)0 and p(0 on the rotational model and
the result for the vibration model where the sign of P
is irrelevant. The curves show that while it may just
be possible to distinguish experimentally between
prolate and oblate deformations if the nucleus is
permanently deformed, it would not be possible to
distinguish between the vibrational model and either
of the above two extreme cases.

B. Critique and Discussion

The calculations described above may be criticized
on several grounds. First, it would be desirable to
include explicitly the process of Coulomb excitation of
th'e 2+ state by the incident protons. This process
interferes destructively with the purely nuclear excita-
tion mechanism. The contribution of Coulomb excitation
is, in principle, straightforward to calculate within the
framework of the present treatment. One assumes that
the charge distribution is deformed in the same way as
the potential distribution. This leads to the introduction
into the coupling form factors of additional terms

TmLE I. Standard set: 6xed optical potential parameters
used in the 6nal analysis described in Sec. 33. See text for de6ni-
tion of symbols. Use of this model allows easy comparison of
derived potential depth parameters Vg, 8'D and nuclear deform-
abilities P with the results of other work.

rs (F) ss (F) ro (F) uo (F) rs (F) ur (F) Vso (MeV)

1.25 0.65 1.25 0.47 1.25 0.65 8.0

proportional to r ' when r is greater than the average
charge radius E„and proportional to r' when r&E,.
The proportionality factors are soon calculated for a
uniform, quadrupole distorted charge distribution. ln
practice, one would need to integrate the sets of coupled
equations for a very large number of partial waves if
the Coulomb excitation process was to be treated
correctly. Fortunately, this excitation mechanism is
expected to be negligible for the experiments considered
in this paper.

Second, it may seem dangerous to neglect the eRects
of higher excited collective states, i.e., the 4+, 6+, etc. ,
states of the rotational band or the 0+, 2+, 4+ triplet
of the vibrational nuclei. This is still an open question.
However, a code has been written which couples
together 0+, 2+, and 4+ states, though spin-orbit
coupling is neglected. Experience with this latter code
indicates that the inclusion of the 4+ state does not
appreciably affect the elastic and inelastic scattering
results provided that p(&0.3 approximately, and the
energy is not too low. These conditions are not violated
in the analyses presented later. More serious is the
neglect of the 3 octupole collective states which occur
in a wide range of even-even nuclei and which are
usually strongly excited by nucleon scattering. The
eRect of this on the other results remains to be investi-
gated.

There is another ambiguity in the calculations. We
have tacitly assumed that only the deformation of the
real part of the optical potential is effective in coupling
the elastic and inelastic channels. Naively, one might
say that since the nucleus is deformed or deformable,
then the absorptive potential should also be deformed
or should undergo quadrupole vibrations. This would
lead to imaginary terms in the coupling potentials
evaluated earlier. But, equally naively, one could say
that the absorption potential is introduced only to
take care of all reaction processes other them the ones
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FIG. 2. Comparison of the present
theory with the distorted-wave Born
approximation for Ti' (p,p') at 14.5
MeV. The parameters used in the
calculations are obtained from Table I,
and Kqs. (45) and (46).
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treated explicitly by means of coupled channels and,
therefore, it should not contribute to these latter reac-
tions. In any case, even if the coupling potentials
should be complex, it is not at all evident what form
the imaginary parts should have. Again the matter
remains to be investigated; but it does not appear to
be very important when one considers the other uncer-
tainties in the models employed. A similar ambiguity
afQicts the introduction of the spin-orbit potential.
Perhaps one should make this deformed too and so
have a source of spin-Rip processes. This is felt to be
important only for the calculation of the inelastic
polarization.

Apart from the uncertainties mentioned above, there
is yet another fundamental dilemma in the treatment
of the diffuse-edged collective model for inelastic
scattering. An alternative prescription states that
instead of defining the deformed potential as in Eq. (23)
Lor as in Eq. (31), if we are considering the vibration
model) one should use the expression, V(r(04&) Rs), —
where r(8&) =r/1 PY2o(0&)j, r being th—e radial coor-
dinate of the incident particle. The expansion to erst
order in P leads again to our formulas, except that the
coupling form factors should be multiplied by r/Rs
This modification should not lead

'

to appreciably
different results for the case of proton scattering.

