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ready promotion to the conducting levels above the top
Fermi level in the ground state. In graphite, which is
the two-dimensional case for our system, there are one
orbital and one valence electron per atom with three
equivalent neighbors. For graphite it is clear both theo-
retically'and experimentally' ' that the two-dimensional
metallic state exists. Thus, we see that for this system,
at least, bond resonance without vacant orbitals can pro
duce the me/a/Bc stake. It is our theory that the new class
of metals discussed here is the three-dimensional analog
of the two-dimensional metal graphite. There are four
orbitals and four valence electrons with four neighbors
in the tetrahedral lattices of diamond, wurtzite, and
sphalerite which on compression transform, according
to Jamieson, e into the six-near-neighbor structure of
metallic tin. Thus four bonds have to satisfy six atoms
(the central atom contributes 4 valence electrons and
each of the surrounding 6 atoms contributes 4/6 more for
a total of 8, just adequate for four full bonds). The res-
onance state is possible because the Franck-Condon
principle has been satisfied by the location of the atoms
in equivalent positions, and, as a consequence, the full
crystal is set into three-dimensional resonance such that
the entire crystal becomes one molecule at least at the
absolute zero of temperature. At hnite temperatures the

' P. R. Wallace, Phys. Rev. 71, 622 (1947).' A. R. Ubbelohde and F. A. Lewis, Graphite and Its Crystal
Compounds (Clarendon Press, Oxford, 1960).

principle of strict symmetrical equivalence for neighbors
will be violated by the lattice vibrations, and the res-
onance possibilities will be reduced because of the
Franck-Condon principle; or in band theory language
the scattering of conducting electrons will result.

The conduction act itself can be most clearly en-
visaged as the removal of an electron from the resonat-
ing molecule at one edge of the crystal at the cost of the
ionization potential, the distribution of the resultant
positive charge uniformly over the entire molecule be-
cause of the three-dimensional resonance, followed by
the neutralization by acquisition of an electron at the
opposite side of the crystal with the regaining of the
energy corresponding to the ionization potential. In the
presence of an electric field the positive charge obviously
will not be completely uniformly distributed at any
finite temperature because the relaxation time for the
molecular lattice will necessarily be the time for the
transport act in order that the charge be passed from
anode to cathode, and this limitation in rate will cause
a charge gradient to exist across the molecule. At the
absolute zero of temperature this electrical resistance
would appear to be zero.

Drickamer' and his co-workers have shown that, like
true metals, the new compressed phases absorb light
down to the lowest frequencies. This can be envisaged as
being due to the close lying states in the crystal (mol-
ecule) corresponding to charge displacement from one
end of the crystal to the other.

P H YSI GAL REVI EW VOLUM E 130, NUM 8 ER 2 1$ AP R I L 1963

Optical Absorption in an Electric Field
JosEPH CALLAwAY*

Aerortutrortic Divisiort of Ford Motor ComParty, Pie7ePort Beach, Califorrtia

(Received 3 December 1962)

The eGect of an external electric field on the optical absorption associated with a direct transition between
bands is studied. Expressions are given for the absorption constant for photon energies below and above the
band gap. The formation of discrete levels in the presence of the electric field produces oscillations in the
absorption.

HE inhuence of an electric field on the optical
absorption of a semiconductor or insulator in the

vicinity of an absorption edge has previously been
studied by Franz' and by Keldysh. ' These authors
have shown that in the presence of a held, absorption
occurs for photon energies lower than the ordinary
band gap. This effect'has been observed experimentally
by Moss, ' Williams, 4 Boer et al. ,

' and Vavilov and
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Britsyn. ' In addition to the displacement of the edge,
one expects to find oscillatory behavior of the absorption
above the edge resulting from transitions between the
discrete "Stark" levels produced in the band system
by the external field. This structure might be similar
to that observed in the interband magneto-optical
e6ect by Burstein et al. ' and by Zwerdling et al.' The
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theoretical calculations of Franz and Keldysh do not
predict such oscillations, and it was with the objective
of determining whether oscillations should be expected
that the present work was undertaken.

