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FxG. 3. Comparison of present analysis with that of Robinson
and with the experimental results of Brode and of Chen and
Raether. (Atomic units, k=ge. )

((0.1%%u~ of the incident energy). The total cross sections
were then obtained using the expression

o = (4z/ks)gg(2l+1) sinsbg.

IV. RESULTS

In Fig, 1 the Hartree potential function is plotted and
compared with the total potential including polarization.

From this 6gure we see that the polarization contribu-

tion is very much larger than the Hartree potential in
the region r&3, and hence the statement that small
errors in Vrr(r) should be negligible as compared with

V„ is justified. The change in the potential function due
to a small change in the parameter frs is also shown. It
was found that in the low energy region the cross section
varied over a wide range of values with small changes in
the cutoff parameter. This indicates a strong dependence
on the polarization contribution to the potential for
values of r comparable to the atomic radius. In Fig. 2
the cross section for various values of n and frs are
plotted. We note that in the energy region e)0.4
(E)11 eV) little change is produced in the total cross
section by small variations in the cutoff parameter. In
Fig. 3 the theoretical cross section which best its the
experimental values given by Brode' as well as more
recent values given by Chen and Raether' is given.
We see that a good fit to Brode's values is achieved in all
but a very small region in the low energy range, and an
almost perfect 6t to the values of Chen and Raether in
the thermal region is obtained (E 0.06—0.075 eV).

V. CONCLUSIONS

From the results obtained it appears that the model
discussed describes the collision process. Clearly, if the
method used for selecting the value of frs is valid for
different atoms, then a simple model may be used to
describe low energy electron scattering as only the ex-
perimental polarizability is required.

' R. B.Brode, Phys. Rev. 34, 673 (1929)."C. L. Chen and M. Raether, Phys. Rev. 128, 2679 (1962).
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The spectrum of electrons at low energies and large scattering angles resulting from the scattering of high-
energy electrons on bound atomic electrons is calculated to lowest order in nZ and highest order in the
incident energy. Relativistic Coulomb field eGects are included by the use of wave functions correct to two
orders in nZ. Inclusion of these relativistic Coulomb effects leads to a cross section significantly different
from that obtained previously by the use of the plane wave approximation. The results show that the low-
energy spectrum of electrons scattered on bound atomic electrons completely dominates the peak predicted
by Parzen and co-workers in the low-energy spectrum of bremsstrahlung-producing electrons.

I. INTRODUCTION duction would complement the direct measurement of
the bremsstrahlung energy spectrum and thus provide a
check on the Bethe-Heitler formula. Of particular
interest is the form of the bremsstrahlung spectrum near
the high-energy limit. This portion of the bremsstrahlung
spectrum corresponds to the low-energy spectrum of the
scattered electrons. Using the Bethe-Heitler formula,
Parzen et al. have shown that there is a peak in the
spectrum of electrons for very low energies and large
scattering angles.

' 'T has been pointed out by Parzen and co-workers'
~ - that the measurement of the energy spectrum of the
electrons which have lost energy in bremsstrahlung pro-

*Supported in part by the U. S.Atomic Energy Commission.
t Present address: Institute for Atomic Research and Depart-

ment of Physics, Ames, Iowa.
f Present address: Bartol Research Foundation, Swarthmore,

Pennsylvania.' D. G. Keiffer and G. Parzen, Phys. Rev. 101, 1244 (1956);P.
T. McCormick, D. G. Keiffer, and G. Parzen, ibid 103, 29 (1956). .
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As pointed out by Ford and Mullin, ' there are two
other processes which may mask the Parzen peak. First,
there is the process of a single Mgller scattering followed