Finally, all the optical and coupling interactions
should, presumably, be nonlocal operators in coordinate
space. Modern theories for the interaction of nucleons
and nuclei always give rise to some form of nonlocality.
Usually, we can take this into account by allowing the
optical potentials to be energy dependent. A more
detailed consideration of nonlocal effects in-the strong
coupling theory of inelastic scattering would present
serious computational difhculties.

We now discuss some general properti. es of coupled
channel calculations. First, it may be noted that if
the sum of coupling terms in Eq. (5) is neglected,
the whole calculation is mathematically equivalent
to the distorted-wave Born approximation (DWBA)
theory of direct interaction inelastic scattering. This
theory is usually presented so that the inelastic scatter-
ing cross section appears as the square modulus of a
perturbation theory matrix element. Schematically,

do.(2+)
"P'I &+~' 'IR(r) I'2'(r) I+"+')I' (4»

dQ

Here, P is the deformation parameter and F(r) is an
interaction form factor similar to those mentioned
earlier. 0';(+& and 4'~& ) are essentially initial and final
elastic scattering wave functions calculated with a
spherical optical model.

We see that the cross-section magnitude is always
proportional to p' and that the angular distribution
shape is independent of p. Figure 2 contains a compar-
ison between the DWBA theory and the present
calculation for the elastic and inelastic scattering of
protons from Ti4' at 14.5 MeV. This case is typical of
those analyzed later. The first diagram shows a plot of
the total inelastic 2+ cross section as a function of p.
For P&~0.1, the two theories give essentially identical
results and oiN(2+) ~ p'. But when p) 0.1, there is a
marked divergence and, for a given p, the DWBA
overestimates the cross section considerably, e.g. , by

10%%u~ at P =0.2 and by 20% at P=0.3. It is interest-
ing to see that from P=0.2 to P=0.4, oiN(2+) o:P in
the present theory, not p' as in DWBA. Similar results
were obtained from calculations on Fe and Zn. The
results on Ti, Fe, and Zn, taken together, indicated that,
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for a fixed value of P, the theoretical total 2+ cross
sections were proportional to the nuclear mass A.

The second diagram shows the elastic and inelastic
angular distributions as functions of P. The DWBA
treatment would give elastic and inelastic distribution
shapes close to those labeled P=0.1. We see that as
P is increased the inelastic differential cross section
grows in magnitude, though not as fast as in DWBA,
and its shape does not change appreciably. Hence,
DWBA is probably adequate for calculating the
inelastic cross section shapes, but not their magnitudes.

In DWBA, the elastic differential cross section is
independent of P. But we find that strong channel
coupling does have a large effect on the calculated
elastic scattering. Hence, it is clear that if the elastic
data, for instance, fell along the curve marked P=0.1,
and if the inelastic magnitude demanded P=0.4, then
one would need to change the optical-model parameters
if one wished to fit elastic and inelastic differential
cross sections simultaneously. This illustrates a general
rule that when collective states are strongly excited the
optical-model parameters obtained by fitting the
elastic data with a spherical optical model are not
necessarily the same as those found using the present
model to fit elastic and inelastic data at the same time.
The difference between spherical optical-model param-
eters and the deformed-nucleus model parameters
becomes more marked as the incident particle energy
decreases. A more detailed discussion of these effects is
found in reference 1. As a final remark, we should say
that inclusion of the 3 octupole states in the calculation
would require further adjustment of the potential depth
values in order to fit all the data.

3. ANALYSIS OF PROTON SCATTERING

In this section we use the model to analyze proton
elastic and 2+ inelastic differential cross-section meas-
urements. The data are taken from several sources and
include experiments on natural targets of Ti, Cr, Fe,
Ni, and Zn at energies between 12 and 17 MeV. The
measurements at 12 and 14.3 MeV on Ti, Cr, Ni, and Zn
were the work of Hu et al. ' The Fe data at 14.1 MeV are
due to Kikuchi et al. ,

~ and the Ni data at 15 and 16.8
MeV were taken by Daehnick and Hill. The elastic
angular distributions for Fe, Ni, and Zn at 17.3 MeV
are the work of Dayton and Schrank, while the only
inelastic distribution at this energy, that for Fe, was
reported by Schrank et al."