Our conclusion is that the absorption should contain
an oscillatory component, both above and below the
usual band gap. Although the amplitude of these
oscillations will not be large for easily attainable field
strengths, their observation would constitute strong
evidence for the existence of discrete electronic levels
in a uniform electric field.

This calculation is based on discussions of the theory
of tunneling given by Kane' and Argyres. " We will

use the notation of Argyres whenever possible.
In the presence of a uniform field of force, Ii, which

is assumed to be in the x direction, and a periodic
potential, the wave function of an electron may be
written as

y„„(k„r)=Pi„A „„(k)iJ„(k,r).

is incident on the system. The perturbation is

H'= (e/m) iaaf. p. (6)

In the calculation of the transition probability with
the perturbation (6) we wish to avoid explicit use of
the standard formula

since this involves a density of states for a system which
here contains discrete levels. We follow instead, the
procedure of Argyres. "Let %(t) be the complete wave
function for the perturbed system. This function can be
expanded in terms of the functions g:

+(t)=2- .~. &.,- .,(t)4.,-(k.,r)

suppose that an external time-dependent electro-
magnetic field described by a vector potential

g eel(s r—&at)

(k ) gi h f t' f t k d The probability that the system is in the state p„,„at
band index n. The A„,„are solutions of the equation time t if it was in h„at 3=0 is, to erst order in the

radiation held:

E„(k) iF A„„=w, „A,
Bk

(2) fb„.,„(t)I'
=

~
m„„.(k, „„.) ~

n(w„,.—w, ..—h~, «). (g)

In this equation E„(k) is the energy of the Bloch
function iJ „(k) in the periodic potential plus the diagonal
matrix element of the perturbing field, —FX„„(k).
We will, however, neglect the latter quantity in the
following. " It is assumed here, as in the calculations
previously mentioned, that the direction of the electric
field coincides with one of the reciprocal lattice vectors
of the crystal. The solution of this equation is

It can easily be seen that the transverse components of
the electron's wave vector are conserved. The function
0 is given by

Q(s, t) = (4/s') sin'(st/2).

The matrix element M„„ is given by

e
M„„.= p„,„*(k&,r) e pp„,„(k,',r)d'r,

5$

1 i
exp— [W„„E.(k„k',)jdk—.', (3)

8 p

dkgk. 'A „~(k)A „„(k')

E„(k„k,)dk, .
2mvF

+
K K t«/2

f„*(k,r)e"'e pP„(k', r)d'r,

In these equations, k& stands for the components of the
wave vector perpendicular to the held, ~ is the width
of the Brillouin zone in the x direction, and p is an
integer denoting the discrete "Stark" level. The entire
effect of the electric field on the motion of the electron
is not included in this calculation since there are off
diagonal matrix elements of the Hamiltonian between
states p„„and g„„which must be included in a
description of the phenomenon of tuneling. We will,
however, neglect these quantities in this calculation.

To treat the problem of optical absorption, we

' E. O. Kane, J. Phys. Chem. Solids 12, 181 (1959)."P. N. Argyres, Phys. Rev. 126, 1386 (1962).
"The principal eRect of this term is to produce an additional

shift in the band edge linear in the 6eld, in addition to the spread-
ing into the gap described in Eq. (23).

A„,„*(k)A„„(k)ep„„(k)dk,.
—tt/2

(10)

dk,

(2~)'

1 2
8)nn

t L p, v'

In this equation, L, a macroscopic quantity, is the
length of the specimen ili the x direction. The factor

In order to obtain the last line of Eq. (10) we have
made the standard approximations of radiation theory
in which the momentum of the photon is neglected.
The quantity y„„ is the usual interband optical matrix
element.