by a nuclear Coulomb scattering into large angles. Since
this is a multiple scattering, it depends on the thickness
of the scattering foil. Second, there is the single scat-
tering of an electron on a bound atomic electron. Since
there is the nuclear recoil to conserve momentum, this
process can give rise to low-energy electrons at large
scattering angles. Ford and Mullin evaluated this cross
section by using a Dirac plane wave description of the
incident and outgoing electrons and a "nonrelativistic"
description of the bound electron. However, for large
angle scattering it is important that large momentum be
transferred to the nucleus. Since it is the high-mo-
mentum components of the bound state which produce
this momentum transfer, a more accurate description of
this state is necessary. Further, since the collisions
which produce large-angle scattering must occur very
near to the nucleus, the low-energy outgoing electron is
strongly inQuenced by the retarding 6.eld of the nucleus.
Consequently, it is to be expected that relativistic
Coulomb effects must be included in the description of
the low-energy outgoing electron and the bound target
electron.

We have re-evaluated the spectrum of low-energy
electrons which have been scattered through large
angles on bound atomic electrons. The motion of the
electrons has been described by using the first Born
approximation for the scattering wave functions. In this
way, the first-order relativistic Coulomb effects on the
motion of the incident and scattered electrons have been
included. First-order relativistic Coulomb corrections
have been included in the description of the bound
target electron. For high energies, we 6nd that the inci-
dent electron and the high-energy outgoing electron are
accurately described by plane waves. However, rela-
tivistic Coulomb corrections to the wave functions of
the slow outgoing electron and the bound target electron
make contributions to the scattering matrix element
which are of the same order as the contributions from
the plane wave term of the wave function of the slow

outgoing electron and the "nonrelativistic" term of the
wave function of the bound electron. We have evaluated
the cross section to lowest order in o.Z for high-energy
incident electrons and have found that the inclusion of
the Coulomb effects gives a cross section that is of order
O.Z lower from that obtained by Ford and Mullin. How-
ever, the low-energy spectrum of the electrons scattered
through large angles on bound atomic electrons remains
dominant over the corresponding spectrum of brems-
strahlung producing electrons. Thus, the peak predicted
by Parzen et ul. in the low-energy spectrum of brems-
strahlung electrons will not be detectable even if the
scattering foil thickness is sufficiently reduced so that
multiple scattering processes are neglectible.

' G. W. Ford and C. J. Mullin, Phys. Rev. 110, 520 (1958).

II. SCATTERIN. G OF ELECTRONS ON
BOUND ELECTRONS

The matrix element for electron-electron scattering is'

~f'=n ««'
I
r r'I '

expels(W& W&')
I
r

Xlt r. (r)y„Pr(r)its (r')y„lt, (r') —(1'~ 2'). (1)

Here the initial and final states of the two electrons are
denoted, respectively, by the unprimed and primed
subscripts 1 and 2. The initial state fs describes the
bound electron. The bracket (1'~2') represents the
exchange term obtained by interchange of 1' and 2'. The
following discussion will be restricted to the case of
large-angle scattering. In particular, we take electron 2'

to emerge from the scattering center at an angle relative
to the incident direction exceeding vr/2. The differential
cross section for scattering into state 2' is

do e —(27r) (Wr/pr)dns'dWs'Ws'ps' dpr' e p ~
M

xs(w, +w, —w, .—w., ), (2)

1
p(r) = e'&' ——LHp(r)+W)

4x

J'(r')e" "«' U(p), (3)
/
r—r'f

where the sign of the exponent in the integrand is de-
termined by the boundary conditions. For a Coulomb
potential, V(r)= —(nZ/r)e &", where p is a positive
parameter which is allowed to vanish at the end of the
calculation.

For the bound state, the wave function of a hydrogen-
like atom is used. The greatest contribution to the cross
section will come from the E-shell electrons since large
momentum can then be transferred to the nucleus. The
hydrogen-like ground state is exactly

with

les(r)=Ne ""r' ' 1+ n. r U(ps)
m(1+y)

X=nZtn)

Ws= my= m(1 —n'Z')'",

e See, for example, J. M. Jauch and F. Rohrlich, The Theory of
Photons and Electrons {Addison-Wesley Publishing Company, Inc. ,
Reading, Massachusetts, 1955), p. 146.

where er Q represents the average over initial and sum
over Gnal spin states.