The analysis was greatly facilitated by attaching to
the code described above an automatic parameter-

C. Hu, K. Kikuchi, S. Kobayashi, K. Matsuda, Y. Nagahara,
Y. Oda, N. Takano, M. Takeda, and T. Yamazaki, J. Phys. Soc.
Japan 14, 861 {1959).

'K. Kikuchi, S. Kobayashi, and K. Matsuda, J. Phys. Soc.
Japan 14, 121 (1959).' W. Daehnick and H. A. Hill (unpublished).' I. E. Dayton and G. Schrank, Phys. Rev. 101, 1358 (1956).

'0 G. Schrank, P. 'C. Gugelot, and I. E. Dayton, Phys. Rev. 96,
1156 (1954).

searching routine. The search code adjusts the param-
eters of the model until the quantity

o.s(e) o—r(e) '
(43)

is a minimum. The suKces E and T refer, respectively,
to the experimental and theoretical results. Both elastic
and inelastic distributions are included in the sum over
angles and thus the two differential cross sections are
fitted simultaneously. The code was arranged so that
up to 14 parameters could be varied automatically in
the same run. For obvious practical reasons, this full

generality was never used. We shall not quote the
individual values of y' obtained for the results given
later, since these would only have meaning if we gave
also the number of data points and the errors attached
to each measurement. In a fairly typical case we have
about 20 data points for each of the elastic and inelastic
cross sections, while the quoted errors for the elastic
scattering are of order 5% and the inelastic errors are
of order 10%%u~. For such cases we obtain values of the
total p' ranging from 100 to 400. Usually, about one
third of the total y' is contributed by the elastic results
and the rest by the inelastic fitting. Nearly always we
arrive at an excellent fit for the elastic cross section and
results for the inelastic scattering which range from
fall 'to good.

It was decided early to use an optical model with
surface absorption only; hence in all the follows we set
F'1=0. As discussed in reference 1, this is probably a
good assumption for the incident energies considered
here. All the nuclei mentioned above are thought to
be, at least approximately, of the vibrational type. Thus,
we shall always put the coupling strength V»")=0.
The reason for this is indicated in the last section. Any
breakdown of the vibrational model would lead to a
nonzero value for V~~('); but, as we have already
illustrated, it is difficult to distinguish the presence or
absence of this type of coupling. It would also be
desirable to fix the geometrical parameters of the
calculation so that systematics in the potential depth
parameters and the deformabilities P will show up
clearly. This was done only after the preliminary
analysis presented below.

Again, we have seen that the vibrational model of
the last section specifies that the parameters rp, ap of
the collective coupling form factor should be set equal
to the corresponding parameters r8, aq of the real Saxon
optical potential. We did not employ this constraint in
the preliminary calculations since we wished to use the
experimental data to provide a clear-cut test of the
suitability of the collective model. At this stage,
therefore, the model was defined by the following ten
parameters: Vs, rs, as,' Wo, ro, aD, P, rr, ar and Vso.
The coupling strength U02

"& was calculated by means of
Eq. (41). Since P is a free parameter, this does not
imply any specialization to the collective model. To
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sum up, the idea behind the preliminary work was to
determine suitable fixed geometrical parameters (and
spin-orbit strength) for use in later systematic calcula-
tions and to test the applicability of the simple vibra-
tional nucleus considerations.

A. Validity of the Collective Model

The data referred to above contained eleven cases
suitable for inclusion in the first survey. These were
elastic and inelastic scattering measurements on Ti,
Cr, and Zn at 12 and 14.3 MeV, on Ni at 14.3, 15, and
16.8 MeV, and on Fe at 14.1 and 17.3 MeV. The
Ni data at 12 MeV were not used for reasons explained
later, while inelastic data were not available for Ni and
Zn at 17.3 MeV. We thus have a large enough number of
typical experiments for us to be able to draw some
general conclusions.