The number of electrons per unit volume and time
which make transitions between band m' and band e
is given by
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Q =2Aw~„~/Msoocgo

Finally, we note that 0 „„is given by'4

(21)

A'k'
=E,+ +&o,

where
1 "" A'k'~

ho= — E~n L'o — —~dk .
K —g/o 2p,

(22)

%e finally obtain after a straightforward calculation

The 0-'~' in the denominator may be approximated by
neglecting k' altogether. We recall that the absorption
coefFicient, u, is related to the transition probability
by the formula

R'= (2p/A') (Aco —E,). (27)

For negative 0, we put k~ ——g —q'. For positive 0,
we set kio=R'+q'o. Then we obtain for n:

possible, however, to observe these oscillations, although
they are rapidly damped.

The apparent singularity in n when Aor=E, is a
consequence of the failure of the approximations made
in the integration, and is not to be taken seriously.

It is also of interest to examine the absorption
coeScient for photon energies greater than the band
gap. In this case, there is a region of k& in which cr is
negative. In this region, it is necessary to use the
approximation (19) for the Airy function. We define
a quantity R' by

IJP (Eo Aoi ot'—
n =E exp —

~ f(co), (23)
4co(E,—Aco) & Eo

where

sin'(-,'yq'+-,'or) dq+xi e 4&&"'dq

and

E=2e'~ e p„~ ~'/nm'A'. nooc,

Eo'"=3AF/4 (2p, )'",
(24)

(25)
+2+

/=1
sin'(-', yq'+-,'n.) cos[y~l (q' —2)gdq

[2p, (E,—Aoo))'"
f(~e) =1+4Q

i=i Sp(Eo Aoi)+A'~'P—
+-', e 47'"' cos[yxl(q'o+P) jdq, (28)

0

in which p=P '=A'/2pF and P= (2p/A')6o. This may
be written as

~l
2[2p, (E,—Aoi) j'1' cos —(Aoi —E,—Ao)

F (2p)'"
n=E (Aco —E )"'g(oo),

AQ)

(29)~l
+A~l sin —(Aoo —E,—Ao) . (26)

p w ere
B

g(~) =1+-
8

sin (-', yq')dq+
2R

e 4&""dq

00

+—p
g L=S

[1+sin(o'rq )] cos[+Kl(q —h )$dq

+ e ' "'cos[yxl(q'+P)]dq (30)

These integrals may be evaluated approximately in
the limit of small fields with the aid of the additional
assumption that 1~))R&0, which is valid for energies
moderately close to the norma1 band edge. Ke obtain

cos (-,'yR')

00 cos(giddy) 1
+Q (2~)'~' +

/=I (Y~l)'"R y~lR'

The absorption edge is not sharp in the presence of
the field, but rather falls off exponentially into the gap.
The absorption in the gap is governed by the quantity
Eo which appears in the exponential. It is seen that Eo
is proportional to F'", so we may say qualitatively that
the spreading out of the absorption edge is proportional
to the two-thirds power of the applied field. This spread
is not large for fields of reasonable magnitude. %hen
evaluated with numbers appropriate to GaAs, Eo turns
out to be approximately 10 ' eV for a field (internal)
of the order of 10' V/m.

The summation term in (26) is periodic, repeating
each time Aco increases by 21rx/F. This quantity is just
the Stark level splitting. Hence, we see that, as ex-
pected, the absorption has a component which a
periodic with the period of the separation between the
Stark levels. The amplitude of this term will be,
however, relatively small. Normally we will expect
A'~o/2p&)(E, Aoo) In —this c.ase, the coeKcient of the
oscillatory term is 4[2p, (E,—Ao&)/A'i~'1'1'. It may be

' In the effective mass approximation, A0 ——A,'g'/24. The effec-
tive mass approximation may, however, fail badly in the calcu.
lation of 6„„,since this involves an integral across the entire
Brillouin zone. In the following, we will regard it as an adjustable
parameter.

&([1+sin(—,'yR') j sin[y~l(R' P)j . (—31)

The leading term in the absorption is just the usual
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Therefore, this term tends to produce oscillations of
decreasing period and amplitude as energy increases
for constant field. The other oscillatory term in (31)
is similar to that found in (26), and has the periodicity
of the Stark level separation.