In order to obtain the matrix element correct to the
lowest nonvanishing order in O.Z, we use the 6rst Born
approximation for the continuum states 1, 1', and 2'.
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and which
8 g, 8'g))$'2, m

This wave function has been expressed in terms of the
plane-wave spinor U(p2) to facilitate the evaluation of
the spin summations. In all results the momentum y2 is
set equal to zero. Neglecting second-order terms, p can
be approximated by unity and $2(r) can be written:

iA
$2(r)=1Ve "" 1+ e r U(p2).2'

Note that the bound state energy, TV2, can be described
accurately to two orders in nZ by the rest mass
energy, ns.

An expansion of $2(r) in powers of o.Z can be made in
the form

$2(r) =limNe "(1 uZ22—2r+2inZO. r) U(y2),

the matrix element can be considerably simpli6ed by
retaining in it only those terms which contribute the
highest power of Wi/222 in the cross section. With the aid
of the energy relation

Wi+222= Wi +W2,

we 6nd after angular integration over dQ~ that terms in
the squared matrix element which involve the denomi-
nator (Pi—Pi)' exceed all remaining terms by two
powers of W&/222. Since this denominator occurs only in
the square of the direct term of the matrix element in
(1) and arises solely from the plane-wave terms of the
wave junctions describing the high-energy states 1 and
1', it follows that the cross section is determined to the
accuracy desired by the matrix element

(P —P ) 'U(12 ) U(12)

where the factor e '" is included to insure the conver-
gence of the resulting integrals. Indeed, McVoy and
Fano4 have shown that the first two terms in the ex-
pression of the matrix element in powers of QZ are
properly obtained by expanding the wave function in
this form. However, although this form does lead to an
expression for the matrix element which is formally
correct to order nZ, it is not applicable for our purposes
because it gives rise to a factor of the form

(L(12i—Iii )'—P2'3'+4P2 '") '

in the square of the matrix element. Since (pi —yi')2
—P2

' has a zero for 2pi pi'=Pi'+Pi' —P2', this factor
leads to a singularity in the subsequent angular inte-
gration in the limit that e vanishes. If the factor e ~" is
not expanded in the bound-state wave function, e is
replaced by ) and the divergence in the angular integra-
tion is replaced by a finite term of order 1/X. Thus, we
obtain an unexpected lowering in the order of the
differential cross section.

The zeroth-order matrix element results from (1) with
the wave functions as given in (3) and (5) evalua, ted in
the limit that nZ and X approach zero. ' In this limit

M r;= 2 (22r)4crlV (P,—P,.)—'
X&(Pi—yi —P2 )—(1'~~2'), (6)

where

This term vanishes identically for the case of large-
angle scattering since the argument of the 8 function is
nonzero. The matrix element is thus of 6rst order in o.Z.

The matrix element to 6rst order is rather compli-
cated. Since, however, we are interested in the case for

4 Kirk W. McVoy and U. I'"ano, Phys. Rev, 116, 1168 {1959).
'The over-all factors ~ and Ã vrhich multiply the matrix

element 3If; are disregarded in classifying terms in 3/Iy; according
to "orders of uZ."

X dr p2 (r)y„A(r)e'i»»'&' (8)

The remaining integration of the matrix element is
conveniently carried out in momentum space. Intro-
ducing the Fourier transforms

A (r) = X2 (1)~"'di,

A(~) = x (a)~"'da,

the matrix element becomes

~r'= 2(2~)'~(Pi —Pi ) 'U(12i )V.U(12i)

with

X dy X2 (1)V.X2(I+Pi —I i), (»)

X2 (1)=~(12—I)U(122)

n P+Pm+W2QZ
+ &(P2),

2 '
L(12

—12)'+~'l(P' —P '+2&)

N X NO. P X
X2 (P) =— U(P2)+ U(I 2)

~2 (P2+) 2)2 2~2 222 (P2+l%2)2

Mg; Mi+3f2+M2, ——
where

32m'uN A

(P P.)' (E2+)P)2—
XU(122 )V, U(12i) U(I 2)V.U(»), (1»)