A series of searches on the data was run in which all
ten parameters of the model were allowed to vary. A
fairly well defined minimum for z' was found in each
case, and the final values for y' were all in the lower
part of the range mentioned earlier. The model param-
eters thus obtained varied erratically from case to case,
as is to be expected in this type of procedure. Table III
contains the average values of geometrical and spin-
orbit parameters determined by this method. The
individual results for the parameters rq, aq, and rD do
not, in most cases, depart from the averages by more
than about 5%, while the departures for aD were
of order 15%. The particular values for the parameters
rF, ar deviate from the quoted averages by about 10%
and 20%, respectively. Hence, Table III represents a
fairly reliable guide to an underlying average nuclear
model. The cross-section calculations are not very
sensitive, within reasonable limits, to the magnitude
of the spin-orbit potential and we can tolerate depar-
tures from the tabulated average value of about 30%.
Thus, we may use in later calculations any fixed reason-
able value for Vqo in the range 5 to 10 MeV. Polariza-
tion data may help to remove this ambiguity.

The really striking result obtained here was that the
average values for the coupling function parameters
rp, a+ were nearly the same as the corresponding average
parameters r~, aq of the real part of the optical potential.
The closeness of the agreement was quite unexpected,
and is a strong indication of the validity of the collective
model treatment of this type of inelastic nucleon
reaction. In particular, the simple vibrational model
prescriptions given earlier seem to work surprisingly
well. Further support for the validity of the model will

TmLE III. Model parameters obtained by averaging the
results of the preliminary investigations described in Sec. 3A.
Note that r~=rs and uz=us.

rs (F) us (F) rz (F) uD (F) r~ (F) ug (F) Vso (MeV)

1.21 0.66 1.26 0.51 1.20 0.65 7.5

be presented below when we compare the values of P
found in this work with those obtained by electro-
magnetic methods.

We have now justified the use of the collective model
and derived one possible set of potential parameters for
application to all cases. To test this, we fixed the model
parameters of Table III at the given values and fitted
all the data again. Only the quantities Us, WD, and p
were allowed to vary in the search routine. The results
obtained were only slightly worse than those found
earlier when all the parameters were allowed to vary.
The fits obtained were very similar to those given in the
next section. It is useful to be able to fix so many
parameters, for then we can study the possible sys-
tematic variations of the potential depths Vq and 8'~
and the deformabilities p. It turns out that these
quantities also can be assigned suitable values within
narrow limits.

3. Results of Calculation

Table I contains another possible set of fixed values
for the geometrical parameters of the model and for
the spin-orbit potential depth. These parameter
values are very close to the corresponding numbers of
Table III and we have used the above justification of
the collective model to set rp=rg and ap ——ag. The
quality of fits obtained by use of Table I is essentially
the same as found when Table III is employed. Several
considerations indicate the use of the second set of
fixed parameters in the final analysis rather than the
first set; but most important is that this choice allows
easy comparison of the results with the conclusions of
similar and related work.

First, it is clearly desirable that the parameters for
neutron and proton scattering should be closely the
same. Hence, we employ as a guide the values given by
Bjorklund and Fernbach, "which they derived from an
analysis of medium energy neutron elastic scattering.
Their treatment contained a Gaussian surface absorp-
tion, while ours uses one of the Saxon derivative type
[see Eq. (17)].Thus, our absorptive diffuseness aii has
to be chosen to correspond with their Gaussian diffuse-
ness. Second, essentially the same set of local potential
geometrical parameters has been found to generate
results equivalent to those predicted by the nonlocal
model of Percy and Buck," which gave a unified
account of a wide range of neutron-scattering data.
Finally, this set, quoted below as the standard model of
Table I does indeed give a good basis for the calculation
of proton elastic scattering over a larger range of
energies and masses than we consider here. The broad
survey of available elastic data is reported and discussed
by Percy. '

Hence, to fit the available data we used the standard
set (Table I) and allowed only UB, WD, and p to be

"F. Bjorklund and S. Fernbach, Phys. Rev. 109, 1295 (1958)."F.Percy and B.Buck, Nucl. Phys. 32, 353 (1962).
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adjusted by the search code. Of course, the magnitudes
of V8 and W'~, corresponding to the two fixed models
of Tables I and III, were different; but they showed the
same general behavior as functions of mass and energy.
It was very encouraging that the derived values of p
for each nucleus, corresponding to the two models,
diGered only by a few percent. This suggests that, in
conjunction with reasonable optical parameters and the
collective considerations of the last section, model-
independent values of the nuclear deformabilities p can
be extracted from the inelastic proton scattering data.