The ffrst term in the summation in (31) gives rise to
a periodicity of the absorption as a function of field
strength for 6xed energy of a di6'erent sort. Whenever
the quantity p changes by Ap such that

Ay =2~/z5', (33)

the cosine in this term returns to its original value.
The quantity Ap is approximately related to a change
AF in the field by Ay= A'AF/2pF'

We conclude with some comments relating to the
approximations employed in the calculation and to
the possibility of experimental observation of these
effects. Aside from the usual approximation of energy-
band theory and of first order time-dependent pertur-
bation theory, the principal computational approxi-
mation is the use of the effective mass formula for the
energy difference between bands, Eq. (15). The latter
should be considerably more accurate in the present
work than in the theory of tunneling since only rela-
tively small values of Iio are important in the evaluation
of the essential integrals. The existence of oscillations
resulting from the Stark levels follows from Kq. (14)
without any additional approximation. The only
quantity in the calculation which is particularly sensi-
tive to the e6ective mass approximation is 5' which
determines the phase of the oscillations. The long-period
oscillation (third term of Eq. 31) is the consequence
of putting a 6nite upper limit on the integral of an

absorption resulting from a direct transition between
bands. The absorption constant for this process is

n = (E(2p)'"/AM) (AM —R,)'I'.

The remaining terms in g(~) contain the effect of the
electric 6eld. Since p is inversely proportional to the
field, the absorption increases as the field increases, as
has been observed experimentally. ' ' There are two
oscillatory components in the absorption as a function
of energy. The larger of these involves

cos (-', yR') = cosL (her —E,)/Eo)3",

where Fo is given by (25). The cosine repeats itself
when Ace changes by (approximately)

(32)

oscillatory function, thus this oscillation is reasonably
independent of the approximations. Use of Kane's
reduced Hamiltonian" would enable us to take account
of the departures of the conduction and valence bands
from parabolic form but would not enable a more
accurate determination of P since the latter quantity
involves an integral over the entire Brillouin zone.
The improvement in accuracy resulting from the use
of this Hamiltonian would seem to be less significant
than in the theory of tunneling, and would produce a
more complicated mathematical problem.

It should be noted, in considering possible experi-
mental observations of these oscillations, that the
situation is not particularly favorable in tunnel diodes,
since the potential drop across the junction is insuK-
cient to produce two turning points in the classical
description of the electron's motion. It is probably
better to use an external electric field, as has been
done in the experiments previously cited. For instance,
Williams was able to maintain a potential difference of
approximately 100 V across a thin layer in a sample of
CdS.4 For the purpose of making order of magnitude
estimates of these effects, we will however, consider
gallium arsenide. This material is available in a form
with quite high resistivity so that it might be suitable
for experimental investigations.

Assume that a field h=F/e=5 X 10' V/m is present
inside the material, directed along a L111]crystal axis.
The Stark splitting amounts to 0.016 eV. This is
appreciably larger than KT at liquid nitrogen temper-
atures and below. I.et us consider an energy region
approximately 0.15 eU above the normal band edge.
Then yE'=1.2, and the principal effect of the field is
to increase the absorption by a factor of about 5/3.
LHowever, the relatively small value of pR' implies
that additional terms in the expansion of the integrals
in (30) should be considered in any detailed analysis
of potential experimental results. ] The quantity
(y~R') '$1+sin(-', yR') jwhich determines the amplitude
of the oscillations due to the Stark levels has the value
0.036. It might be possible to observe these oscillations
at low temperatures if the resolution is good.

If we estimate P in the effective mass approximation,
we Gnd that for this field strength the oscillations
predicted by (33) occur at intervals of 3&&10' V/m.
As the effective mass approximation presumably over-
estimates 6', the oscillations should be somewhat more
widely spaced than is predicted here. Since R'(&P, the
second summation term has essentially the same
periodicity in fieM strength, although the phase is
diBerent.