The matrix element can now be written to erst order in
nZ in the form
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and

16m'O.N X M3 is of the same order in O.Z as M~ and M2, although it
appears to be of higher order. This can be seen by noting

%FAN zz y
— yf ) that, in evaluation of M3 to first order in nZ, the ex-

XU(pl )y p(yl) p(p )~ 22. KU'(y2) (1 2b) pansion to lowest order in X of the factor X/[(p —pl
+yl)2+X2$2 gives rise to a delta function via the
relation

16n (nZ) A'

M3 —— U(yl )V.~(yl)
(Pl —Pl )'

X ~y
L(p —p +y )'+&'j'

y+em+W )~.U(y )
X

[(P2 y)'+P'$ (P' P2' 9)

with
K= Pl —yl P2"

(12c)

limll/(y'+ll2) = zr20 (p).
) ~0

(13)

It follows that the integral in (12c) to zeroth order in X

is nonvanishing, and 3f3 is of order o.Z.
The use of relation (13) in evaluation of Mz requires,

however, an implicit expansion of the integrand in ).
Since an expansion in ) before integration is to be
avoided, and since, moreover, a finite value of ) is re-
quired to insure convergence of the subsequent angular
integration of

~ Mz ~', we do not make use of (13) in the
explicit evaluation of M3. The exact integrals involved
in (12c) are

(1,P)
(AU, A) = dp

L(p —p )'+z'j[(y —p+y )'+l'7(p' —p '—2&
(14a)

To lowest order in nZ, these integrals are given by

(1~ Pl Pl')
(AU, A) =

llK' (p,—pl. )-—p2' —2zp24

With this result we fi.nd

8x'O.N X

. ~(yl )V.~(yl)
mpsi(P1 P2 )'X' s——A
XU(p )[—n (p —p )+Pm+W ]y„U(y,),

where
(Pl—yl )'—P2'

2

Carrying out the integration over 8'&, the cross
section given by Eq. (2) can be rewritten as

d&B (2zr) '(Wl/pl)pl p2 Wl W2 dW2 dQ2'

X dQ, . -', +~M, ;)2, (16)

where to lowest order in nZ,

+2 Re (M,Mst+ M1Mzt+MUMz't). (17)

All terms on the right-hand side of Eq. (17) apparently
contribute to the same order of o.Z in the cross section as
expressed in Eq. (16). However, it is found that the
contribution of the term ~Ms~2 is actually one order of
nZ lower than that of the remaining terms in Eq. (17).

2 See, for example, Mihai Gavrila, Phys. Rev. 113, 514 (1959).

This follows from the fact that as) approaches zero, the
factor

(1/ )[l/(1'+l')j (18)

which occurs in ~Ms~2 becomes the 8 function, 8(s).
Since the integration over dQ1 in (16) is expressible as an
integration over the argument s, the range of which
includes the point s=o, the delta-function character of
the factor (18) reduces the

~ Mz
' contribution to order

nZ. The factors ll'/(K'+X')' which occur in (17) from
the contributions of Ml and M2 do not cause a similar
reduction in the order of nZ since K is never zero. Thus,
only M3 contributes to the cross section to the lowest
order. Indeed, this fact is verifi. ed by a more detailed
investigation of the terms in (17).As a consequence, we

replace
~

M z; ~

' in the cross section by ) Ms
~

'.
After evaluation of the sums over the spins in

~
M, ~2,

the cross section in this approximation becomes

'( Z)iaaf'p dW dQ ~ 1 )
do'g = dQg

zrm pips~ E'(Pl Pl.)' S2+X2—
X t (pl pl') [mW1'Pl'P2'+mW1P1' 'P2'

+4m W1 W1W2 —m'W2 —m'Pl P2 —2m'J

+p2' ' (pl pl')[ 2mWlpl' ' (pl pl')
—2mW1 pl (yl —yl )+4mW1 Ws Wl
—2mzW2. +2m2P1 Pl +4m' J