The results are presented in the form of diagrams and
a table. Figure 3 summarizes the experimental data
and the theoretical calculations for 12-MeV incident
proton energy. Figure 4 contains the 14-MeV results
and Fig. 5 the available results at 17 MeV. Table II is a
compendium of the final parameters obtained and
contains the individual values for V8, W~, and p,
together with the predicted results for the total inelastic

2+ cross section and the total absorption cross section 0-~

(which includes the contribution of 0.;„L2+j). The
polarization results are not given. The elastic polariza-
tion predictions are very stable as functions of A and E
and are essentially as given by Percy. ' The inelastic
polarizations vary quite appreciably with A and E; but
no data are available for comparison. In addition, there
are uncertainties in the calculation of the inelastic
polarizations because we have not included the possibil-
ity of spin-Qip processes.

C. Discussion of Results

In general, it will be seen from the diagrams that the
elastic angular distributions are fitted remarkably
well. However, the Ni results at 12 MeV do not quite
reproduce the cross-section rise at angles greater than
140 . The reason for this will appear later. Also, there
are marked discrepancies at forward angles in the
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results for Fe at 14.1 MeV and Zn at 17.3 MeV. The
cause of these disagreements is not known. The inelastic
differential cross sections are fitted reasonably well in

all cases and sometimes very well. The derived values
of P are not expected to be very reliable when there is
an appreciable difference of structure between experi-
mental and theoretical distribution shapes. On the
whole, the experimental inelastic data are much poorer
than the elastic data, due to the technical difFiculty

of the experiments. The inelastic results on Ti and Cr at
12 and 14.3 MeV show only qualitatively good agree-
ment with experiment. The calculations for Fe, Ni, and
Zn at all energies are considerably better when compared

with experiment, the Zn results being particularly
successful.

In Fig. 6 the real potential well depth Vq and the
surface absorptive well-depth S'~ are plotted as
functions of energy. Since only a few nuclei are con-
sidered, no useful conclusions can be drawn about the
fIuctuations of the potential values at a given energy.
The results for the real potential Vg all lie within the
indicated band shown in the diagram. There is an
obvious tendency for V8 to decrease with energy. The
nonlocal potential modeV' for the scattering of neutrons

by nuclei indicated that, if one determined the local
potential parameters equivalent to the nonlocal model
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In practice, it turns out that one needs to be about 5
MeV above the neutron threshold before compound
scattering eGects can be neglected. Hence for Ti, Cr,
Fe, and Zn the effect can be ignored at energies greater
than 12 MeV. But for Ni, the incident proton energy
must be greater than 14 MeV before we can safely use
direct reaction theory alone. Thus, we interpret the
apparent rapid increase of P, as the energy is lowered, as
due to the large contributions of compound nucleus
processes to both elastic and inelastic proton scattering.

To illustrate this point further we calculate the
elastic and inelastic cross sections for Cr, Ni, and Zn at
8=10 MeV and compare the results with the corre-
sponding data of Hu et a/. The (p,e) thresholds for these
nuclei are 5.5, 9.3, and 7.8 MeV, respectively, so that at
8=10 MeV we expect some compound contamination
in all three cases; least for Cr and most for Ni. Zn is an
intermediate example. We fixed Vs from Eq. (45) to be
49.8 MeV and set Wri ——10.6 MeV. The P values for
Cr, Ni, and Zn were taken to be 0.20, 0.20, and 0.24,
respectively, as indicated by the higher energy data.
Comparison of theory and experiment in Fig. 7 bears
out the interpretation fairly well. Some compound
contribution is evident for Cr. For Zn there is already a
fairly sizeable amount of compound inelastic scattering
at 10 MeV. Finally, the Ni results indicate large contri-
butions of compound nucleus processes to both elastic
and inelastic scattering cross sections.

It is dificult to calculate the contributions of the
compound nuclear reactions. The most obvious method
is to use the statistical nucleus assumption for the
compound processes and so reduce the calculation to
the Hauser-Feshbach model" as modified for incident
protons and emitted nucleons. But in order to do this
one must know the spins, parities, and energies of all
excited levels in the relevant nuclei below the incident
proton energy. Information on these quantities for the
required range of excitation energies is scarce and
unreliable.

D. Separated Isotopes
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neutron emission) is greatly inhibited. Since there is not
a large number of target nuclear levels below the (p,e)
threshold, the compound nucleus will have an appre-
ciable branching, ratio for decaying by proton emission
to the groundIstate and low-lying levels of the target
nucleus. Hence, we get compound elastic and inelastic
proton reactions. Ni provides a good example of this,
because the (p,e) threshold is approximately 9 MeV.

From the viewpoint of this analysis, a very interesting
kind of experiment is to measure the elastic and in-
elastic differential cross sections for the separated
isotopes of an element. Such measurements are now
becoming available. Here we consider the data of
Beurtey et ul."on the separated isotopes Zn", Zn", and
Zn" at 11.1 MeV. Using the standard parameters of
Table I and searching on the data as before yielded the
results shown in Fig. 8. All the measured differential
cross sections are fitted remarkably well. Very low
values of x' were obtained and the Anal numerical
results for the automatically varied parameters V8,
W'ri, and P are given in Table IV.

We see that the values of W'~ all lie within the range
'4 W. Hanser and H. Feshbach, Phys. Rev. 87, 366 (1952).
~SR. Beurtey, P. Catillon, R. Chaminade, H. Faraggi, A.

Papineau, and J. Thirion, Nucl. Phys. 13, 397 (1.959}.
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FIG. 8. Compar-
ison of theory and
experiment for the
separated isotopes of
Zn at 11.1 MeV. The
fixed parameters are
in Table I, final
results for varied
quantities in Table
IV.
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a symmetry energy contribution proportional to
(X—Z)/A. In the case given here it is easily verified
that the values obtained for 8'~ show a correlation of
this type, while the results for Vz are erratic. Again,
no definite conclusions can be drawn from results on
such a limited range of nuclei.

The values of P derived from the fitting of these
experiments may be compared directly with the
magnitudes obtained by electromagnetic methods.
The 8 (E2) measurements give la=0.25 for Zn ',
P=0.23 for Zn" and P=0.21 for Zn" The correspond-
ing results from the inelastic proton scattering data are
I(1=0.27, P=0.23, and P=0.20. Thus, the two techniques
yield deformability parameters in very satisfactory
agreement with each other. The inelastic result for Zn"
seems to be a little high; but it should be recalled that
this nucleus has a (p,tt) threshold energy of 7.8 MeV, so
that at 11.1-MeV incident proton energy we should
expect a little compound nucleus contamination.

A (amu) Ve (MeV) Wn (MeV)

64 49.9 9.0
66 50.8 10.5
68 50.9 12.2

0.27
0.23
0.20

os (mb) o; '+ (mb)

850.6 52.2
885.1 34.8
913.2 22.7

TABLE IV. Theoretical results obtained by fitting the data of
Beurtey et ot. (reference 15) on separated isotopes of Zn at
11.1 MeV.
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implied by Eq. (46); in fact, the result for Zn" is the
average value while the results for Zn' and Zn"
appear at the extremes of the range. For 11.1 MeV,
Eq. (45) predicts a real potential well-depth of Vz =49.5
&1 MeV. The value obtained for Zn" is within this
range while the other values are just outside it. In this
type of experiment, where the incident proton energy
and the Z numbers of the targets are fixed, the main
source of potential parameter fluctuations may be

The last experiment to be considered is on Ni" at an
incident proton energy of 30.8 MeV. The data were
taken by Devins et al,."Here we have a test of the
possibility of extrapolating Eqs. (45) and (46) to higher
energies. The standard parameters of Table I were
employed once more and VB, Wz, and P were auto-
matically varied by the search routine in order to obtain
a fit to the data. The fit found for this case was not
quite as good as the ones obtained for the lower energy
differential cross sections. The results of the calculations
and the experimental data are presented in Fig. 9.
For the absorptive potential depth we obtained
TV~ ——11.9 MeV. This indicates that the surface
imaginary potential is in the range given, by Eq. (46)
and hence there is no marked tendency for Wz to change
with energy. The derived value for the real potential
depth was VB——44.9 MeV which may be compared with
the values predicted by Eq. (45) at E=30.8 MeV,
i.e., Va ——44+1 MeV. Hence, we may say that Eqs. (45)
and (46) can be used with some confidence to predict
potential parameters at least up to an incident proton
energy of 30 MeV and for nuclei in this mass region.