2(W2'+ m—') [mWly1' (pl —pl )
+Wl myl. (Pl —yl )$

p2' [ WlPl P2 +mW1 1 2 3
+Pl' P2'(3m W2' +m )+m [8mW1W1'W2'

—3m'W2 +6m'W2' —mW2 2+2m') }. (19)
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The angular integration in (19) can be simplified by
elimination of angular-dependent terms from the nu-

merator. This can be accomplished by expressing the
latter in terms of factors occuring in the denominator;
the resulting cancellations then leave the numerator
independent of the p~ direction. Using the relations

(pi —pi )'= (Pi—Pi )'+x',

2(p, —y, .).p, .= (Pi—P, )'—K'+2xW2,

2 (yl yl') ' yl' 2x(W1 x) (Pl Pl') )

2 (yi —pl. ) pi ——2xWi+ (Pi—Pi )',

2P1'P2 K2 (P——i—P—i )'+2P1 P2,

2P1.Pl = —(Pi—Pi )'—2m2

where x=8'2 —m, we obtain

n (nZ) tXi pi dN 2d02
d(T~ = ( (x—Wi)I04

22rp2 pi

+ (Wl+ m —x)I22+ 2 (—2mW1'+ mx Wi+ m'x) I42

+2$6mWP+4xW1'+Pi. P2. (2W1 x) 4x'W, — —

5mxW, +—2x'+ mx' 4xm 4m—'jI24—

12$—2mxP1 P2. (2Wl —x)+4m'WP(x+2m)

2m2xW, (3—x+4m) 4m'x' 4m—pxpfI44)—, (20)

g nm (P1 Pi') 0 K0 ds Lsp+l12)-',

=ll '(Pi —Pi )p "Kp "
(s,+ill) (s2+ill)

X ~+-2'i ln
(si—iX) (s2—iX)

The second integral in Eq. (23) is now finite as )1 ~ 0
and the term of lowest order in X is contained in
Therefore,

2x

Inm (llplpl') 2rp2'(Pl Pl')0
tn

The remaining q ~ integration is easily carried out. Re-
taining only the highest power of 8'& we obtain

I 2= , (24a)
~W1 t 2m(W2' m) j (W2' m p2' cos82')

1 2r2(W2 —m) (W2 +m —p2 COS82 )

XW1' 2[2m(W2 —m)$ "i'(W2 —m —
p2 cos82.)'p2 '

(24b)

Using these results in Eq. (20), the differential cross
section to lowest order in nZ and highest order in TV~ is

(nZ) 'r 0 m 2dQpdWz2

where subscript 0 denotes the value of the quantity for
s= 0 and

S2

Iem d01' (s2+y2) —1(Pi Pi') (21)
d0~=

2p2'(W2' m) (W2' m p2' cos81 )

It remains to evaluate the integrals I to lowest order
in aZ (or )I,). Using dpi P2 (P1P1) 'd——q».ds we can
write

where

and

I p2'(plpl')

s1

ds (s2+V) '(Pl —Pl ) "K "

P2' —(Pi—Pl.)'
Sy= -&0,

2r

(22)

1 1' ' 2'

$2= &0.

We wish to evaluate S„ to lowest order in ) . However,
) 2 cannot be neglected compared to s', since s has a
zero in the range of integration. In order to extract the
lowest order term we express 8„ in the form

2W2'(W2+m —p2 cos82 )
——1, (25)

(W2 +m) (W2 —m —P2 cos82')'

where rp n/m, the ——classical radius of the electron. This
cross section is independent of the incident energy 8'& ~

By retaining the terms M& and JI2 in the matrix
element Mf';, it is possible to exhibit the energy de-
pendence of the next lowest order term in the nZ ex-
pansion of the cross section do-~. Although terms
proportional to the 6rst and the second powers of the
incident energy occur in this order in the squared matrix
element, an exact cancellation of these terms takes
place after angular integration over dQ~, and the cross
section is found to have at most a logarithmic depend-
ence on the energy 8 ~. A contribution to this next
lowest order eZ term in the cross section can also arise,
however, from the next nZ correction to the wave func-
tion of Eq. (3) as a result of a lowering in the order in
nZ of this correction term after the angular integration
over dQ~ . This contribution can have again at most a
logari:thmic dependence on the energy.