The fitting of the inelastic differential cross section
yielded a deformation parameter of P=0.14. This is
considerably lower than the Coulomb excitation value
for Ni", which is P=0.20. However, the errors quoted
for the inelastic measurements are rather large. Also we

"D. W. Devins, H. H. Forster, and G. G. Gigas, Nucl. Phys.
35, 617 (1962).
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FIG. 9. Comparison of theory and experiment for Ni" at 30.8
MeV. Table I gives the fixed model parameters. See text for
discussion of results for the varied parameters.

see that the experimental and theoretical 2+ reaction
cross sections diverge appreciably at forward angles.
The theoretical results for the elastic scattering do not
reproduce the experimental data very well at large
scattering angles. This may indicate the necessity of
including some volume absorption in the model at
higher energies.

4. SUMMARY AND CONCLUSIONS

We have shown in this paper that the strong coupling
theory of direct interactions, with inclusion of spin-orbit
coupling, is able to give a uni6ed treatment of the
elastic scattering of protons and the inelastic scattering
leading to low-lying collective states. However, great
care is necessary in the interpretation of the experi-
mental data and the theoretical results when the
incident proton energy is less than about 5 MeV
above the nuclear (p,e) threshold energy. If a fixed set
of geometrical optical parameters and a fixed spin-orbit
strength are used, then the elastic scattering distribu-
tions can be reproduced excellently for a range of
medium-mass nuclei, while the theoretical 2+ differen-
tial cross sections are in good qualitative agreement
with the available data.

The data analysis determines the assumed surface
absorption potential depth only within about 15'jg~ of
the value O'D ——10.6 MeV and there are considerable
individual Quctuations. The real Saxon potential depth
at each energy has been found to be within 2% of the
values represented by Eq. (45) and this formula can be

extrapolated to higher energies. But at energies greater
than 20 MeV, it may be necessary to introduce some
volume absorption into the model. This remains to be
investigated when more extensive higher energy experi-
mental measurements become available.

It has proved possible to derive, from the inelastic
scattering data, fairly good values for the nuclear
distortion parameters P. For values of P greater than
about P=0.2, it seems necessary to use the coupled
equations approach rather than the DWBA formalism,
although this latter theory is capable of giving good
fits to the inelastic angular distribution shapes. When
P) 0.2, the presence of nuclear deformability begins to
aBect the elastic scattering and it is not possible to
take account of this easily within the framework of the
DWBA calculations. Also, for a given value of P, the
DWBA treatment overestimates the magnitude of the
inelastic cross section.

The values of P obtained in this work are, in general,
consistent with those derived by electromagnetic
methods, i.e., by Coulomb excitation and lifetime meas-
urements. The P's obtained from B(E2) determinations
were found by assuming a quadrupole distorted, sharp
edge charge distribution with an average radius given
by E,=1.2A'~'. This is a rather crude model, but it is
adequate for the rough comparisons discussed in the
paper. On the whole, the agreement between the
electromagnetic deformabilities and those found from
inelastic scattering indicates that the collective model
considerations of Sec. 2 represent a valid way to
compute 2+ reaction cross sections. In addition, the
preliminary analysis of the data discussed in Sec. 3A
showed that the parameters of the coupling form factors
should be closely the same as the corresponding
parameters of the real Saxon potential. This is predicted
by the simple vibrational model calculations of Sec. 2A.
Hence, we have evidence for the validity of the collec-
tive model.

In order to clear up various ambiguities in the
calculations, it is necessary for the proton experiments
to be extended to higher energies and performed for
a much wider range of even-even nuclei, preferably
separated isotopes. Data on 3 angular distributions, as
well as on the elastic and 2+ differential cross sections,
would be desirable.

In conclusion, we may say that the generalized optical
model appears to be a useful way of correlating experi-
mental data and studying the properties of nuclear
collective states. Further applications of the model
have been discussed elsewhere '7'
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