III. DISCUSSION
=S„„'+ ds (s'+X') 't (Pi—Pi) "K "

A comparison of the value of dp. & given by Eq. (25)—(Pi—Pi.)0
—"Kp-~j, (23) with the value obtained for this cross section in reference
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cxZ f'p W —Cosg2~CO p=
2wW, (W, —P,. cos9 )'(

) W dB (26)
P2~ 5$

For purposes of comparison, we introdduce the di-
mensionless quantity Z related to the differential cross
section do- by the de6nition

Z=
p2Z2dg 2 dg

~ ~

Results of numerical evaluation of Z~ and Z~ for inci-
dent energies 4.123 and 60 m, for the scattering angle
120' and for Z= 13 and 47 are presented graphical y in
Fig. 1. It is clear from the 6gure that the peak in the

7 Here the notation is made to conform wit.. t..at'
h that used in the

in this a er. Thus, 8'& refers to the energyc lculatconprese tedin esp p
of the electron in the initial state an 2 o e ene
electron in the anal state.

2, shows the importance here of relativistic Coulomb
held effects. The neglect of these effects in reference 2 is
equivalent to the approximation of the matrix element
jII; b the term Mr of Eq. (12a). This term gives a
cross section proportional to (nZ) and Wr .
order relativistic correction to the wave function of t e
bound electron and the 6rst-order relativistic correction
t th wave function of the slow outgoing electron are

d. ~rI inassociated, respectively, with the terms M2 and ~ 3

t ema rixeh t '
element. These terms make contri utions to

r suitMf; which are of the same order in o.Z as 3f~, and resu
in a cancellation of the terms involving 8"~' and 8'~ in
the cross section. The term M3 gives, in addition, the
contribution of order (nZ)' in the cross section which is
calculated in Sec. II. Although it is at 6rst surprising
that this dominant contribution to the back scattering
cross section arises romt

'
es from the Coulomb correction term

in the wave function of the back scattered electron, t is

the Coulomb coupling between the electron and t e
nucleus which allows momentum to be conserved for the
large-angle scattering.

The energy spectrum of electrons which have lost
energy in remss rab trahlung production has been given y

ince the eneralMcCormick, Keiffer, and Parzen. ' Since the genera
result is rather complicated, only the result in the limit
of high incident energy and low 6nal electron energy
will be given here. ~

10'

10

IO

10

IO
I.O l„5 2.0

+;/m
2.5 5.0

FIG. 1. Zg an g as. 1. Z d Z as functions of W~ for the scattering angle
02 =120'. Zg is given for one E-shell electron.

energy spec rum ot um of bremsstrahlung-producing electrons
is completely masked by the energy spectrum of e ec-
trons scattered on bound atomic electrons,

The rocess of a Mitiller scattering followed by a
nuclear Coulomb scattering which competes wi e

rocesses considered here is dependent on the target foilpro cesse
thickness, whereas do-~ and drI are not. The va ues
for Misller scattering followed by a nuclear Coulomb
sca ering catt '

calculated in reference 2 for a foil thickness o
5&&10" atoms(cm show that both Zp and ~ ws e
dominated by this process in the region of the Parzen
peak. It is clear that the foil thickness must be drasti-
cally reduced in order that Z& and Z& be signi6cant in
this region.

~ ~ ~The low-energy spectrum of positrons obtained in
pair production by high-energy p rays is closely related
to the low-energy spectrum of bremsstrahlung-pro-
ducing electrons. By using coincidence techniques the
b k d d to various scattering processes can be
greatly reduced and the low-energy region o t e
positron spectrum should be observable.

' C. L. Hammer (private communication).


